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Radium-223 dichloride (223Ra) is an α-emitter approved for the treatment

of metastatic castration-resistant prostate cancer (mCRPC) with bone

metastases, but without visceral involvement. Despite being a life-prolonging

therapy (LPT), 223Ra remains underutilized. A large body of real-world

evidence (RWE) for 223Ra has been published in the decade since the pivotal

phase 3 ALSYMPCA study, a period during which the treatment landscape has

continued to evolve. How to optimize 223Ra use, including how to integrate it

into the mCRPC management pathway amongst other current LPTs (i.e., with

respect to timing and concurrent, layered, or sequential use), is therefore of

considerable interest. RWE studies lack the conventional restraints of clinical

trials and can therefore help to build an understanding of how treatments may

be best used in routine practice. Here we review RWE studies investigating

the efficacy and safety of 223Ra in mCRPC [including in sequence with the
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recently approved 177-Lutetium conjugated to the ligand prostate-specific

membrane antigen (177Lu-PSMA)], as well as response marker development,

imaging techniques, and current clinical practice recommendations.

KEYWORDS

targeted alpha therapy, radium-223, Lutetium-177-PSMA, metastatic castration-
resistant prostate cancer, real-world practice

1 Introduction

The radionuclide radium-223 dichloride (223Ra) is a life-
prolonging therapy (LPT) in oncology (1), paving the way as
the first approved α-emitter. 223Ra is approved for the treatment
of metastatic castration-resistant prostate cancer (mCRPC)
with bone metastases, but without visceral involvement (2,
3), with metastatic prostate cancer being primarily a bone-
related disease (4), unlike other cancers. This approval was
based on improvements in overall survival (OS) vs. placebo
[14.9 vs. 11.3 months; hazard ratio (HR) 0.70; 95% confidence
interval (CI) 0.58–0.83, P < 0.001] in patients with mCRPC
(including those with low-volume lymph node metastases),
with or without prior chemotherapy, in the pivotal phase 3
ALSYMPCA study (5).

In addition to investigating efficacy and safety in a real-
world setting, the challenges of 223Ra being the first approved
α-emitter (e.g., accessibility and understanding of mechanism
of action and appropriate usage) also needed to be overcome,
with implementation (logistics) and physician and patient
education being key to its uptake in clinical practice. However,
223Ra remains underutilized for various reasons, including
lack of prostate-specific antigen (PSA) response, intravenous
administration issues and the continued use of back-to-back
androgen receptor pathway inhibitor (ARPI) regimens [despite
a lack of ARPI re-challenge efficacy and current guidelines (6–9)
recommending multiple lines of ARPIs are avoided] (10, 11).

Since ALSYMPCA completion, the treatment landscape has
evolved. Several currently approved LPTs, specifically the ARPIs
abiraterone (12, 13) enzalutamide (14, 15), apalutamide (16),
and darolutamide (17), the poly (adenosine diphosphate-ribose)
polymerase inhibitor olaparib (18, 19), the immunotherapy
sipuleucel-T (20), and 177-Lutetium conjugated to the ligand
prostate-specific membrane antigen (177Lu-PSMA-617)
(21), were unavailable outside of randomized clinical trials
(RCTs) during ALSYMPCA. Furthermore, although docetaxel
and cabazitaxel were approved in mCRPC at the time of
ALSYMPCA, their position in the treatment pathway has since
changed. Consequently, ensuring the appropriate choice of
patients and treatment sequence for 223Ra is key to maximizing
therapeutic benefit. There is thus a need for RCTs of 223Ra
regimens in the current mCRPC landscape, some of which are

currently underway [RADIANT (phase 4, 223Ra vs. ARPI),
PEACE III (phase 3, 223Ra plus enzalutamide vs. enzalutamide
alone) and DORA (phase 3, 223Ra plus docetaxel vs. docetaxel
alone)] (22–24), and for real-world evidence (RWE).

Unlike RCTs, RWE gathers data from non-interventional
studies, clinical registries and other sources reflecting routine
clinical practice, thus helping to refine a treatment’s therapeutic
index without conventional RCT constraints (25). RWE
studies can complement RCTs, especially for patients ineligible
for RCT inclusion and where Level 1 evidence is lacking.
Despite recommended treatment algorithms, variability exists in
individual treatment pathways, particularly with some mCRPC
therapeutic options moving to earlier disease stages and issues
around undertreatment (26, 27). Here we review RWE studies
(retrospective unless otherwise specified) investigating 223Ra in
mCRPC, with discussion focusing on studies with N > 100,
except where data are limited.

