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Sickle cell disease (SCD) is one of the most common hemoglobinopathies.

Due to its high prevalence, with about 20 million affected individuals

worldwide, the development of novel effective treatments is highly warranted.

While transplantation of allogeneic hematopoietic stem cells (HSC) is the

standard curative treatment approach, a variety of gene transfer and genome

editing strategies have demonstrated their potential to provide a prospective

cure for SCD patients. Several stratagems employing CRISPR-Cas nucleases

or base editors aim at reactivation of γ-globin expression to replace the

faulty β-globin chain. The fetal hemoglobin (HbF), consisting of two α-globin

and two γ-globin chains, can compensate for defective adult hemoglobin

(HbA) and reverse the sickling of hemoglobin-S (HbS). Both disruption of cis-

regulatory elements that are involved in inhibiting γ-globin expression, such

as BCL11A or LRF binding sites in the γ-globin gene promoters (HBG1/2),

or the lineage-specific disruption of BCL11A to reduce its expression in

human erythroblasts, have been demonstrated to reestablish HbF expression.

Alternatively, the point mutation in the HBB gene has been corrected using

homology-directed repair (HDR)-based methodologies. In general, genome

editing has shown promising results not only in preclinical animal models but

also in clinical trials, both in terms of efficacy and safety. This review provides

a brief update on the recent clinical advances in the genome editing space

to offer cure for SCD patients, discusses open questions with regard to off-

target effects induced by the employed genome editors, and gives an outlook

of forthcoming developments.
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Introduction

Sickle cell disease (SCD) is one of the most common
hemoglobinopathies, which comprises a group of disorders
that are characterized by faulty hemoglobin production (1, 2).
Hemoglobin, a two-way respiratory carrier in red blood cells
(RBCs), is responsible for transporting oxygen to tissues
and returning carbon dioxide to the lung. This tetrameric
metalloprotein is composed of two α-subunits, two non-α-
subunits, hem groups, and four iron atoms, giving hemoglobin
the capacity for binding oxygen (3). For congenital forms of
anemia, SCD and thalassemia have the highest incidence (4).
According to the European Medicines Agency (EMA) and
the U.S. Center for Disease Control and Prevention (CDC),
approximately 20 million people worldwide, including 52,000
people in Europe and 100,000 Americans, are affected by SCD.
These patients suffer from anemia as well as progressive and
fatal cardiovascular, renal, and eye complications due to the
abnormal sickling shape of the RBCs that causes clogging of
capillaries (1, 2). To alleviate morbidity, current treatment
options include regular blood transfusions and the application
of drugs that prevent vaso-occlusive crisis (VOC) or that reduce
erythrocyte sickling. Still, life expectancy is reduced due to
progressive organ dysfunction (1, 2). The only approved curative
option for SCD is allogeneic hematopoietic stem cell (HSC)
transplantation, which requires the availability of “healthy”
blood stem cells of siblings or non-related donors with matched
human leukocyte antigen (HLA). Unfortunately, the difficulty
of finding suitable donors early in childhood and the high
risk of graft-vs.-host-disease limit the option of bone marrow
transplantation for SCD patients (5, 6). One way to overcome
this limitation is the use of autologous HSCs that are corrected
ex vivo using gene therapy strategies to restore functional
hemoglobin expression. Because of its genetics, SCD represents
an ideal target for gene therapy in general and for genome
editing in particular.

