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Objectives: This study sought to identify potential change patterns and predictors of

fasting plasma glucose (FPG) and lipid levels after initiating highly active antiretroviral

therapy (HAART).

Methods: A retrospective cohort study was conducted on 1,572 patients tested

positive for HIV who initiated HAART between January 2010 and October 2020

in Shanghai, China. The growth mixture models (GMM) were used for capturing

subgroups of FPG trajectories as well as triglyceride (TG) and total cholesterol

(TC) dual-trajectories. Multinomial logistic regression models identified correlates of

given trajectories.

Results: Themedian follow-up timewas 2.0 years (IQR 1.0–4.7). Three FPG trajectory

subgroups were identified as FPG low-stable (62.3%), medium-stable (30.5%), and

high-increasing (7.2%). Furthermore, three subgroups of TG and TC dual-trajectories

were identified as TG and TC high-slight increasing (13.7%), low-rapid increasing

(27.6%), and a subgroup ofmedium-stable TC and slight-decreasing TG (58.7%). Older

age, high TG, FPG, BMI, CD4 count of <200 at baseline, and initial use of zidovudine

(AZT) and protease inhibitors (PIs) helped to identify the class with increasing glucose

or lipid metabolism trajectories.

Conclusion: The change patterns of plasma glucose and lipid in patients tested

positive for HIV were heterogeneous and tailored interventions should be considered

in specific subgroups.

KEYWORDS
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1. Introduction

Since the introduction of antiretroviral therapy (ART), survival rates for patients tested
positive for HIV have improved, and life expectancy has increased significantly. AIDS-related
mortality rates have fallen, whereas deaths due to non-AIDS-defining diseases such as
cardiovascular diseases (CVDs) have risen (1). ART and later highly active antiretroviral therapy
(HAART) have some adverse effects on glucose and lipid metabolism (2), resulting in an
increased risk of CVD (3).
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Currently, there is no consensus on the association among HIV
infection, ART, and the development of diabetes mellitus (DM) (2).
In several studies (4, 5), the association of HIV infection and ART
with an increased risk of DM has been suggested with potential
mechanisms including chronic inflammation and ART-induced
mitochondrial dysfunction (6, 7). In contrast, others reached different
conclusions (8). A meta-analysis showed that in studies with a
mean duration of ART of ≥18 months, ART was associated with a
significant increase in fasting plasma glucose (FPG) levels but not in
studies with a mean duration of ART of <18 months (9), suggesting
that the impact of antiretroviral medications on blood glucose might
take time to manifest. In addition, the effects of specific ART classes
and antiretrovirals on DM development have not been thoroughly
understood (2, 10).

Similarly, although the association between ART and
hyperlipidemia has been well-evidenced, there was no coherent
conclusion on the long-term changing patterns of blood lipids after
initiating HAART. It is generally accepted that the lipid phenotype
is characterized by decreasing the levels of high-density lipoprotein
cholesterol (HDL) and increasing the levels of triglycerides (TG) and
low-density lipoprotein cholesterol (LDL). However, no consistent
results have been obtained for the changing pattern of total
cholesterol (TC), shown to be elevated in some studies but decreased
in others (11, 12). Furthermore, though newer drugs of ART were
suggested to have more favorable effects on lipid metabolism than
older ones, such as efavirenz (EFV) and protease inhibitors (PIs)
(13, 14), recent studies have reported that using newer drugs, such as
tenofovir alafenamide (TAF) and integrase strand transfer inhibitors
(INSTIs), might lead to more significant increases in TG, TC, and
HDL (15, 16).

Focusing on potential patterns of longitudinal blood glucose
and lipid changes might help provide a more nuanced picture of
metabolic changes. Studies in the general population have proved
that latent change patterns, such as inverse U-shaped trajectory
and high growth rate of plasma glucose and lipid levels, played
an essential role in the development of CVD (17–19). However,
to our knowledge, there is a lack of research characterizing the
potential trajectories of plasma glucose and lipid levels in patients
tested positive for HIV on HAART, which would help to further
uncover the association between HAART regimens and changes in
glucose and lipid metabolism. Several statistical methods have been
developed for identifying unobserved subpopulations of trajectories
of quantitative variables over time (20). One of them is the
growth mixture model (GMM), which is a method for capturing
heterogeneity in individual trajectories and identifying multiple
unobserved subgroups of participants with similar trajectories (21).
This study aimed to identify latent subgroups of plasma glucose and
lipid levels trajectories using GMM and evaluate their associations
with both traditional risk factors and HIV-specific factors, especially
HAART regimens.