2 Efficacy

Real-world OS in patients treated with 223Ra was 8.2–
29 months (Supplementary Table 1), a range that encompasses
the median OS of 14.9 months reported in ALSYMPCA.
However, survival outcomes are influenced by patient selection
as well as therapy choice, and the studies included in this
review vary by patient characteristics, study designs, and
prior therapies.

2.1 Treatment completion

OS benefits were more notable (P < 0.01 where reported)
in patients who completed 5–6 vs. fewer cycles of 223Ra (28–34)
(Figure 1A). Factors associated with completion of 5–6 cycles
in some studies included certain patient/disease characteristics
(29, 33, 35, 36) [e.g., lower PSA or alkaline phosphatase (ALP)
(35) and absolute neutrophil count at least lower limit of normal
(36)] and earlier 223Ra use (29) (Figure 1B). Indeed, there was a
higher likelihood of completing all 6 cycles of 223Ra when it was
given prior- vs. post-chemotherapy (P < 0.001) (32). However,
223Ra position in the treatment sequence (i.e., line 1 vs. 2
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or≥ 3) had no impact on treatment completion in another study
(35). Moreover, there was also a greater likelihood of the mean
number of 223Ra cycles being higher when 223Ra was used as
combination therapy rather than monotherapy (P = 0.003) (32).

2.2 Treatment sequence

223Ra use earlier in the mCRPC treatment pathway may
improve survival outcomes, according to some studies (35, 37).
Median survival was greater in patients with one vs. two prior
therapies (14.7 vs. 11.2 months; P = 0.03) in one study (37), and
another demonstrated worse OS with 223Ra used as line ≥ 3
vs. line 1 (HR 3.267; P < 0.01) (35). However, other studies
found OS did not significantly differ by prior line of therapy (0
vs. ≥ 1 or across lines 0, 1, 2, 3, or 4) (38), and was generally
similar (14.3–14.7 months) when 223Ra was given immediately
after abiraterone as treatment line 2, 3, or ≥ 4 (39).

Similarly, a greater OS benefit was seen with 223Ra used
pre- vs. post-chemotherapy in one study (12.3 vs. 8.1 months;
P = 0.02), although prior enzalutamide or abiraterone plus
prednisolone treatment had no significant OS impact (40).
By contrast, another study found no significant OS difference
with 223Ra pre- vs. post chemotherapy (including when
patients receiving 223Ra in combination with enzalutamide or
abiraterone were excluded; the safety of these combinations
are discussed in section “3 Safety”) (32). Furthermore, prior
cabazitaxel use was not a predictor of OS in a prospective
registry analysis (41), and prior docetaxel use had no significant
impact on survival in another study (34).

3 Safety

In short- and long-term analyses of ALSYMPCA, 223Ra had
limited myelosuppressive effects and was well tolerated, without
major safety concerns (5, 42). RWE has similarly indicated
that 223Ra is safe and well tolerated in patients with mCRPC
(Supplementary Table 2), and importantly demonstrated a lack
of rare treatment-emergent adverse events (TEAEs), e.g., second
malignancies or cardiovascular events, which RCTs would be
underpowered to detect.

When 223Ra monotherapy was compared with standard-
of-care, the estimated 36-month fracture risk in the respective
groups was 19% vs. 10% (HR 1.61; 95% CI: 0.96–3.02)
(43). Regimens combining use of 223Ra and abiraterone (plus
prednisolone) or enzalutamide have been reported in real-world
studies (44–48). However, based on a significantly increased
risk of fractures when 223Ra was used in combination with
abiraterone plus prednisolone in the ERA 223 phase 3 RCT
(49), this combination is now contraindicated in the EU (2) and
is not recommended in the US (3). Of note, in the ERA 223
trial, the incidence of fractures was lower in patients who were

taking bone protecting agents (bisphosphonates or denosumab)
at baseline (15 and 7% in the 223Ra and placebo groups,
respectively) than in patients not taking bone protective agents
(37 and 15%, respectively) (49). Furthermore, an increased
fracture risk was also reported with 223Ra plus enzalutamide
vs. enzalutamide in the phase 3 PEACE III RCT, although
fracture risk was largely eliminated in each treatment group
with preventative use of bone protecting agents (denosumab and
zoledronic acid) (50). Increased fracture risk due to therapy-
induced bone loss has been seen for several systemic therapies
for prostate cancer, and fracture risk is increased in patients
with bone metastases (51). As such, the importance of regularly
evaluating bone health and the use of bone protective agents
in patients with prostate cancer has been highlighted in the
recommendations of a working group of European experts (51).