Hemoglobin expression

The two non-α-subunits of hemoglobin are encoded by
five different genes located within the β-globin locus on
chromosome 11 (Figure 1A). The respective genes,HBE (coding
for ε-globin), HBG2 and HBG1 (γ-globin), HBD (δ-globin)
and HBB (β-globin), are expressed in a developmental stage-
specific manner in erythroid cells (7). A single locus control
region (LCR) and specific enhancers are responsible for their
sequential activation during development. In the early stage
embryonic yolk sac, HBE is expressed. Later, hematopoiesis
shifts to the liver and the HBG1/HBG2 genes (which are the
result of a gene duplication and produce proteins that only differ
in one amino acid) are activated to produce fetal hemoglobin
(HbF, α2γ2). Shortly after birth, hematopoiesis relocates to the

bone marrow, and HBD and HBB are expressed, leading to
an almost complete replacement of HbF by adult hemoglobin
HbA (>95% α2β2, 1.5–3.5% α2δ2; with 0.6–1% HbF persisting)
(8). The γ-globin to β-globin switch is mediated by different
transcription factors that repress HBG1/HBG2 expression, such
as BCL11A and LRF (9, 10). Worthy of note, healthy individuals
with a benign genetic condition called hereditary persistence
of fetal hemoglobin (HPFH) exhibit persistent production of
functional HbF even after birth. The molecular basis of HPFH
are large deletions in the HBD and HBB genes, which increase
interactions between the LCR and the HBG1/HBG2 promoters
(11), or alternatively mutations in the cis-regulatory elements
of the HBG genes, which are bound by the transcriptional
repressors BCL11A and LRF (9, 10). If these repressors can
no longer bind to the said cis-regulatory elements, HBG
expression—and hence HbF production—persists (12).

Sickle cell disease arises as a result of a homozygous
mutation in the HBB gene, in which a single point mutation
leads to a codon change from gAg to gTg, resulting in a valine
to glutamic acid substitution on the protein level (2). This
swap in position six affects the hydrophobic characteristics
of hemoglobin, converting HbA into the so-called sickle
hemoglobin (HbS, α2β

S
2)—a term deduced from the sickle-

like shape of the RBCs upon polymerization of HbS into fibers
under deoxygenated conditions. The kinetic of hemoglobin
polymerization is sensitive to the concentration of the HbS. Of
note in this context, SCD patients with HPFH mutations present
with mild clinical manifestations because HBG reactivation
enables the formation of α2γ2 and α2γβS on top of α2β

S
2.

Furthermore, the glutamine at position 87 (Q87) of γ-globin
was shown to inhibit HbS polymerization and increase HbS
solubility under deoxygenated conditions, so adding to the
anti-sickling activity.

Gene therapy for SCD

The earliest attempts to genetically treat SCD were based
on lentiviral (LV) transfer of a functional HBB copy to
autologous HSCs (13). Bluebird Bio initiated first phase I/II gene
therapy clinical trials in 2013 in France with seven patients (4
transfusion-dependent β-thalassemia, TDT, 3 SCD; HGB-205,
NCT02151526) and in 2014 in the U.S. with 50 SCD patients
(HGB-206, NCT02140554). The clinical product, LentiGlobin
BB305 (Figure 1B), entails autologous HSCs transduced with
an LV that encodes an anti-sickling variant of β-globin, known
as βA-T87Q (mimicking the inhibitory effect of HbF on HbS
polymerization). The recently published results confirmed stable
βA-T87Q expression upon engraftment as well as reduced
hemolysis, absence of VOC, and transfusion-independency (13,
14). A phase III clinical study (NCT04293185) with 35 SCD
patients as well as a long-term follow-up study (NCT04628585)
were opened in 2020. Based on these pivotal studies (15, 16),

Frontiers in Medicine 02 frontiersin.org

https://doi.org/10.3389/fmed.2022.1065377
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1065377 December 30, 2022 Time: 14:38 # 3