2. Materials and methods

2.1. Data sources

Data in this retrospective cohort study were drawn from two
national web-based databases in China, namely, the HIV/AIDS
Comprehensive Response Information Management System

(CRIMS) and the HIV/AIDS case reporting system (CIS), as
documented elsewhere (22). Demographic characteristics of patients
(e.g., age, gender, height, weight, and HIV transmission route) and
disease-related data (e.g., TC, TG, and FPG measurements, CD4
cell count, HIV viral load, and ART regimens) were collected for
this study.

Fasting blood samples were extracted and analyzed. FPG and
lipids were measured by a fully automatic biochemistry analyzer
(Roche, Basel, Switzerland) using an enzymatic method. Absolute
CD4+T lymphocytes were counted by a FACS Calibur flow
cytometer (Becton-Dickinson, USA) within 24 h after blood sample
processing. Plasma HIV-RNA viral load was measured using an
automated Abbott real-time HIV-1 assay (Abbott, USA).

2.2. Eligible participants

Data were collected from January 2010 to August 2021. The
eligibility criteria were patients with HIV newly diagnosed between
January 2010 and October 2020, age older than 18 years, ART-naive,
non-pregnant, and newly initiated on a HAART regimen consisting
of a pair of nucleoside reverse transcriptase inhibitors (NRTIs) as
backbone drugs together with non-nucleoside reverse transcriptase
inhibitors (NNRTIs), PIs, and INSTIs as core drugs. We excluded
patients with missing height, weight, TC, TG, FPG, and CD4 count
at the baseline and those with less than two follow-up visits in
different years.

2.3. Definitions

Body mass index (BMI, kg/m2) was categorized as underweight
(<18.5), normal (18.5 to <24), and overweight or obese (≥24). High
FPG, TC, and TG were defined as FPG of ≥6.1 mmol/l, TC of ≥5.2
mmol/l, and TG of≥1.7 mmol/l, respectively, according to the NCEP
ATP III criteria.

2.4. Statistical analysis

For statistical descriptions, continuous variables were expressed
as means and standard deviations if normally distributed, or medians
and interquartile ranges (IQR) if not. Categorical variables were
expressed as numbers and proportions.

FPG, TG, and TC measurements at visits occurring between 1
month and 7 years after HAART initiation were used to calculate
subsequent observations. Multiple measurements available for a
single year were averaged, and then log-transformed because of their
skewed distribution. Using Mplus 8.3 (23), FPG trajectories over
time were modeled by the GMM method, and distinct subgroups
that followed similar patterns were identified. To capture the
interaction of TG and TC development, parallel process GMMs were
conducted to determine the shared developmental trajectories of both
lipid levels.

The analytical procedure was planned following frameworks
suggested in previous studies (24, 25). First, different growth curve
models (GCMs) (i.e., linear, quadratic, and latent basis models)
were fitted to select the best-fit model for the following steps
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(26). Then increasingly free models were conducted following the
path of going from the most constrained group-based trajectory
models (GBTM) without random effects to more flexible latent class
growth analysis (LCGA) models with different residual variance
error structures and GMM with varying covariance structures of the
random effects by gradually reducing the model restrictions (25).
We used a class-specific unstructured covariance matrix to avoid any
assumptions about the covariance structure (27). Moreover, a greater
range of start values was specified to avoid local solutions in the
estimation of GMMs (28).

Model fit criteria curve behaviors were identified to determine
whether to fit more complex models, a plateauing behavior of
the fit statistics indicating possible covariance misspecification (29).
Seminal studies in this field proposed several criteria that were used
to select the best latent class number K (25). Adjusted Lo-Mendell–
Rubin likelihood ratio tests (aLMR) and Vuong-Lo-Mendell-Rubin
tests (VLMR) were taken for comparison between class Kmodels and
class K-1 models. A significant p-value (p < 0.05) represented the
superiority of the class K model over the class K-1 model. Bayesian
information criterion (BIC) was also evaluated when comparing
different models: a small number of BIC indicated a better-fitting

model. Then, the average posterior probability of assignment (APPA)
close to 1 (ideally >0.7), a sufficient sample size (>5% of the sample)
for each trajectory group, and a large value of entropy was indicative
of good model parsimony and adequacy. Finally, trajectory groups
were marked by the relative baseline level (low, medium, and high)
and change tendency (increasing, decreasing, and stable).

