AUTHOR=Lassmann Michael , Eberlein Uta TITLE=Comparing absorbed doses and radiation risk of the α-emitting bone-seekers [223Ra]RaCl2 and [224Ra]RaCl2 JOURNAL=Frontiers in Medicine VOLUME=9 YEAR=2023 URL=https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2022.1057373 DOI=10.3389/fmed.2022.1057373 ISSN=2296-858X ABSTRACT=
[223Ra]RaCl2 and [224Ra]RaCl2 are bone seekers, emitting high LET, and short range (< 100 μm) alpha-particles. Both radionuclides show similar decay properties; the total alpha energies are comparable (223Ra: ≈28 MeV, 224Ra: ≈26 MeV). [224Ra]RaCl2 has been used from the mid-1940s until 1990 for treating different bone and joint diseases with activities of up to approximately 50 MBq [224Ra]RaCl2. In 2013 [223Ra]RaCl2 obtained marketing authorization by the FDA and by the European Union for the treatment of metastatic prostate cancer with an activity to administer of 0.055 MBq per kg body weight for six cycles. For intravenous injections in humans a model calculation using the biokinetic model of ICRP67 shows a ratio of organ absorbed dose coefficients (224Ra:223Ra) between 0.37 (liver) and 0.97 except for the kidneys (2.27) and blood (1.57). For the red marrow as primary organ-at-risk, the ratio is 0.57. The differences are mainly caused be the differing half-lives of the decay products of both radium isotopes. Both radionuclides show comparable DNA damage patterns in peripheral blood mononuclear cells after internal