Zarghamian et al. 10.3389/fmed.2022.1065377

FIGURE 1

Schematic of clinical genome editing approaches for SCD. (A) The β-globin locus. The locus encompasses HBE (encoding ε-globin), HBG2 and
HBG1 (γ-globin), HBD (δ-globin) and HBB (β-globin). A locus control region (LCR) and various factors (depicted are BCL11A and NuRD) regulate
developmental stage-specific expression of the hemoglobin genes. A point mutation in HBB (red box) leads to expression of HbS. Therapeutic
gene editing strategies aim at correcting HBB via HDR (green box) or at disrupting cis-regulatory elements in the HBG2/HBG1 promoters or in
BCL11A via NHEJ to re-activate γ-globin expression (red Xs), resulting in the expression of HbA (α2β2) or HbF (α2γ2), respectively. (B–D) Platform
technologies used for the treatment of SCD. Clinically employed are (A) lentiviral vectors to transfer β-globin like genes or an shRNA targeting
BCL11A mRNA, (B) genome editors to disrupt cis-regulatory elements by NHEJ or correct HBB by HDR, or (C) base and prime editors to disrupt
cis-regulatory elements or off-set the mutation in HBB. The respective autologous, genome-engineered cell products are listed on the bottom
(Created with BioRender.com).

BB305 received marketing authorization from the EMA (17) and
the FDA (18) under the trade name Zynteglo R© for the treatment
of transfusion-dependent β-thalassemia (TDT). Of note, two
patients from the phase I/II BB305 study (NCT02140554)
were diagnosed with acute myeloid leukemia (AML) 2 years
post-infusion (19), but AML development was not linked
to insertional mutagenesis. The chosen conditioning regimen
and/or the proliferative stress on HSCs upon switching from
homeostatic to regenerative hematopoiesis might have played a
role in AML induction and/or progression (14, 19).

Because high HbF expression ameliorates symptoms
associated with SCD (20), efforts to develop LV-based
approaches to increase γ-globin expression have been
undertaken. This includes an LV expressing a γ-globinG16D

variant that was shown to have increased affinity to α-globin
(21). Clinical data (NCT02186418) showed long-lasting
engraftment with potentially curative HbF levels (21). The
Boston Children’s Hospital initiated a phase I clinical study with
10 patients in 2018 (NCT03282656) using autologous HSCs that

were transduced with an LV (BCH-BB694) encoding a short-
hairpin micro-RNA (shmiR) targeting the BCL11A mRNA
(22). The six patients with long-term follow-up (7–29 months)
showed high levels of HbF, mild clinical disease manifestation
and no SAEs, prompting a phase II trial (NCT05353647)
with 25 participants in 2022. Despite these successes, the high
manufacturing costs of LV vectors (23), their potential of
instigating abnormally spliced transcripts (24), as well as the
risk of genotoxicity due to semi-random integration (25), limit
the application of LV-based therapies.

Genome editing to treat SCD

Genome editing enables the site-specific modification of
the human genome in order to correct or offset mutations
underlying genetic disorders (26). Genome modification
typically ensues from DNA double strand breaks (DSBs) that
are introduced by programmable designer nucleases, such as
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zinc finger nucleases (ZFNs) (27), transcription activator-like
effector (TALE) nucleases (TALENs) (28, 29), or the CRISPR-
Cas system (30). Other than the entirely protein-based ZFNs and
TALENs, CRISPR-Cas nucleases contain an engineered guide
(gRNA) that is complementary to the desired target sequence
and that directs the Cas protein to the chosen genomic locus
to induce a DSB (Figure 1C). Non-homologous end joining
(NHEJ) and HDR are the two major repair pathways triggered
by DSB formation (31). NHEJ is a fast but error-prone pathway,
leading to insertions and deletions at the break site. NHEJ
is hence typically employed to disrupt genes or cis-regulatory
elements with high efficacy, reaching editing frequencies of over
90% in HSCs (26). In contrast, HDR is a slow but precise DNA
repair pathway that uses a co-introduced DNA fragment as
a template to correct disease underlying mutations inter alia.
In HSCs, the HDR template is typically delivered by vectors
based on adeno-associated virus (AAV) (32) or in the form
of single-stranded or double-stranded oligonucleotides (ODNs)
(33). However, because HDR is restricted to the S/G2 phase of
the cell cycle, achieving gene targeting frequencies that exceed
20% in mainly quiescent long-term repopulating HSCs remains
challenging (34).