Baseline information was compared between subgroups using
either the chi-square test or Fisher’s exact test for categorical variables.
Significantly different variables (p < 0.1) were further analyzed in the
multinomial logistic regression of the latent classes.

Statistical analyses were conducted by IBM SPSS 23.0 (IBM
Svenska AB, 16,492 Stockholm) and SAS 9.4 (SAS Institute, Cary,
NC). A P < 0.05 was considered statistically significant.

2.5. Sensitivity analyses

To evaluate the robustness of our findings, sensitivity analyses
were conducted by selecting participants with at least four follow-
up visits in different years and participants who did not change their
ART regimens during follow-up, respectively.

TABLE 1 Characteristics of the study population (n = 1,572).

Characteristics n % Characteristics n %

Number of assessments ≥1.7 522 33.2

2 271 17.2 TC (mmol/l)

3 258 16.4 <5.2 1,442 91.7

4 214 13.6 ≥5.2 130 8.3

5 238 15.1 Route of infection

6–8 591 37.6 Homosexual transmission 1,192 75.8

Gender Heterosexual transmission and others 380 24.2

Male 1,501 95.5 CD4 cell count (cells/µl)

Female 71 4.5 <200 536 34.1

Age (years) 200–349 596 37.9

18–29 647 41.2 350–499 302 19.2

30–44 595 37.8 ≥500 138 8.8

45–59 224 14.2 HIV viral load (copies/ml)

≥60 106 6.7 Missing 1,090 69.3

BMI (kg/m2) ≤100,000 378 24.0

<18.5 102 6.5 >100,000 104 6.6

18.5–23.9 1,105 70.3 Backbone drugs

≥24 365 23.2 3TC+TDF 1,317 83.8

FPG (mmol/l) 3TC+AZT 192 12.2

<6.1 1,241 78.9 Other 63 4.0

6.1–6.9 186 11.8 Core drugs

≥7.0 145 9.2 NNRTIs 1,455 92.6

TG (mmol/l) PIs 56 3.6

<1.7 1,050 66.8 INSTIs 61 3.9

BMI, body mass index; FPG, fasting plasma glucose; TG, triglyceride; TC, total cholesterol; HAART, highly active antiretroviral therapy; 3TC, lamivudin; TDF, tenofovir; AZT, zidovudine; NNRTIs,
non-nucleoside reverse transcriptase inhibitors; PIs, protease inhibitors; INSTIs, integrase strand transfer inhibitors.
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3. Results

3.1. Cohort description

In total, 1,572 patients tested positive for HIV were
eligible for inclusion and were included in these analyses.
Supplementary Figure 1 shows flow chart details. The cohort was
predominately male (95.5%), infected by homosexual transmission
(75.8%), and with a median age of 31 years (IQR 26–42) (Table 1).
At the baseline, NNRTI regimens were used by 92.6%, PI regimens
by 3.6%, and INSTI regimens by 3.9%. The two backbone drugs
were mainly lamivudine (3TC) plus tenofovir (TDF) (83.8%) or 3TC
plus AZT (12.8%). The median follow-up time for patients from the
initiation of ART to the last available visit was 2.0 years (IQR 1.0–
4.7). In total, 60% of participants had at least four measurements in
different years. During follow-up, 1,926 (82.4%) patients maintained
their initial treatment regimens, and 276 (17.6%) patients changed
their regimens, with 110 (7.0%) patients having their core drug
substituted from NNRTI to INSTI, 91 (5.8%) patients having their
core drug substituted from NNRTI to PI, and 75 (4.8%) having other
ART shifts.

