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Arsenic (As) exposure is progressively associated with chronic kidney disease

(CKD), a leading public health concern present worldwide. The adverse effect

of As exposure on the kidneys of people living in As endemic areas have not

been extensively studied. Furthermore, the impact of only prenatal exposure

to As on the progression of CKD also has not been fully characterized. In the

present study, we examined the effect of prenatal exposure to low doses of

As 0.04 and 0.4 mg/kg body weight (0.04 and 0.4 ppm, respectively) on the

progression of CKD in male offspring using a Wistar rat model. Interestingly,

only prenatal As exposure was sufficient to elevate the expression of

profibrotic (TGF-β1) and proinflammatory (IL-1α, MIP-2α, RANTES, and TNF-

α) cytokines at 2-day, 12- and 38-week time points in the exposed progeny.

Further, alteration in adipogenic factors (ghrelin, leptin, and glucagon) was

also observed in 12- and 38-week old male offspring prenatally exposed

to As. An altered level of these factors coincides with impaired glucose

metabolism and homeostasis accompanied by progressive kidney damage.

We observed a significant increase in the deposition of extracellular matrix

components and glomerular and tubular damage in the kidneys of 38-week-

old male offspring prenatally exposed to As. Furthermore, the overexpression

of TGF-β1 in kidneys corresponds with hypermethylation of the TGF-β1

gene-body, indicating a possible involvement of prenatal As exposure-driven
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epigenetic modulations of TGF-β1 expression. Our study provides

evidence that prenatal As exposure to males can adversely affect the

immunometabolism of offspring which can promote kidney damage later

in life.

KEYWORDS

prenatal, immunometabolism, metabolic impairment, hypermethylation,
nephropathy and chronic kidney disease

Introduction

Chronic kidney disease (CKD) incidence is increasing at
an alarming rate. More than 10% of the world’s population
suffers from some form of kidney disease (1). The rate is
as high as 17% in India (2). Increased blood pressure, high
blood sugar levels, adiposity, and abnormal cholesterol or
triglyceride levels are common risk factors for CKD (3, 4).
However, up to 40% of CKD cases are due to genetic factors
and unknown causes, which may include or are related to
environmental pollutants such as heavy metals, pesticides,
nanomaterials, air pollutants, and several commonly used drugs,
including painkillers and immunosuppressants (5). Exposure to
environmental pollutants is also associated with metabolic and
cardiovascular diseases (6, 7), which may further aggravate the
prevalence of kidney disease.

Arsenic (As) is among the major environmental pollutants,
affecting > 500 million people worldwide with exposure levels
above the WHO maximum permissible limit of 10 ppb (8).
Contaminated drinking water from natural geological sources
is the most common source of As exposure, which increases
the risk of multiorgan cancers, cardiovascular disease, metabolic
syndrome, and renal disorders (9, 10). However, the effect
of early-life exposure to low As concentrations (around the
permissible limit of 10 µg/L) on human health has not been
extensively studied, although evidence suggests that type of
exposure affects human health (11). The New Hampshire Birth
Cohort Study (NHBCS) began in 2009 with the purpose of
studying how arsenic, affects the health of pregnant mothers
and their babies (12). The study included women who had been
exposed to low to moderate quantities of arsenic through the use
of private wells as well as dietary sources. Analyses of NHBCS
data have indicated links between prenatal arsenic exposure
and fetal and neonatal development (12, 13), infant infection
rates (14), immunological profiles, inflammatory markers, and
leptin levels in cord blood (15–17), and gene expression and
DNA methylation in the fetal placenta (18–22). As a result,
it is becoming increasingly clear that even low-to-moderate
amounts of arsenic have various impacts on the developing fetus
and result in poor infant health outcomes. Prenatal exposure
to arsenic and other heavy metals has been shown to be

nephrotoxic (23). A Chilean study found a rise in CKD mortality
in young adults after in utero and childhood exposure to arsenic
through drinking water (24). Previous studies suggested that
As exposure during early life as well as during the adult stage
affects the metabolic and physiological pathways of the body
and promotes diabetes and obesity (11). Studies have also shown
increased body-mass index (BMI) in As exposed individuals
(25). The metabolic and physiological effect of As varies at
different dose thresholds (26, 27). This non-monotonic As-
induced physiological and metabolic dysregulation has been
observed, which is primarily due to the complex interaction of
inorganic As with different nuclear receptors (26, 28, 29).

Arsenic (As) is known to affect multiple organs, including
the kidney (10), which is an important site for As uptake and
accumulation (30). As is being increasingly associated with
kidney toxicity in As affected regions of South East Asia, Taiwan,
and several western countries (31–37). Kidney injury caused
by chronic As exposure is characterized by hypercalciuria,
albuminuria, proteinuria, nephrocalcinosis, β-2 microglobulin,
and renal injury at the cellular and subcellular level (38–40). As
can induce kidney cell proliferation and cause changes in cell
fate and function (41). Arsenic has also been known to play
a synergistic role in amplifying glycogen nephrosis in diabetic
rats (42). Population studies have found a latency pattern of
increased kidney cancer mortality that lasted for at least 25 years
after high exposure levels began to drop (43). Studies have also
shown an inverse relationship between urinary As levels and
CKD (34). However, most of these As studies are either adult
exposure or in vitro studies. Further studies on As exposure also
suggest that it could cross the transplacental barrier (44) and
might affect the developing fetus (45, 46). Studies have shown
that early life As exposure (85 ppm) promotes renal injury
(47). However, the association between As low to moderate-dose
prenatal exposure (27, 48) and its role in adult-onset CKD has
not been characterized.