Due to the genotoxic potential arising from DSB formation
(see below), alternative platforms to edit the genome have been
sought for Figure 1D. Such strategies are mostly based on
CRISPR-Cas nickases that cleave only one DNA strand (35–
37). This family includes base editors (BEs) (38, 39) and prime
editors (PEs) (40). A Cas9 nuclease is converted to a Cas9
nickase by introducing mutations in one of the two catalytic
domains of Cas9 (36). BEs were developed by fusing a deaminase
domain to a Cas nickase (38). There are two types of BEs:
cytosine base editors (CBEs) convert a C•G base pair (bp) into
a T•A while adenine base editors (ABEs) convert an A•T to
a G•C bp. BEs can be employed to correct point mutations,
to introduce stop codons, or to disrupt cis-regulatory elements.
PEs consist of a Cas9 nickase coupled to an engineered reverse
transcriptase, which transcribes a section of the pegRNA (prime
editing gRNA) into DNA to introduce the desired changes, such
as base conversions or insertions/deletions of up to 80 bp (40).

Genome editing clinical trials for
SCD

In the last 4 years, seven clinical trials using gene editing
technologies to treat SCD have been initiated (Table 1).
In all of them the editing agents are delivered ex vivo to
autologous HSCs. Five of these therapeutic approaches attempt
to reactivate γ-globin expression, either by preventing BCL11A
expression in the erythroid lineage through disruption of
enhancer elements or by mutating the BCL11A binding sites in
the HBG promoters (Figure 1A). Two alternative approaches

aim to correct the disease-causing mutation in the HBB locus
using HDR (Figure 1A).

The most advanced product, CTX001, was developed
by CRISPR Therapeutics and Vertex Pharmaceuticals. It is
currently being tested in CLIMB-121, a phase II/III clinical trial
(NCT03745287) that was started in 2018 with 45 SCD patients.
CTX001 is administered as an autologous HSC product edited
with CRISPR-Cas9 to disrupt the lineage-specific enhancer in
the BCL11A gene. This alteration reduces BCL11A expression
in erythroid cells, which in turn reactivates γ-globin expression.
Published clinical data from the first two patients (one SCD and
one TDT patient) demonstrated a high level of edited alleles
in the stem cell compartment (69% and 80%). At 15 months
post-transplantation, HbF levels in the SCD patient rose from
9.1 to 43.2%, while HbS levels were reduced from 74.1 to
52.3%. Patients were reported to be transfusion-independent
and free of VOC. A recent update from infusion of CTX001
in 44 TDT and 31 SCD patients confirmed the overall positive
response: All patients presented a sustained increase in HbF
(39.6–49.6%), improvement in mean total Hb level (>11 g/dl)
after 3 months, as well as elimination of VOC. Bone marrow
analyses (>12 months follow-up) confirmed durable effects
of this therapy over time with > 80% edited alleles. On
the other hand, several severe adverse events (SAEs) were
observed in patients upon infusion of the edited cells, such as
VOC liver disease, sepsis, cholelithiasis, and hemophagocytic
lymphohistiocytosis (HLH). Non-serious lymphopenia was also
reported, most likely due to a delay in lymphocyte recovery
(41, 42).

In 2019, Sangamo Therapeutics started a phase I/II clinical
trial (NCT03653247) for eight SCD patients to assess the safety
and efficacy of BIVV003, ex vivo manufactured autologous
HSCs that were edited with ZFN technology to disrupt the
BCL11A erythroid-specific enhancer. Data from week 26 post-
transplantation of four patients showed increased HbF levels
(14–39%) and F-cells raised to 48–94%. VOC was reported
in one patient with a low level of HbF (14%). BIVV003
was well tolerated without the need for transfusions post-
transplantation in all four patients (43). Besides adverse events
related to plerixafor-based mobilization of CD34+ cells and
busulfan conditioning, no SAEs related to the treatment were
reported (43).