3.2. GMM model fitting results

First, by comparing model fit indices, the quadratic GCM
was selected as the base model, which showed the best-fit indices
(Supplementary Table 1). Then, the 2-classes GBTM to 9-classes
GBTM were analyzed (Supplementary Table 2). Based on the VLMR
and aLMR results, the 8-classes GBTM model was selected. Since the
information criteria (IC) of GBTM models were gradually improved
as the number of groups increased, the 8-classes LCGA models
with different residual variance structures were allowed to be fitted,
i.e., same over class but different across time (LCGA1), same over
time but different over class (LCGA2), and different across time
and over class (LCGA3) (29). Still, the 3-classes LCGA2 model was

selected based on the VLMR and aLMR results and BIC values
(Supplementary Table 3).

According to the IC behaviors of LCGA models, we then
expanded the LCGA2 into GMMs by adding class-variant random
effect variances stepwise, respectively. Finally, the GMM2 with class-
variant random intercept and linear slope variance had lower BICs
than others (Supplementary Table 3). The VLMR and aLMR results
showed that the 3-classes model could be retained. After further
eliminating the non-significant higher-order polynomial terms, the
GMM4 model was settled on as the final selected model, with the
lowest BIC value of −13,623.117 and with APPAs of 0.89, 0.76, and
0.80 for each class, respectively. Furthermore, the GMM4 model had
a reasonable distribution of class memberships across the categories
(7.2, 30.5, and 62.3%).

In the GMM model for FPG, the best fit of the 3-classes model
involved one quadratic and two intercept trajectories (Figure 1). Most
participants (62.3%, n= 979) categorized into class 1 observed a low-
stable FPG trajectory, which began around 5.34 mmol/l. In addition,
class 2 containing 30.5% of participants (n= 479) showed a medium-
stable FPG trajectory that began around 5.69 mmol/l. The rest of the
participants (7.2%, n = 114) in class 3 observed a high-increasing
FPG trajectory with the highest baseline mean FPG value of 6.66
mmol/l and a quadratic increase with a slope of 0.005 (SE = 0.002,
p < 0.05).

The fitting of dual-trajectories for TG and TC followed the
same modeling strategy as for FPG. Based on the selected quadratic
GCM model, the 3-classes GMM1 model with a relaxed time-
varying and class-varying residual and random intercept variance
structures was ultimately settled on as the optimal model, with the
lowest BIC value of −8,426.30 and APPAs of 0.85, 0.78, and 0.79
for each class, respectively (Supplementary Tables 4–6). Furthermore,
the class membership for the GMM model was 13.7, 27.6, and 58.7%
for each category.

For TG and TC (Figure 2), three shared latent groups were
identified: (1) high-slight increasing TG and TC (class 1, 13.7%);
(2) low-rapid increasing TG and TC (class 2, 27.6%); and (3)
medium-stable TC and slight-decreasing TG (class 3, 58.7%).

FIGURE 1

FPG trajectories after HAART initiation identified by GMM (n = 1,572).
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Supplementary Table 7 provides parameter estimates for latent
growth factors based on the best solution, i.e., the 3-classes GMM1.

3.3. Predictors of FPG trajectory subgroups

Table 2 shows the baseline characteristics of participants in
different FPG trajectory subgroups. Compared to class 1, participants
in classes 2 and 3 were featured by older age, higher TG and FPG at
baseline, and use of non-TDF backbone drugs, while only participants
in class 3 were characterized by baseline CD4 counts of <200 cells/µl
and BMI of ≥18.5 kg/m2. No significant differences were found

between classes 2 and 3 except for age and FPG levels at the baseline.
In the multivariable model, age older than 30 years and high FPG
were independently associated with classes 2 and 3 when compared
with class 1. The initial use of AZT was independently associated with
class 2 but marginally associated with class 3.

3.4. Predictors of TG and TC dual-trajectory
subgroups

Table 3 shows the baseline characteristics of participants in
different TG and TC dual-trajectory subgroups. In comparison with

FIGURE 2

Dual-trajectories of TG and TC after HAART initiation identified by GMM (n = 1,572).
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TABLE 2 Baseline characteristics of participants among three FPG trajectory subgroups.