3.1 Treatment sequence

RWE suggests that 223Ra is generally well tolerated,
irrespective of prior chemotherapy status, although prior
chemotherapy may be associated with an increased likelihood
of hematological events (52, 53), possibly due to patients having
more advanced disease (e.g., bone marrow involvement) and/or
prior chemotherapy toxicities.

For example, in the first interim analysis of the REASSURE
study, prior chemotherapy status generally did not affect the
overall safety profile of 223Ra, with the incidence of drug-related
TEAEs being 41 and 36% with or without prior chemotherapy
(53). However, drug-related hematologic TEAEs were more
than twice as frequent in patients with than without prior
chemotherapy (21% vs. 9%) (53). Moreover, in a prospective
Japanese study, although there was no marked difference
between patients with or without prior chemotherapy with
regard to the incidence of drug-related TEAEs (29% vs. 25%),
including hematological TEAEs (18% vs. 17%), with 223Ra, the
incidence of both events was notably numerically greater in
patients who had received two lines of prior chemotherapy (36
and 24%) (52).

Furthermore, the CAPRI registry found a significant
(P ≤ 0.015) increase in the incidence of grade ≥ 2 anemia,
grade ≥ 2 thrombocytopenia and blood transfusions with later-
line use of 223Ra (line ≥ 3 vs. 2 vs. 1), although symptomatic
skeletal event (SSE) incidence was not impacted (35). Factors
associated with grade ≥ 2 hematological abnormalities include
low hemoglobin (Hb) and low platelet count at baseline (52).
Of note, 223Ra requires patient hematological evaluation before
every dose and caution (2)/close monitoring (3) is advised for
patients with evidence of compromised bone marrow reserve.

In an assessment of fracture risk by line of therapy,
the estimated adjusted 36-month fracture risk with 223Ra vs.
standard-of-care was 18% vs. 12% (HR 1.14; 95% CI, 0.50–2.15)
when first line and 16% vs. 9% (HR 1.86; 95% CI: 0.62–10.93)
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FIGURE 1

Completing more 223Ra cycles is associated with longer OS. (A) Median OS by 223Ra cycle number. (B) Factors associated with completing
more 223Ra cycles. ALP, alkaline phosphatase; BSI, bone scan index; ECOG PS, Eastern Cooperative Oncology Group performance status; Hb,
hemoglobin; LDH, lactate dehydrogenase; OS, overall survival; PSA, prostate-specific antigen.

when second line. Later treatment lines had too few fractures
for analysis (43).

4 223Ra therapy/177Lu-PSMA
treatment sequence and interval
duration

177Lu-PSMA targets prostate cancer via a different
mechanism to 223Ra. 177Lu-PSMA delivers β-particle radiation
to PSMA-expressing tumor cells. In the VISION RCT,
177Lu-PSMA-617 plus standard-of-care prolonged OS vs.
standard-of-care alone (15.3 vs. 11.3 months; HR for death
0.62; P < 0.001) (21). Among the 17.4% of patients who had
previously received 223Ra, 177Lu-PSMA-617 efficacy was not
adversely affected (54), although safety has not been reported
for these patients.

Although limited by small patient numbers, real-world
studies have demonstrated the clinical feasibility of giving 177Lu-
PSMA after 223Ra and indicate this treatment sequence has
an acceptable safety profile (55–58). In a post hoc analysis
of REASSURE, median OS from start of 177Lu-PSMA was
13.2 months in patients who had previously received 223Ra (56).
Moreover, in a large retrospective study, median OS was not
significantly different in patients who did vs. did not receive
prior 223Ra (10.8 vs. 11.3 months) (55). Furthermore, interim
analyses of the RALU study, which investigated 177Lu-PSMA use
in patients previously treated with 223Ra, found this approach to
be clinically feasible (median OS 12.6 months; 95% CI: 8.8–16.1)
and well tolerated (58).

Another consideration around treatment sequencing with
radionuclide therapies is the treatment interval. Early initiation
of 177Lu-PSMA within 8 weeks of 223Ra treatment (during
which disease progression had occurred) was effective and did
not reveal major safety concerns (57).