Conversely, it was reported that editing of the BCL11A
erythroid enhancer can result in reduced erythroid output,
which was not observed when the binding site of BCL11A in the
HBG promoters was disrupted (44). Editas Medicine initiated
in 2021 the phase I/II RUBY clinical trial (NCT04853576) with
almost 40 participants to evaluate the efficacy and safety of
EDIT-301, a product based on autologous HSCs in which the
HBG1/2 promoter regions are disrupted using CRISPR-Cas12a.
In preclinical mouse models, long-term engraftment ofHBG1/2-
edited HSCs was observed. The ∼90% edited target alleles went
along with a high-level of HbF induction in cells from healthy
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TABLE 1 Gene editing clinical trials for sickle cell disease.

Clinical trial Phase Year
started

Treatment
name

Target gene Delivery mode Designer
nuclease

Donor
template

Sponsors Location Status

NCT05329649 III 2022 CTX001 BCL11A RNP electroporation CRISPR-Cas9 – Vertex Pharmaceuticals,
CRISPR Therapeutics

United States, Italy Recruiting

NCT05477563 III 2022 CTX001 BCL11A RNP electroporation CRISPR-Cas9 – Vertex Pharmaceuticals,
CRISPR Therapeutics

United States Recruiting

NCT04774536 I/II 2022 CRISPR-SCD001 HBB RNP electroporation CRISPR-Cas9 ssODN University of California United States Not yet recruiting

NCT05456880 I/II 2022 BEAM-101 HBG1/HBG2 RNA electroporation ABE base editor – Beam Therapeutics United States Not yet recruiting

NCT05145062
(long-term follow
up)

N/A 2021 BIVV003 BCL11A mRNA electroporation Zinc finger
nuclease

– Sangamo Therapeutics United States Recruiting

NCT04208529
(long-term follow
up)

N/A 2021 CTX001 BCL11A RNP electroporation CRISPR-Cas9 – Vertex Pharmaceuticals,
CRISPR Therapeutics

United States, Canada,
Germany, Italy, UK

Enrolling by invitation

NCT04819841 I/II 2021 GPH101 HBB RNP electroporation CRISPR-Cas9 rAAV6 Graphite Bio United States Recruiting

NCT04853576 I/II 2021 EDIT-301 HBG1/HBG2 RNP electroporation CRISPR-Cas12a – Editas Medicine United States, Canada Recruiting

NCT04443907 I/II 2020 OTQ923 BCL11A Unknown CRISPR-Cas9 – Novartis Pharmaceuticals,
Intellia Therapeutics

United States, Italy Recruiting

NCT03653247 I/II 2019 BIVV003 BCL11A mRNA electroporation Zinc finger
nuclease

– Sangamo Therapeutics United States Recruiting

NCT03745287 II/III 2018 CTX001 BCL11A RNP electroporation CRISPR-Cas9 – Vertex Pharmaceuticals,
CRISPR Therapeutics

United States, UK,
Canada, France, Italy,
Belgium, Germany

Active, not recruiting
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donors (43%) and SCD patients (54%) with no detectable off-
target effects (16, 44).

The 2021 initiated CEDAR trial (NCT04819841) is a phase
I/II clinical study sponsored by Graphite Bio. As opposed
to the previously described products, GPH101 is based on
HDR and relies on a high-fidelity CRISPR-Cas9 system in
combination with an AAV6-based HDR template. The goal
is to correct the SCD-underlying point mutation in HBB. In
preclinical mouse studies, almost 20% of HSCs harbored a
corrected HBB locus (32), resulting in 90% of RBCs with
normal HbA. The preclinical safety data revealed no evidence
of abnormal hematopoiesis as well as absence of detectable
off-target activity or chromosomal translocations. Graphite Bio
recently announced the enrollment of the first patient, with up
to 15 patients following at multiple sites in the U.S. Initial data
from the CEDAR trial are expected for mid 2023.