Characteristics Class 1
(n = 979)

Class 2
(n = 479)

Class 3
(n = 114)

P
a adjusted ORb (95%CI)

Class 2
(n = 479)

Class 3
(n = 114)

Sex 0.372

Male 937 (95.7) 453 (94.6) 111 (97.4)

Female 42 (4.3) 26 (5.4) 3 (2.6)

Age (years) <0.001

18–29 502 (51.3) 129 (26.9) 16 (14.0) 1.00 1.00

30–44 361 (36.9) 196 (40.9) 38 (33.3) 2.07 (1.57–2.71) 2.58 (1.37–4.87)

45–59 80 (8.2) 102 (21.3) 42 (36.8) 4.64 (3.16–6.80) 8.94 (4.44–17.98)

≥60 36 (3.7) 52 (10.9) 18 (15.8) 4.72 (2.83–7.87) 7.79 (3.29–18.44)

BMI (kg/m²) <0.001

≥24 200 (20.4) 113 (23.6) 52 (45.6) 1.00 1.00

18.5–23.9 712 (72.7) 338 (70.6) 55 (48.2) 1.06 (0.79–1.41) 0.47 (0.30–0.75)

<18.5 67 (6.8) 28 (5.8) 7 (6.1) 1.19 (0.70–2.03) 0.94 (0.36–2.47)

FPG (mmol/l) <0.001

<6.1 705 (72.0) 269 (56.2) 27 (23.7) 1.00 1.00

6.1–6.9 231 (23.6) 155 (32.4) 40 (35.1) 1.60 (1.13–2.27) 3.15 (1.75–5.64)

≥7.0 43 (4.4) 55 (11.5) 47 (41.2) 2.53 (1.62–3.93) 14.00 (8.04–24.37)

TG (mmol/l) <0.001

<1.7 689 (70.4) 304 (63.5) 57 (50.0) 1.00 1.00

≥1.7 290 (29.6) 175 (36.5) 57 (50.0) 1.13 (0.88–1.46) 1.49 (0.96–2.34)

TC (mmol/l) 0.843

<5.2 900 (91.9) 439 (91.6) 103 (90.4)

≥5.2 79 (8.1) 40 (8.4) 11 (9.6)

Route of infection <0.001

Homosexual transmission 779 (79.6) 340 (71.0) 73 (64.0) 1.00 1.00

Heterosexual transmission and others 200 (20.4) 139 (29.0) 41 (36.0) 1.00 (0.75–1.33) 1.08 (0.66–1.77)

CD4 cell count (cells/µl) 0.043

<200 309 (31.6) 176 (36.7) 51 (44.7) 1.00 1.00

200–349 377 (38.5) 186 (38.8) 33 (28.9) 1.09 (0.83–1.43) 0.68 (0.40–1.15)

350–499 200 (20.4) 82 (17.1) 20 (17.5) 1.01 (0.72–1.42) 1.02 (0.55–1.91)

≥500 93 (9.5) 35 (7.3) 10 (8.8) 0.84 (0.53–1.33) 0.78 (0.34–1.79)

HIV viral load (copies/ml) 0.083

Missing 657 (67.1) 350 (73.1) 83 (72.8) 1.00 1.00

≤100,000 259 (26.5) 96 (20.0) 23 (20.2) 0.77 (0.58–1.03) 0.75 (0.43–1.31)

>100,000 63 (6.4) 33(6.9) 8 (7.0) 0.99 (0.62–1.57) 0.93 (0.38–2.27)

Backbone drugs <0.001

3TC+TDF 96 (9.8) 74 (15.4) 22 (19.3) 1.00 1.00

3TC+AZT 845 (86.3) 388 (81.0) 84 (73.7) 1.44 (1.02–2.05) 1.73 (0.95–3.15)

Others 38 (3.9) 17 (3.5) 8 (7.0) 0.71 (0.38–1.33) 1.23 (0.49–3.05)

(Continued)
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TABLE 2 (Continued)

Characteristics Class 1
(n = 979)

Class 2
(n = 479)

Class 3
(n = 114)

P
a adjusted ORb (95%CI)

Class 2
(n = 479)

Class 3
(n = 114)

Core drugs 0.725

NNRTIs 902 (92.1) 446 (93.1) 107 (93.9)

PIs 36 (3.7) 18 (3.8) 2 (1.8)

INSTIs 41 (4.2) 15 (3.1) 5 (4.4)

BMI, body mass index; FPG, fasting plasma glucose; TG, triglyceride; TC, total cholesterol; HAART, highly active antiretroviral therapy; 3TC, lamivudin; TDF, tenofovir; AZT, zidovudine; NNRTIs,
non-nucleoside reverse transcriptase inhibitors; PIs, protease inhibitors; INSTIs, integrase strand transfer inhibitors; CI, confidence interval; OR, odds ratio; Class 1, low-stable FPG group; Class 2,
medium-stable FPG group; Class 3, high-increasing FPG group.
aP-values were calculated by chi-square test or Fisher’s exact test.
bORs derived from log-odds estimates for the risk factors for each group relative to Class 1.

class 3, which showed medium-stable TC and slight-decreasing TG
trajectories, participants in class 1 with high-slight increasing TG and
TC were older, overweight, or obese, with baseline CD4 counts of
<200 cells/µl, high TG, and initial use of AZT and PIs.