Thus, sequential treatment with 223Ra and 177Lu-PSMA is
feasible and can be factored into considerations around optimal
sequencing of the LPTs available for patients with mCRPC.
However, further studies are warranted.

5 Development of response
markers

Surrogate markers predicting treatment outcomes with
223Ra are needed to monitor and achieve optimal treatment
duration and to identify patient subpopulations who may benefit
most from 223Ra. Multiple RWE studies have investigated
potential markers of survival (Supplementary Table 3), with
this section focusing on multivariate analyses.

5.1 Laboratory parameters

Multivariate analyses have found various factors to
be associated with survival outcomes. Baseline Hb was
found to be prognostic of OS (59) and elevated baseline Hb
(≥ 120 g/L) was associated with increased OS (60), whereas
low baseline albumin (< 35 g/L) (61) and elevated PSA
(> 80 µg/L) (61) were associated with poor OS. Similarly,
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other factors prognostic of OS include baseline neutrophil-
to-lymphocyte ratio (28), baseline lactose dehydrogenase
(62) [with elevated lactose dehydrogenase associated with
shorter OS (41)] and higher baseline ALP (28) [with
ALP > 150 U/L associated with poor OS (61)]. Elevated
baseline ALP without a subsequent ALP decline of ≥ 10%
following the first 223Ra dose was also prognostic of
shorter OS (62).

5.2 Clinical parameters

A number of clinical parameters have been associated
with patient survival. In terms of patient demographics,
age was found to be a predictor of OS (28), with an age
of > 75 years being associated with reduced OS (63). Moreover,
in an analysis of US electronic heath records of mainly
Caucasian patients (73.5%), other race (Asian, Hispanic, Latino,
or other) was associated with improved survival (63). With
regard to disease characteristics, visceral metastases (63) and
prior SSEs (63) reduced OS, whereas bone-only metastases
were associated with longer OS (41). Eastern Cooperative
Oncology Group performance status (ECOG PS) was also
prognostic of OS (59, 62), with ECOG PS 2–3 (61) and
ECOG PS 2–4 (63) associated with worse OS and ECOG
PS 0–1 associated with increased OS (60). Another clinical
parameter prognostic of OS was number of prior systemic
therapies (62). Prior chemotherapy use reduced OS (63),
whereas no prior use of docetaxel increased OS (60). As
discussed in section “2.1 Treatment completion,” the number
of completed cycles of 223Ra (5–6 vs. 1–4) was also a predictor
of OS (28).

5.3 Composite markers

Several studies have reported composite prognostic scoring
methods aimed at identifying patients that may benefit most
from 223Ra therapy (59–61, 64). A composite score derived
from combining baseline Hb ≥ 120 g/L, total ALP ≤ 110
U/L and ECOG PS 0–1 identified patients with a low-,
intermediate- or high-risk of death (composite score 2, 3–4
and 5–6, respectively; median OS 23, 8, and 5 months) (60).
A similar 3-variable prognostic score combining baseline ECOG
PS, Hb < 12 g/dL and PSA ≥ 20 ng/mL was predictive of
OS in an initial cohort (64), with subsequent validation in a
larger cohort (59). In the larger cohort, patients in the low
(score 0), moderate (score 1–2), or high (score 3–4)-risk groups
had a median OS of 33, 16, and 8 months, respectively (59).
Likewise, a scoring system that combined albumin < 35 g/L,
ALP > 150 U/L, PSA > 80 µg/L, and ECOG PS 2–3 identified
three patient groups with different OS outcomes, namely good
(score 0–1; median OS 19.4 months), intermediate (score 2;

median OS 10.0 months) and poor (score 3–4; median OS
3.1 months) (61).

6 Imaging

An expert consensus developed at the European Association
of Nuclear Medicine Focus 1 meeting concluded that, for
patients with mCRPC who are candidates for 223Ra, bone
scintigraphy is the recommended pre-treatment imaging
method. Consensus was not reached as to which imaging
method should be used for monitoring treatment response,
although bone scintigraphy was favored by most (14/21)
panelists (65).

Automated bone scan index (BSI) is useful for assessing
skeletal metastases. Baseline BSI was associated with OS in
patients who received 223Ra in two studies (66, 67), with median
OS being 8.2 and 15.0 months in patients with BSIs of > 5
or ≤ 5, respectively (HR 2.65; 95% CI: 1.5–4.7; P = 0.001)
(67). However, only one of the two studies found a significant
association between on-treatment BSI and OS (66). A potential
limitation of this approach is the potential uptake of bone
scintigraphy agents into healing bone which could confound
results (66).