Previous studies have also shown that As exposure
modulates the expression of several profibrotic (TGF-β1) and
proinflammatory genes, including TNF-α, RANTES, IL-1α,
MIP-2α, and MIP-3α (49–51). Some of these cytokines are
collectively classified as adipokines (TGF-β1 and TNF-α) and
are known to play a significant role in the development and
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progression of diabetes (52, 53). The cumulative effect of
these changes may lead to metabolic dysregulation and, in
the long run, may promote diabetic nephropathy. However,
most of these studies show the effect of prolonged As
exposure at higher doses. They, therefore, cannot delineate
which phase of life (gestational, pubertal, or adult) is most
susceptible to As exposure. Due to chronic As exposure
in humans, it is impossible to assess prenatal exposure’s
contribution in isolation, which is the highly vulnerable stage
of development. Therefore, we used the Wistar rat as an animal
model for an isolated in utero As exposure experiment and
investigated whether only prenatal exposure to low-to-moderate
environmentally reported levels of As (27, 48) could cause
adult-onset kidney disease. To achieve this, we exposed female
rats to As prior to mating and continued till the gestation
period, and monitored the ensuing pups till late adulthood
for signs of metabolic changes and kidney disorders. We also
studied progressive alteration in the levels of inflammatory,
adipogenic, and metabolic parameters. We further studied DNA
methylation changes in the gene-body of TGF-β1, which might
be a probable cause of metabolic dysregulation and kidney
injury. Our study, thus, tries to investigate whether only in utero
As exposure is sufficient to imprint lifelong changes that may
promote CKD and related disorders in the progeny born.

Materials and methods

Materials

Sodium (meta) arsenite (NaAsO2) (≥90% pure), Periodic
Acid-Schiff (PAS) Kit, and Trichrome Stain (Masson)
Kit were procured from Sigma-Aldrich, St. Louis, MO,
United States. High-capacity cDNA reverse transcription
kits and Qubit dsDNA BR Assay Kit were purchased from
Thermo Fisher Scientific, Eugene, OR, United States. Milliplex
TGF-β1 Magnetic Bead Single Plex Kit, Milliplex MAP Rat
Cytokine/Chemokine Magnetic Bead Panel, Milliplex Rat
Kidney Toxicity Magnetic Bead Panel 1 were purchased
from EMD Millipore, Billerica, MA, United States. Bio-Plex
ProTM Rat Cytokine Assay and Bio-Plex ProTM Rat Diabetes
Assay kits were bought from Biorad, Laboratories, Hercules,
CA, United States. Anti-NPHS2, anti-TGF-β1, and anti-
Fibronectin were purchased from Abcam, United States.
Anti-Glucagon Alexa Fluor 570 and anti-Insulin Alexa Fluor
488 were purchased from eBioscience, Inc., San Diego, CA,
United States. Secondary antibodies such as Goat anti-rabbit
IgG (H + L) Cross-Adsorbed Secondary Antibody, Alexa Fluor
488 (A-11008), and Goat anti-Mouse IgG (H + L) Cross-
Adsorbed Secondary Antibody, Alexa Fluor 594 (A-11005)
were brought from Thermo Fisher Scientific, Eugene, OR,
United States. Reagents such as paraformaldehyde (PFA),
D-glucose (dextrose), NaCl, creatinine, sodium hydroxide

(NaOH), picric acid, Hematoxylin, Eosin Y, glutaraldehyde
(TEM grade), sodium cacodylate, Heparin sodium, Tris, EDTA,
Tween 20, citric acid, DNase I, Fluoroshield DAPI, and Bovine
serum albumin (BSA) were bought from Sigma-Aldrich, St.
Louis, MO, United States. PierceTM BCA Protein Assay Kit
was purchased from Thermo Fisher Scientific, Eugene, OR,
United States. Hydrochloric acid (HCl) and paraffin wax and
DPX were brought from SRL Pvt. Ltd., Maharashtra, India.
Insulin (biphasic isophane insulin) was procured from Gland
Pharma Limited, Hyderabad, India. Phosphate buffer saline
(1X) and Trizol were brought from Thermo Fisher Scientific,
Eugene, OR, United States. Specific primers (Supplementary
Table 1) for the quantitative real-time PCR and Methylated
DNA Immunoprecipitation (MeDIP) assay were purchased
from Integrated DNA Technologies, Inc., Coralville, IA,
United States. SYBR Premix Ex Taq II (TlIRNase H Plus)
was procured from Takara Bio USA, Inc., San Jose, CA,
United States.