In themultivariable model (Table 3), age between 30 and 60 years,
with high TG, the initial use of AZT and PIs were independently
positively associated with class 1 when compared with class 3,
whereas CD4 counts between 200 and 350 cells/µl had a negative
association with class 1. HIV load of ≤100,000 copies/ml was
independently negatively associated with class 2, whereas high TG
and initial use of AZT had a marginally significant association with
class 2.

3.5. Sensitivity analyses

No substantially different results were observed when limiting
to participants with at least four measurements in different years or
patients who maintained their initial ART regimens during follow-
up in the outcomes of the GMM models, and the interpretation of
the trajectory curves remained similar (Supplementary Figures 2–5).

4. Discussion

Our study illustrates how GMM can be used to identify
subgroups of longitudinal trajectories of plasma glucose and lipid
levels in patients infected with HIV receiving HAART without any
preconceived assumptions about the number and type of longitudinal
profiles. Three FPG trajectory subgroups and three TG and TC dual-
trajectory subgroups were identified, demonstrating heterogeneity in
longitudinal changes in plasma glucose and lipid levels.

Although the overall FPG measurements showed an increasing
tendency, most patients tested positive for HIV maintained stable
FPG during follow-up. Few of the patients observed a strong non-
linear increase in FPG, with a rising growth rate in the last few years
of follow-up after a slight decrease in the first year. A recent study also
showed that FPG declined and insulin increased during 12 months
of ART, indicating that there might be an improvement in insulin
secretion and health (30). In addition, some studies have shown that
the longer the duration of HAART, the higher the risk of diabetes
(31, 32), reflecting the possible cumulative effects of HIV infection
or ART on diabetes.

It has been suggested that older age and high FPG levels were
risk factors for diabetes and pre-diabetes (10). Similarly, in this

study, age ≥30 years and high FPG were independent risk factors for
medium-stable and high-increasing FPG trajectories. In addition, the
D:A:D study demonstrated that diabetes risk among patients tested
positive for HIV on ART increased linearly with increasing BMI (33).
However, our research manifested that patients with overweight or
obese had a higher risk of a high-increasing FPG trajectory than those
with normal weight but had no statistically significant difference
when compared with those underweight, presumably related to
reverse causalities, such as a negative association between current
smoking and BMI (34), which is an important contributor to the
risk of diabetes (35). The association between baseline CD4 levels and
different trajectories of FPG disappeared in the multivariable model.
Some studies also did not reveal an association between CD4 levels
and diabetes (36). In contrast, other studies demonstrated a negative
association (37, 38), speculating that the improvement of immune
system functionality might enhance glycemic control by easing the
inflammatory response and oxidative stress to viral infection.

Initial use of AZT remained an independent risk factor for
medium-stable FPG compared to TDF after adjusting for BMI and
TG levels, consistent with the results of several studies (39, 40).
The D:A:D research revealed that AZT remained an independent
risk factor for diabetes after adjustment for lipids and lipodystrophy,
suggesting that AZT may directly contribute to insulin resistance
through mitochondrial toxicity (39).

In our research, both TG and TC levels increased during follow-
up. Some previous evidence revealed that, before the initiation of
ART, HIV infection resulted in lower TC, while increases in TC were
observed after initiating ART (41), with feasible mechanisms being
a reduction of systemic inflammation with virologic suppression
(42). Unlike TC, TG levels were often elevated, related to reduced
TG clearance, and the enhanced hepatic release of very-low-density
lipoprotein (43). Interestingly, our research identified a stable TC and
U-shaped slight-decreasing TG trajectory subgroup and a subgroup
with the lowest TG and TC levels at the baseline but significantly
increased during follow-up, indicating that lipid changing patterns
were heterogeneous and might depend on multifactor such as the use
of specific antiretroviral medications and lipid-lowering medications,
genetic traits, and lifestyle factors.