Radionuclide cancer therapies offer considerable potential
for personalized treatment as their physical properties enable
in vivo imaging of their uptake and retention (68). 223Ra
administration is via body weight-adjusted standard dosing
regimens, although patient-specific dosimetry and treatment
optimization may be possible via quantitative imaging with
223Ra (68). Although 223Ra imaging showed intra- and inter-
patient variability for 223Ra dose absorption in metastases, there
was a relationship between lesion-absorbed dose and treatment
response (69). 18F-fluoride, like 223Ra, localizes primarily to
areas of osteoblastic activity in bone and has potential as a
surrogate measure of the absorbed 223Ra dose (69). 18F-fluoride
uptake into bone metastases correlated significantly with that
of 223Ra, as well as the absorbed 223Ra dose and resultant
response (69).

Notably, PSMA-positron emission tomography (PET) has
been shown to be more sensitive than bone scintigraphy in
detecting bone metastases in patients with prostate cancer
(70). High PSMA expression on planar/single-photon emission
computed tomography (SPECT) or PET/CT scans following
standard therapies for mCRPC, including 223Ra, was associated
with worse OS than low PSMA expression (71).

7 Clinical practice
recommendations

223Ra is recommended for mCRPC in all major treatment
guidelines (6–9) and has the highest possible clinical benefit
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score for non-curative therapies in mCRPC in the ESMO-
Magnitude of Clinical Benefit Scale (indicating a substantial
magnitude of clinical benefit) (72). Expert recommendations
from 11 nuclear medicine centers across six European countries
provide additional insights on how to optimize 223Ra use (73).
These include guidance for center organization/preparation,
223Ra ordering, preparation and disposal, 223Ra treatment
delivery/administration, and patient referral/experience, and
highlight the importance of starting 223Ra treatment as soon
as possible in eligible patients (including those with early
symptoms of bone metastases) (73).

However, for 223Ra to meet the inherent complex
needs of patients, communication and coordination within
multidisciplinary teams (i.e., nuclear medicine, oncology, and
urology services) and centers is advised (73). Communication
between the nuclear medicine physician and other specialties
is important to maintain awareness for whom and when 223Ra
may be appropriate, and to inform of developments in prostate
cancer management (including nuclear medicine options) (73).
With regard to such developments, when the Advanced Prostate
Cancer Consensus Conference discussed questions relating to
223Ra and other therapies in 2021, consensus was reached that
using 223Ra after 177Lu-PSMA is safe (76% consensus), based
on outcomes from VISION, in which approximately 2.5% of
patients received 223Ra following 177Lu-PSMA therapy (74).
RWE supporting use of 223Ra followed by 177Lu-PSMA are
discussed in section “4 223Ra therapy/177Lu-PSMA treatment
sequence and interval duration.”

8 Discussion

For patients with mCRPC, it is important to offer as
many approved LPTs as possible. Real-world studies can
help healthcare professionals understand how best to utilize
currently available treatment options, such as 223Ra, and
are used by regulatory bodies in decision making (75–
78). Although there are well recognized limitations to these
studies, including confounding factors, various types of
bias (pertaining to selection, patient/caregiver recall, event
detection, and data misclassification) and missing data (limiting
statistical power), they can complement/supplement clinical
trial data and help to determine whether RCT evidence
is generalizable to patient populations in clinical practice
(79, 80).

The large body of RWE that has emerged for 223Ra in
recent years indicates that 223Ra is an effective and safe LPT
option in mCRPC, supporting RCT findings. Completing 5–
6 223Ra cycles was associated with better survival outcomes
across real-world studies, highlighting the value of being
able to identify patients most capable of completing therapy.
RWE indicates several potential markers that may help to
do this, although these are not yet validated in prospective

studies. A potential challenge in optimizing 223Ra use in
clinical practice is how to best integrate it into the mCRPC
treatment pathway. However, as current RWE has been
variable in this regard, there is a need to further evaluate
223Ra in the context of other treatments with respect to
timing and concurrent, layered, or sequential use, and the
effectiveness and safety of such treatment approaches. To
this end, several clinical trials (e.g., PEACE-III; AlphaBet;
COMRADE; Rad2Nivo; RADIANT; DORA) (22–24, 81–83)
and RWE studies (e.g., REASSURE; RaLu) (58, 84) continue to
explore 223Ra use in mCRPC.
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