Animal experiment

Animal experimental protocols were approved by the
Institutional animal ethics committee (IAEC) of CSIR-
Indian Institute of Toxicology Research, India (Reference
No.: IITR/IAEC/14/14; Year: 2014). Specific-pathogen-
free female and male Wistar rats aged 6 weeks old were
obtained from the animal housing facility of the approving
institution. Animals were kept in polypropylene cages
under standard laboratory conditions of temperature
25 ± 5◦C, relative humidity 50 ± 15% and dark/light
period of 12:12 h. The animals were fed on a standard
pellet diet (Complete pellet diet, Provimi Kliba, Switzerland)
and sterile distilled water as drinking water [with As
level below the limit of detection (LOD), i.e., 1 ng/L]
ad libitum.

Female rats were randomly grouped into three groups, with
10 female rats in each group. They were treated with sterile
distilled water (control) or As doses (As 0.04 ppm and As
0.4 ppm) for 15 days prior to mating and continued throughout
the gestation period. NaAsO2 dose was prepared in sterile
distilled water and administered at 0.04 (within the Benchmark
dose range of 40–60 µg/L of As in drinking water) and 0.4 mg/kg
body weight doses per day (0.04 and 0.4 ppm, respectively) (27).
The dose was administered daily via oral gavage consistently at
the same time (forenoon) throughout the treatment in a dose
volume of 10 mL/kg under normal feeding conditions. After
15 days of As treatment to females, the male and female rats were
kept for breeding in a 2:1 (female: male) ratio. The dosing of
female rats was continued during the mating period. The mating
was confirmed by a smear test. When 70% of female rats were
positive, the male and female rats were separated. The treatment
was continued throughout the gestation period.
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Five prenatally exposed male pups (one male pup per dam)
from each group born to As exposed mothers were sacrificed on
postnatal day (PD) 2 during the forenoon. Whole kidney and
plasma samples were collected and stored at −80◦C for further
processing. The remaining pups were kept with their mother.
After PD 21 days, the animals were weaned, and male and female
pups were segregated. All experiments were conducted on male
pups due to their stable hormonal and physiological parameters,
as well as males’ higher susceptibility to As.

Bodyweight of all animals was measured at 2, 4, 6, 8, 12,
16, 20, 24, 28, 32, 36, and 38 weeks before sacrificing. In
addition, random blood glucose level was determined in 12- and
38 weeks prenatally exposed male offspring during the first hour
of the daylight cycle.

At 12 weeks of age (PD 12-weeks), five male rats (one male
pup per dam) from each group were sacrificed, and plasma
and whole kidneys were collected during the forenoon, snap-
frozen in liquid nitrogen, and stored at −80◦C for further
processing. Similarly, at PD 38 weeks, five males (one male pup
per dam) from the mentioned groups were again sacrificed, and
their plasma was collected, snap-frozen, and kept at −80◦C for
further processing. The whole kidney and pancreas were also
taken and fixed in 4% PFA for immunohistochemistry (IHC)
and histopathology. Tissue and plasma samples were collected in
the forenoon from non-fasting animals prenatally exposed to As.

Freshly voided urine samples were also collected from five
prenatally exposed male rats (one male pup per dam) from
each group 1 h after the start of the light cycle at PD 12- and
38-week time points. The urine samples were collected from
prenatally exposed offspring with normal feeding conditions.
The animals were taken from the cages and placed in a petri dish
for collection. The urine sample collected was stored at −80◦C
for further processing.

Measurement of cytokine, adipokine,
and metabolic biomarker levels in
blood plasma

To detect cytokine and adipokine levels in the blood plasma
of prenatally exposed offspring via Multiplex bead-based assay,
the Bio-Plex MAGPIX Multiplex Reader platform (Bio-Rad
Laboratories, Hercules, CA, United States) was used. The level
of cytokines and adipokines such as TGF-β1, IL-1α, MIP-2α,
MIP-3α, RANTES, TNF-α, and VEGF was determined using
Milliplex MAP TGF-β1 Single Plex Magnetic Bead Kit, Milliplex
MAP Rat Cytokine/Chemokine Magnetic Bead Panel and Bio-
Plex ProTM Rat Cytokine Assay Kit. Similarly, the level of
metabolic biomarkers such as ghrelin, leptin, and glucagon was
measured using the Bio-Plex ProTM Rat Diabetes Assay kit. For
the detection of different analytes, blood plasma samples stored
at −80◦C used. The level of glucagon in the pancreatic tissue

lysate was also accessed using the Bio-Plex ProTM Rat Diabetes
Assay kit. The samples were thawed, centrifuged, and processed
as per the manufacturer’s instructions and protocols. The results
were analyzed using the Bio-Plex Manager software (Bio-
Rad Laboratories). Results were expressed as mean fluorescent
intensity (MFI).