Beam Therapeutics started a phase I/II clinical trial with
15 enrolled SCD patients in 2022 (NCT05456880). In BEAM-
101, γ-globin expression is activated through a base swap in
the HBG1/2 promoters using base editing to generate an HPFH
genotype variant in autologous HSCs. Based on preclinical
mouse data, > 90% of target sites in xenotransplanted HSCs
were stably edited, resulting in high levels of γ-globin expression
(>65% HbF) (45). Furthermore, an investigational new drug
application was filed for BEAM-102, which was designed to
change the point mutation in HBB from gTg to gCg. The result
is a switch from glutamic acid to alanine in position 6, which
converts HbS into a better tolerated HbG-Makassar (46).

Technical challenges of ex vivo genome editing approaches
in HSCs are similar to those in LV-based approaches and
comprise to reach a sufficient number of mobilized CD34 + cells
as a starting material, sufficient editing efficacy in the LT-HSC
compartment, a lower level of engraftment of ex vivo edited cells
along with reduced stemness of edited HSCs (47–49).

Off-target effects

Similar to insertional mutagenesis associated with
integrating vector systems, inadvertent on-target and off-
target effects evoked by the genome editing tools represent
a major concern when applied in patient cells, particularly
in highly proliferating multipotent stem cells. On the
one hand, cleavage by CRISPR-Cas nucleases can trigger
undesired effects on the target chromosome (50, 51), such
as large deletions and inversions (52–54), chromosomal
truncations (55), chromothripsis (56), aneuploidy (57), loss
of heterozygosity (58), and loss of imprinting (58). On the
other hand, unintentional activity at so-called off-target sites,
that is sequences with high homology to the intended target
site, triggers NHEJ-mediated insertion/deletion mutations
at off-target sites and, potentially, comparable structural
aberrations as described for the on-target site. Moreover,

concomitant insertions of DSBs at multiple sites in the genome
elicit translocations between those cleaved sites (54, 59).
Several methods to predict or detect off-target activity and/or
gross chromosomal rearrangements have been developed.
They include deep sequencing of in silico predicted off-target
sites as well as experimental procedures that detect off-target
activity in vitro and in cell-based systems. Commonly used
in vitro methods include CIRCLE-Seq (60), ONE-Seq (61) and
NucleaSeq (62), while GUIDE-Seq (63), DISCOVER-Seq (64)
and CAST-Seq (54) are prevalently used cell-based approaches.
Noteworthy, CAST-Seq not only nominates off-target sites but
also detects chromosomal rearrangements at the on-target site
as well as induced chromosomal translocations with off-target
sites (54).

The gene-edited products that are currently employed in
clinical trials typically underwent several genotoxicity tests
as part of the preclinical risk assessment. For instance, off-
target activities of the CRISPR-Cas nucleases used in CTX001
and GPH101 were profiled by GUIDE-Seq, CIRCLE-Seq, and
targeted amplicon next-generation sequencing (Amp-Seq) of
in silico predicted off-target sites. Similarly, the safety of
EDIT301 was investigated with GUIDE-Seq and Amp-Seq of
in silico predicted off-target sites. Given that translocations are a
hallmark of leukemic cells (65, 66) and since they can be rather
frequent outcomes of genome editing (54, 59, 67, 68), there is a
growing interest in detecting gross structural rearrangements,
such as large chromosomal deletions, inversions, truncations,
and translocations, too. To our knowledge, many of the above-
mentioned products did not undergo a genome-wide and
sensitive analysis of induced chromosomal rearrangements.
Against the backdrop of the high sequence similarities within
the β-globin locus (HBG1 vs. HBG2 or HBB vs. HBD),
the potential for off-target editing as well as homology-
mediated recombination between two respective paralogous
genes is high (69). Indeed, rearrangements between HBB
and HBD were confirmed in HBB-edited cell, in addition
to translocations between HBB and an off-target site (54,
70, 71). In addition, CRISPR-Cas nucleases targeting either
HBB, HBD or HBG1/HBG2 can lead to complete loss of the
distal chromosome 11p arm in HSCs (58). Furthermore, the
simultaneous disruption of the BCL11 binding sites in HBG1
and HBG2 was reported to result in deletion of the 4.9 kb region
between the two target sites, eliminating HBG2 in 5–30% of cells
(72–74).