Compared with individuals in class 3 presenting with optimal
levels of these lipids, those in class 1 with initially high-increasing
and slight-increasing TG and TC trajectories were characterized as
middle-aged, hypertriglyceridemia at the baseline, initial use of AZT
and PIs, and poorer health status at HAART initiation (i.e., CD4
counts of <200 cells/µl). A systematic review suggested that CD4
counts could be correlated with a greater chance of lipid changes
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TABLE 3 Baseline characteristics of participants among three TG and TC dual-trajectory subgroups.

Characteristics Class 1
(n = 216)

Class 2
(n = 433)

Class 3
(n = 923)

P
a adjusted ORb (95%CI)

Class 1
(n = 216)

Class 2
(n = 433)

Sex 0.098

Male 203 (94.0) 421 (97.2) 877 (95.0) 1.00 1.00

Female 13 (6.0) 12 (2.8) 46 (5.0) 0.88 (0.44–1.77) 0.58 (0.29–1.16)

Age (years) <0.001

18–29 61 (28.2) 181 (41.8) 405 (43.9) 1.00 1.00

30–44 89 (41.2) 173 (40.0) 333 (36.1) 1.45 (1.00–2.11) 1.13 (0.86–1.47)

45–59 47 (21.8) 51 (11.8) 126 (13.7) 1.64 (1.02–2.64) 0.87 (0.58–1.29)

≥60 19 (8.8) 28 (6.5) 59 (6.4) 1.31 (0.69–2.50) 0.98 (0.58–1.66)

BMI (kg/m²) 0.021

≥24 11 (5.1) 20 (4.6) 71 (7.7) 1.00 1.00

18.5–23.9 140 (64.8) 313 (72.3) 652 (70.6) 0.80 (0.56–1.14) 0.97 (0.73–1.29)

<18.5 65 (30.1) 100 (23.1) 200 (21.7) 0.63 (0.30–1.30) 0.58 (0.33–1.02)

TG (mmol/l) <0.001

<1.7 111 (51.4) 283 (65.4) 656 (71.1) 1.00 1.00

≥1.7 105 (48.6) 150 (34.6) 267 (28.9) 2.04 (1.49–2.80) 1.26 (0.98–1.62)

TC (mmol/l) 0.317

<5.2 199 (92.1) 404 (93.3) 839 (90.9)

≥5.2 17 (7.9) 29 (6.7) 84 (9.1)

Route of infection 0.003

Homosexual transmission 145 (67.1) 342 (79.0) 705 (76.4) 1.00 1.00

Heterosexual transmission and others 71 (32.9) 91 (21.0) 218 (23.6) 1.37 (0.95–1.99) 0.93 (0.68–1.27)

CD4 cell count (cells/µl) 0.056

<200 93 (43.1) 150 (34.6) 293 (31.7) 1.00 1.00

200–349 68 (31.5) 155 (35.8) 373 (40.4) 0.66 (0.46–0.95) 0.83 (0.63–1.10)

350–499 36 (16.7) 90 (20.8) 176 (19.1) 0.78 (0.49–1.22) 1.06 (0.76–1.48)

≥500 19 (8.8) 38 (8.8) 81 (8.8) 0.85 (0.47–1.51) 0.99 (0.63–1.54)

HIV viral load (copies/ml) 0.002

Missing 154 (71.3) 322 (74.4) 614 (66.5) 1.00 1.00

≤100,000 43 (19.9) 80 (18.5) 255 (27.6) 0.73 (0.49–1.08) 0.63 (0.47–0.84)

>100,000 19 (8.8) 31 (7.2) 54(5.9) 1.36 (0.77–2.41) 1.11 (0.70–1.78)

Backbone drugs <0.001

3TC+TDF 164 (75.9) 361 (83.4) 792 (85.8) 1.00 1.00

3TC+AZT 37 (17.1) 62 (14.3) 93 (10.1) 1.72 (1.11–2.66) 1.41 (0.99–2.02)

Others 15 (6.9) 10 (2.3) 38 (4.1) 1.91 (0.87–4.19) 0.82 (0.35–1.90)