Oral glucose tolerance test and
intraperitoneal insulin tolerance test

Oral glucose tolerance test and IPITT were performed at
12-, 16-, 20, and 24-week time points on 5 in utero exposed and
control male rats. OGTT was done at 9:00 a.m. after overnight
fasting of 16 h in all the groups simultaneously and on the
same day. OGTT was performed using 2.0 g/kg body weight
D-glucose (dextrose), prepared in sterile physiological saline
(0.85% NaCl) solution at 37◦C. The overnight fasted animals
received a glucose challenge by oral gavage. Basal blood glucose
level and blood glucose level at 0 h, 15 min, 30 min, 45 min, 1 h,
1.5 h, and 2 h were measured in the blood from the tail vein
using a portable glucometer (AccuChek Active, India). Between
the OGTT and IPITT, there was a gap of 1 week for the animals
to gain their unstressed normal condition. For IPITT, animals
were pre-fasted for 6 h and were challenged with 1 U/Kg Insulin
(biphasic isophane insulin) diluted in a sterile physiological
saline solution. The glucose level was then measured in the
blood from the tail vein at the same time points using a portable
glucometer as mentioned above (for OGTT).

Assessment of kidney injury
parameters

The kidney injury parameters such as early kidney toxicity
biomarker Kidney injury molecule-1 (KIM-1), serum-creatinine
level, and urinary protein level were assessed. Expression of
KIM-1 was evaluated by using a Milliplex kidney toxicity
biomarker panel on the bead-based Multiplex assay platform
Bio-Plex MAGPIX Multiplex Reader. In 2-day-old pups, KIM-
1 level was assessed in the kidney tissue lysate, whereas in
the 12- and 38-week animals, urine samples were used to
determine KIM-1 level. Tissue lysate and urine samples stored
at −80◦C were thawed, centrifuged, and processed as per the
manufacturer’s instructions and protocols. Results are expressed
as mean fluorescent intensity (MFI).

Total urinary protein was determined using PierceTM

BCA Protein Assay Kit following the manufacturer’s protocol
and was read on Spectra Max MS Multimode Microplate
reader (Molecular Devices, LLC., San Jose, CA, United States).
Urinary total protein result was expressed relative to urinary
creatinine level.
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Furthermore, creatinine level in plasma was measured
by Jaffe’s reaction (1886) method (54). Approximately 1 g/L
creatinine stock was prepared in 0.4 M HCl. Working creatinine
standards of 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 2.5, and 5.0 mg/dl
concentrations were prepared in 0.4 M HCl. Alkaline picrate was
freshly prepared by mixing 0.5 M sodium hydroxide (NaOH)
and saturated picric acid in a 1:1 ratio. A total of 10 µl of
working standards and plasma samples of respective groups
were added to the 96-well microplate. To it, 120 µl of water
and 20 µl of freshly prepared alkaline picrate were added and
incubated at 25◦C for 45 min. After incubation, absorbance
was measured at 505 nm on a Spectra Max MS Multimode
Microplate reader. The standard graph was plotted between the
known concentration and their respective optical density (OD).
The concentration of the samples was obtained by plotting the
value of unknown concentration on the standard plot. The
concentration of creatinine was expressed in mg/dl.

Histopathological and ultrastructural
analysis

Kidneys at a 38-week time point from five prenatally
exposed male rats (one male rat per litter) from each group were
isolated during forenoon and fixed in 4% PFA, embedded in
paraffin wax, and 5 µm thick sections were cut for analysis after
staining. To assess the histopathological changes, Hematoxylin
and Eosin (H&E), Trichrome, and PAS staining were done.

The sections were stained with H&E according to the
standard H&E protocol (55). Briefly, the deparaffinized,
rehydrated tissue sections were stained with Mayer’s
Hematoxylin for 5–8 min, washed, and counterstained
with Eosin Y. The stained slide was washed, dehydrated,
mounted in DPX, and visualized under the light microscope
(LeicaOrthoplan). Similarly, for Trichrome and PAS staining,
the sections were stained with Trichrome and PAS stain using
Trichrome Stain (Masson) and Periodic Acid-Schiff (PAS) Kits
as per manufacturers’ instructions and visualized under the
light microscope (Leitz, Germany).

Five sections per animal and five animals per group were
taken for the histopathological analysis. Random images were
taken per section and were analyzed by two independent
pathologists, and they were unaware of the study and treatment
status of the 38-weeks old prenatally exposed animals. To
determine the glomerular surface area, urinary space, and PAS-
positive area, 10 random images were chosen per section for the
analysis using Image J software (National Institutes of Health,
Bethesda, MD, USA). The mean of the glomerular surface area
and urinary space determined was calculated for each animal
and plotted on a graph. The slides were visualized under a light
microscope (Leitz, Germany).

To study the effects of prenatal As exposure on the cortical
region of the kidney tissue (proximal tubular, distal tubular,

and glomerular region), ultrastructural analysis of the kidney
sections was carried out by Transmission Electron Microscopy
(TEM). Animals were perfused with 100 mL of ice-cold saline
(0.9% NaCl in deionized water with 10 U/ml heparin; pH
7.3–7.4) and fixed in 4% PFA (pH 7.3–7.4) containing 0.2%
glutaraldehyde (TEM grade) and 0.1 M sodium cacodylate.
Tissues were cut into small cube-shaped slices (0.5–1.0 mm
thick) and further processed for TEM analysis, as mentioned in
our previous article (56).