To avoid this loss of the HBG2 gene, BEs were employed to
introduce HPFH-like mutations in the HBG1/HBG2 promoters
(75). Because single-strand nicks are repaired by the high-
fidelity base-excision repair pathway, BEs have been claimed to
reduce on-target and off-target effects (36). However, recent data
demonstrated deletion of a 4.9 kb region after base editing of
the HBG1/HBG2 promoters, indicating that also base editing
can induce structural variations (76). Furthermore, bystander
editing effects (77) and gRNA-independent off-target activities
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on both DNA and RNA (78, 79) have been described for
both ABEs and CBEs. Hence, additional efforts are needed to
characterize BE-associated off-target effects as well as to identify
gross chromosomal rearrangements triggered by editing tools
in HSCs of SCD (and TDT) patients. This also includes the
evaluation of the biological long-term effects of genotoxicity in
transplanted patients as well as the development of strategies to
mitigate the observed off-target effects.

Future developments for
SCD-directed genome editing

Genotoxic conditioning regimens still pose a major barrier
to the adoption of autologous HSC transplantation in SCD
(80, 81). To overcome this problem, Beam Therapeutic, among
others, is developing a new approach termed “engineered
stem cell antibody paired evasion,” in which a BE-introduced
epitope switch in CD117 enables those CD117-edited HSCs to
selectively escape CD117-directed antibody-based conditioning.
Such a strategy can be easily applied to BEAM-101 by targeting
CD117 and the HBG1/2 promoters simultaneously (82).

Are there additional transcription factors that could
be targeted to upregulate γ-globin expression? MYB is a
transcription factor that regulates fetal hemoglobin expression
at multiple levels, including upregulation of BCL11A expression
(83). ATF4 is further upstream and regulates the expression
of MYB. It has been recently shown that knockout of ATF4
lowered MYB—and hence BCL11A—expression, and could thus
potentially re-activate γ-globin expression (84). However, it
must be noted that MYB and ATF4 have multiple functions
outside of HbF regulation in non-erythroid cells (85, 86),
highlighting the need to identify erythroid-specific regulation.

Given the constraints of off-target effects associated with all
genome editing platforms, the question is whether alternatives
to genome editing are available. Several studies deciphered the
epigenetic regulation of the β-globin locus during development,
including the interaction between epigenetic and transcriptional
regulation leading to repression of γ-globin expression (87, 88).
This knowledge opened up the idea to modify the epigenome in
a targeted fashion for the treatment of SCD. While epigenetic
approaches to promote γ-globin re-expression were described
before (89, 90), more specific approaches are needed for
clinical translation. Designer epigenome modifiers based on
the TALE or CRISPR-dCas9 platforms create an opportunity
to manipulate the epigenetic marks specifically and without
the necessity to induce breaks in the genome (91, 92), e.g.,
by rewriting the epigenetic code in order to re-activate HBG
expression or to silence BCL11A in a lineage-specific manner.
Epigenome modifiers might therefore have less deleterious
effects in a cell. On the other hand, the challenge of maintaining

long-lasting effects over several cell cycles and throughout
lineage differentiation has not been solved yet and it will be
interesting to see whether the potential of designer epigenome
modifiers can be harnessed for the treatment of SCD in the near
future (93, 94).
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