Core drugs 0.019

NNRTIs 190 (88.0) 407 (94.0) 858 (93.0) 1.00 1.00

PIs 14 (6.5) 16 (3.7) 26 (2.8) 2.36 (1.17–4.74) 1.28 (0.67–2.44)

INSTIs 12 (5.6) 10 (2.3) 39 (4.2) 0.94 (0.41–2.16) 0.67 (0.29–1.54)

BMI, body mass index; FPG, fasting plasma glucose; TG, triglyceride; TC, total cholesterol; HAART, highly active antiretroviral therapy; 3TC, lamivudin; TDF, tenofovir; AZT, zidovudine; NNRTIs,
non-nucleoside reverse transcriptase inhibitors; PIs, protease inhibitors; INSTIs, integrase strand transfer inhibitors; CI, confidence interval; OR, odds ratio; Class 1, low-stable FPG group; Class 2,
medium-stable FPG group; Class 3, high-increasing FPG group.
aP-values were calculated by chi-square test or Fisher’s exact test.
bORs derived from log-odds estimates for the risk factors for each group relative to Class 1.
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(42). But no consistent conclusion has been reached on the direction
and strength of the correlation between the CD4 counts and the lipid
profiles (44, 45).

The class of antiretroviral drugs most frequently associated
with dyslipidemia were probably the older generation PIs (11, 46),
which can cause significant increases in TG, TC, and LDL-C levels.
Similarly, our research found that the use of PI dominated by
the older generation (i.e., LPV/r) was associated with the high-
slight increasing lipid trajectory. Mechanisms of PIs producing
modifications of lipid profile remain to be fully articulated. Putative
mechanisms were that the sterol regulatory element–binding protein
(SREBP)-1c regulating genes required for fatty acid metabolism, de
novo cholesterol synthesis, and clearance of TG-rich and cholesterol-
rich lipoproteins were inhibited by older generation PIs (46).

In addition, our results were comparable with previous research
reporting that the AZT-containing regimen remained a risk factor
for deteriorating TG and TC trajectories compared to the TDF-
containing regimen (42, 46). TDF has been evidenced to have a lipid-
lowering effect (47, 48) and was recommended as a backbone drug
of first-line treatment (49). In contrast, AZT has been proven to be
associated with lipid abnormalities (50). High ROS concentrations,
associated with severe mitochondrial dysfunction produced by
NRTIs, especially d4T and AZT, inhibited the expression of the
adipogenic factor mitochondrial DNA (mtDNA) polymerase-g and
induced cell apoptosis, which could result in lipoatrophy and increase
in free fatty acids (51).

The present study has the following strengths. First, the
GMM approach, we used, had unique advantages over traditional
analysis in describing the developmental process and classifying
participants into diverse, mutually exclusive groups. Second,
the dual-trajectory analysis used improved the accuracy of
individual-specific probabilities of given group membership by
integrating the interrelationship between both lipids. Despite these
advantages, this study has limitations. First, some data, including
diet, physical activity, and lipid-lowering medicine, were not
collected, which could have been critical to the topic. Therefore,
caution should be exercised in interpreting the present results.
Second, this study was based on data from large public sector
government HIV clinics in China, where most participants were
patients with NNRTI-based regimens, male, and Asiatic. Thus,
sample representativeness might be limited. Finally, given that we
hope but did not have an opportunity to estimate the effect of FPG,
TG, and TC trajectories on the hazard of CVD, more studies with
large populations are needed to explore the association between
the longitudinal trajectories of metabolic indicators and CVD
incidence risk.

5. Conclusion

This study provides new information on the longitudinal
development of FPG in patients tested positive for HIV on HAART
with distinct trajectories of low-stable, medium-stable, and high-
increasing classes. At the same time, three TG and TC joint
development patterns were found, namely, high-slight increasing,
low-rapid increasing TG and TC trajectories, and medium-stable
TC and slight-decreasing TG trajectories. In brief, older age, poorer
metabolic and immune status at the baseline, and initial use of
some specific antiretrovirals (i.e., AZT and PIs) helped to identify

the class with increasing glucose and lipid metabolism trajectories.
Further research into the biological mechanisms explaining these
underlying patterns of change is needed to discover and guide the
future management of abnormal glucose and lipid metabolism in
patients tested positive for HIV.
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