Immunohistochemistry

Similar to histopathological analysis, five sections per animal
and five animals per group were taken and imaged randomly
for immunohistochemistry. The kidney tissue sections from the
PD 38-week time point were deparaffinized, rehydrated, and
processed for IHC. The sections were kept in Tris-EDTA antigen
retrieval buffer (Tris-EDTA: 10 mM Tris,1 mM EDTA, 0.05%
Tween-20, pH 9.0 or Citrate buffer: 10 mM Citric acid, 0.05%
Tween 20, pH 6) at 98◦C for 20 min for antigen retrieval. The
sections were then washed in Phosphate Buffer Saline (PBS)
with 0.1% Tween-20 (PBST, pH 7.6) followed by 1 h blocking
process in 3% Bovine serum albumin (BSA) and then incubated
overnight with primary antibody at 4◦C (anti-NPHS2, anti-
TGF-β1, anti-Fibronectin, Anti-Glucagon Alexa Fluor 570, and
anti-insulin Alexa Fluor 488). The sections were then washed
and incubated with primary antibodies (anti-NPHS2, anti-
TGF-β1, and anti-Fibronectin) and with Alexa Fluor labeled
secondary antibody [Goat anti-rabbit IgG (H + L) Cross-
Adsorbed Secondary Antibody, Alexa Fluor 488, A-11008; and
Goat anti-Mouse IgG (H + L) Cross-Adsorbed Secondary
Antibody, Alexa Fluor 594, A-11005] at room temperature (RT).
All sections were then mounted with the Fluoroshield DAPI
and visualized under Leica TCS SPE confocal microscope (Leica
Microsystems, Nussloch, Germany).

Quantitative real time gene expression
profile

Total RNA was extracted from the kidney by the Trizol
method (57), followed by quantification, DNase digestion,
and cDNA preparation using High-Capacity cDNA Reverse
Transcription Kit and assessed by quantitative real-time PCR
by using gene-specific primers (Supplementary Table 1) and
SYBR Premix Ex Taq II (TlIRNase H Plus). QuantStudioTM 6
Flex Real-Time PCR System (Life Technologies, Eugene, OR,
United States) was used for the quantitative real-time PCR. β-
actin and 18S RNA were used as the internal control. Threshold
values (Ct) were used to calculate relative gene expression using
the 11Ct method (58).
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Methylated DNA immunoprecipitation
assay

CpG methylation enrichment was determined by the MeDIP
assay. The MeDIP assay was performed as described in our
previous manuscript (41). The enriched and isolated DNA
was subjected to quantitative real-time PCR by using specific
primers (forward: GACTCTCCACCTGCAAGACC, reverse:
CCTCAGAGCTCACCGTTGTT), using QuantStudioTM 6 Flex
Real-Time PCR System with SYBR Green as a fluorescent
reporter using SYBR Premix Ex Taq II (TliRNase H Plus).
Results were expressed as fold enrichment as compared to
isotype controls.

Statistical analysis

All studies contain at least three different breeding rounds
per assay, with at least n = 5 (one pup per litter) per assay.
Data reported in this study (ELISA, IHC, real-time PCR, MeDIP,
and ChIP) are the minimum mean of three biological replicates.
Descriptive statistical analysis was performed to determine the
coefficient of variance (CoV) and standard error mean (SEM).
All data are presented in the graphs as mean ± SEM, and
a p < 0.05 was set for statistical significance. To analyze
multiple groups, a one-way analysis of variance (ANOVA)
analysis with a confidence interval (CI) of 95% was done. To
check the normality of the data, the Kolmogorov–Smirnov test
was performed. Analysis was done using GraphPad software
(GraphPad Software, v. 6.0; San Diego, CA, USA).

Results

Sex ratio of pups (fraction male) born
to mothers

In the present study, the sex ratio of pups born to
pregnant mothers was not significant and unusually very low
(Supplementary Figure 1).

Prenatal As exposure induces the
expression of profibrotic and
proinflammatory cytokines

The level of chemokines and proinflammatory cytokines
was assessed in prenatally exposed offspring at 2-day, 12- and
38 weeks of age (Figure 1). The level of TNF-α and profibrotic
(TGF-β1) cytokine was determined in the blood plasma samples
at different time points. The level of TNF-α was significantly
higher in the blood plasma samples of 0.04 ppm (p ≤ 0.0001;

CoV 15.9%) and 0.4 ppm (p ≤ 0.001; CoV 14.3%) prenatal
As exposed 2-day old pups as compared to the time-point
control (CoV 29.85%), which was observed till 12- (CoV 13.33,
13.06 and 13.51% in control, 0.04 and 0.4 ppm exposed groups,
respectively) and 38 weeks (CoV 19.57, 20.45 and 18.91% in
control, 0.04 and 0.4 ppm exposed groups, respectively) post-
prenatal As exposure (p ≤ 0.001). TGF-β1, a potent profibrotic
biomarker, was also assessed in plasma samples of prenatally As
exposed offspring at different time points. The level of TGF-
β1 was significantly upregulated (p ≤ 0.05) in plasma samples
of 2-day-old pups (CoV 16.72, 17.04 and 17.99% in 0.04 and
0.4 ppm exposed groups, respectively), which persisted in 12-
(CoV 13.95, 19.2 and 8.669% in control, 0.04 and 0.4 ppm
exposed groups, respectively) and 38-weeks (CoV 19.35, 18.95
and 11.75% in control, 0.04 and 0.4 ppm exposed groups,
respectively) old prenatally exposed groups as compared to
the time-point control. A positive correlation was observed
between the TGF-β1 expression and prenatal As treatment dose.
A significant increase in the level of IL-1α, MIP-2α, MIP-3α,
RANTES, and VEGF was observed at 2-day which persisted till
12 and 38 weeks of age in prenatally As exposed offspring. The
coefficient of variance of all the timepoints and all the groups has
been shown in Supplementary Table 2. In 12- and 38-week-old
prenatally exposed female offspring, the level of GMCSF, IL-7,
RANTES, MIP-3α, VEGF, IL-1β, and TGF- β1 cytokines were
also found to be significantly overexpressed (Supplementary
Figure 2).

Alteration in glucose homeostasis

Furthermore, we investigated the effect of prenatal As
exposure on glucose metabolism. We examined body weight,
blood glucose level, and metabolic markers. Bodyweight was
determined at different time points. However, no significant
change in body weight was observed till 20 weeks of age
(Figure 2A; Supplementary Figure 3). At 38 weeks, a significant
change in the body weight was observed in a dose-dependent
manner (Figure 2A; Supplementary Figure 3).

The random blood glucose level was determined at 12-
and 38 weeks of age in prenatally exposed offspring. The
mean blood glucose level was 122 ± 1.655, 133 ± 4.057, and
128 ± 1.934 mg/dl in control, 0.04 and 0.4 ppm prenatally As
exposed groups, respectively, at 12 weeks of age (Figure 2B). At
38 weeks of age, the mean blood glucose level was 172 ± 3.860
(0.04 ppm) and 175 ± 7.794 mg/dl (0.4 ppm) in As exposed
groups as compared to 127.5 ± 5.582 mg/dl in the control group
(Figure 2B).

We also performed OGTT and IPITT in 12-, 16-, 20-, and
24-week old prenatally exposed rats. There was no significant
change in glucose tolerance till 20 weeks of age. However,
we observed a significant change in glucose tolerance in the
prenatally exposed rats at 24 weeks of age. Following OGTT,
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FIGURE 1

Prenatal As exposure promotes the expression of proinflammatory cytokines and adipokine. Prenatal As exposure induces expression of
proinflammatory cytokine and adipokines in the progeny. The level of cytokines and adipokines was assayed in blood plasma at 2 days, 12- and
38 weeks. The data is represented as mean fluorescence intensity (MFI). The data represent the mean ± SEM, n = 5 (number of experimental
sets). *p < 0.05, **p < 0.001, and ***p < 0.0001.
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FIGURE 2

Prenatal As exposure promoted weight gain, dysregulated glucose metabolism, and induced the expression of metabolic markers. Body weight
(A) and blood glucose level (B) at 12 and 38 weeks of age. OGTT (C) and IPITT (D) at a 24-week time point. The levels of glucagon (E), ghrelin
(F), and leptin (G) were determined in blood at 12 and 38 weeks of age. The data represent the mean ± SEM, n = 5 (number of experimental
sets). *p < 0.05, **p < 0.001, and ***p < 0.0001.

while the control groups were able to restore their blood glucose
level at 2 h following the initial increase, the As exposed groups
could not regain their normal blood glucose even after 2 h of
oral glucose administration (Figure 2C). However, following
IP insulin administration (IPITT), no significant difference in
glucose levels was observed in any group (Figure 2D).

Assessment of metabolic and
adipogenic factors

Change in the level of metabolic and adipogenic factors
was later assessed. We examined glucagon, ghrelin, and leptin
levels in the blood plasma of 12- and 38-weeks rats who
were prenatally exposed to As (Figures 2E–G). A decrease in
blood glucagon was observed in 12- and 38-week-old prenatally
exposed progeny. The change in glucagon level was highly
significant (p ≤ 0.0001) in 12-weeks old As exposed animals as

compared with the controls (Figure 2E). The level of ghrelin
was significantly higher in 12- and 38-week-old prenatally
As exposed progeny (0.04 and 0.4 ppm prenatally exposed
rats) compared with their respective controls (Figure 2F).
Change in leptin level was also observed in 12- and 38-weeks
old As exposed progeny. The leptin level in the blood was
significantly higher at both 12 and 38 weeks of age (Figure 2G).
A decrease in the glucagon level in plasma was further validated
by Immunohistochemical staining (IHC) in the pancreas
(Figure 3). The number of glucagon-positive cells was lesser
than the controls at 38 weeks (Figure 3) and correlated with
decreased circulating glucagon level (Figures 2E–G). Moreover,
the number of insulin-positive cells was also lower in prenatal As
exposed groups at 0.4 ppm (Figure 3). The level of glucagon was
also observed in the pancreatic tissue lysate and interestingly,
the level of glucagon was significantly decreased in 12 and
38 weeks old prenatally arsenic-exposed rats (Supplementary
Figure 6).
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FIGURE 3

Effect of prenatal As exposure on the pancreas. The levels of
insulin and glucagon were also determined through the IHC of
the pancreas isolated from 38 weeks old progeny.

Prenatally As exposed animals show
higher levels of nephrotoxicity markers

Plasma creatinine levels were significantly higher in the
animals prenatally exposed to 0.04 and 0.4 ppm As as compared
to controls at 12 and 38 weeks of age except in the 0.4 ppm
group at 38 weeks (Figure 4A). Similarly, higher urinary
protein levels were found in 12 and 38 weeks (Figure 4B) As
exposed animals were both at 0.04 ppm and 0.4 ppm doses. In
addition, higher creatinine and protein levels correspond with
an increase in KIM-1 expression, an early biomarker of renal
injury (Figure 4C). There was significantly higher expression of
KIM-1 in 0.04 ppm and 0.4 ppm prenatally As exposed 2-day-
old pups (Figure 4C). Further increase in the KIM-1 expression
was also observed at both 12- and 38-weeks (Figure 4C) in 0.04
and 0.4 ppm exposed groups.

Structural alterations in the glomerular
region of the kidney after prenatal As
exposure

The glomerulus is an important part of the kidney where
the majority of blood is filtered and is essential for the kidney’s

proper function. Members of the chemokine superfamily and
proinflammatory genes are associated with glomerular injury
(59). There were structural aberrations in the glomerular region,
including reduced glomerular area and urinary space, less open
capillaries, mesangial cell expansion, and increased cellularity
as indicated by H&E staining in the As exposed progeny
(Figure 4D). The images were analyzed through Image J
software, and the glomerular surface area (Figure 4F), urinary
space, and mesangial expansion (Figure 4G) are represented
graphically. The glomerular surface area was reduced to half in
some cases, while there was a drastic decrease in urinary space
in As exposed groups compared to controls.

We also assessed the deposition of PAS-positive material in
the kidney by qualitative estimation with periodic acid-Schiff
(PAS) staining. An increased level of PAS-positive material was
observed in the glomeruli and interstitium of the kidney of As
exposed group (Figure 4E). We quantified the % area of PAS-
positive material by Image J software, and the analyzed data
was graphically represented, which clearly shows significant and
considerable deposition of PAS-positive material. The kidney of
prenatal As exposed progeny exhibited 10–15% more area with
PAS-positive material (Figure 4H).

Ultrastructural alterations in the kidney
of as exposed animals

Kidneys were further examined for pathological changes
at the ultrastructural level through transmission electron
microscopy (TEM). Distinct cellular and subcellular changes
were found in prenatally exposed progeny kidneys. There was
a decrease in the number of podocytes, effacement of their
foot processes, and overall mesangial expansion suggesting
glomerular injury (Figures 5B, D) compared to their respective
controls (Figures 5A, C). Swollen podocytes were observed in
prenatally As exposed progeny compared with their respective
control groups. The foot processes of podocytes in prenatally
As exposed offspring were either swollen (P1) or shorter (P2)
(Figures 5B, D) as compared with their respective controls
(Figures 5A, C). The damage in the podocyte foot process
was also reflected in the expression pattern of the Podocin
(NPHS2) protein (Figure 6). The expression of Podocin was
diffused and discontinuous with a lack of open tubules in
the As exposed progeny compared to the control (Figure 6).
Diffuse and discontinuous staining of podocytes indicates the
probability of altered glomerular filtration.

Furthermore, ultrastructural changes in the proximal
convoluted tubules (PCT) (Figure 7) and distal convoluted
tubules (DCT) (Figure 8) were observed in prenatally exposed
progeny. There was severe damage in mitochondria in PCT
(Figure 7) and DCT (Figure 8) of prenatally As exposed
progeny. Membranes and cristae of mitochondria were not
distinct, and the demarcation of membranes of the basement
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FIGURE 4

Prenatal As exposure elevates renal toxicity markers and associated cytokines in exposed rat offspring. The renal toxicity markers were assessed
in prenatally exposed animals. Plasma creatinine level (A) and urinary total protein (B) at 12- and 38-week time points. Early kidney toxicity
biomarker KIM-1 was assessed in kidney tissues at 2 days and in urine samples at 12- and 38 weeks of age (C). H&E (D) and PAS staining (E) of
kidney sections of 38-week-old prenatally As exposed rats were done. A significant loss in the glomerular surface area in As treated groups was
observed which is also represented graphically (F). Loss in urinary space was also calculated and represented graphically (G). The mesangial
expansion was also calculated based on the level of PAS-positive material (H). The kidney toxicity biomarker and cytokine data are represented
as mean fluorescence intensity (MFI). The bar shown in the histopathological images represents a 50 µm distance. The data represent the
mean ± SEM, n = 5 (number of experimental sets). Values were compared with their respective controls. *p < 0.05 and ***p < 0.0001.
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FIGURE 5

Prenatal As exposure causes ultrastructural changes in the
glomerulus which is reflected in the abnormal expression
pattern of podocin (NPHS2). Prenatal As exposure leads to
swollen, extended (P1), and damaged foot processes (P2) (B–D)
as compared with the control (A–C) as observed in the TEM
sections of kidney isolated from 38-week-old offspring. The
podocytes (P) extend branching foot processes (P1 and P2)
which lie around the glomerular basement membrane (GBM).
The asterisk represents the site of damage in P1 and P2 (A–D).

infoldings was altered in both PCT (Figure 7) and DCT
(Figure 8). There was significant damage to the brush border
membrane (BBM) of the PCT of the kidney at certain places.
The mitochondria had completely lost their internal content in
some instances, especially in the DCT (Figures 7D, F).

Assessment of the renal matrix proteins

Collagens and other matrix proteins, such as fibronectin
and various proteoglycans, cumulatively compose the interstitial
matrix of the kidney (60). Injured tubules are known to release
excess extracellular matrix components responsible for tissue
fibrosis. Trichrome staining of the kidney for extracellular
matrix (ECM) components showed a significant increase in
collagen deposition in prenatally As exposed groups in the
cortical glomerular region (Figure 9A) and in medullary regions
of the kidney (Figure 9B). Analysis by Image J software also
showed up to a 3-fold increase in collagen content in animals
exposed to 0.04 ppm As compared to control in cortical
glomerular and medullary regions of the kidney (Figure 9C).

Furthermore, the level of fibronectin, a potential biomarker
of fibrosis, was assessed by immunohistochemistry. Fibronectin,
a matrix protein, showed higher expression in As-exposed
progeny both in the cortical glomerular region (Figure 10)
and in the medullary regions of the kidney (Figure 11).
Fibronectin was highly concentrated around the glomerular
region (Figure 10; Supplementary Figures 5A, B) and in the

FIGURE 6

Prenatal As exposure induced ultrastructural changes in the
glomerulus are reflected in the abnormal expression pattern of
podocin (NPHS2). IHC images of the glomerular region showing
staining for podocin and DAPI. The expression of podocin is
continuous in the control kidney sections, while it is diffused
and discontinuous in As exposed offspring. Inset views of
corresponding images clearly show the pattern of podocin
expression in the control and treated section. Asterisk represents
open tubules which are reduced in As exposed animals.
Bar = 25 µm.

interstitium of the tubular region (Figure 11; Supplementary
Figures 5C, D).

Alteration in the TGF-β1 expression
and its regulation

TGF-β1, a potent profibrotic biomarker, was highly
upregulated in kidneys at the mRNA level. A significant increase
in TGF-β1 expression at mRNA level was observed in kidneys
of 2-day (p ≤ 0.05, p < 0.001), 12 weeks (p ≤ 0.0001,
p ≤ 0.0001), and 38 weeks (p ≤ 0.0001, p ≤ 0.001) old
0.04 ppm and 0.4 ppm prenatally exposed groups, respectively
(Figure 12A). As TGF-β1 was one of the primary cytokines in
our study, which is associated with renal fibrosis, we examined
the DNA methylation status of the TGF-β1 gene-body region
by MeDIP assay. Methylation patterns were assessed at 2 days,
12- and 38-week time points (Figure 12B). Dose-dependent
hypermethylation was observed in the gene-body region for
prenatally exposed groups at all time points. However, at

Frontiers in Medicine 11 frontiersin.org

https://doi.org/10.3389/fmed.2022.1045692
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1045692 January 5, 2023 Time: 19:15 # 12

Singh et al. 10.3389/fmed.2022.1045692

FIGURE 7

Prenatal As exposure leads to ultrastructural damage in PCT.
TEM analysis showed increased mitochondrial damage. The
damage in the mitochondrial membrane and its cristae are
prominent in kidneys isolated from 38 weeks old prenatally As
exposed animals. Furthermore, damage in basement infoldings
was also observed (C–F). The brush border membranes (BBM)
are also damaged in exposed groups (A–B).

38 weeks’ lower dose, i.e., 0.04 ppm showed the highest levels
of hypermethylation (Figure 12B).

Discussion

The developmental origin of health and disease (DoHAD)
hypothesis suggests that early-life exposure to stress could have
lifelong adverse health effects on the progeny (61). Several
studies now focus on early life toxicant exposure (62) on
generation and transgenerational changes in the offspring. As
is a known endocrine-disrupting chemical that disrupts nuclear
receptor and hormonal signaling pathways (63–65) and also can
cross the transplacental barrier, thereby having the potential
to cause detrimental developmental changes during gestation
period which is a highly vulnerable period for both the mother
and fetus. The developmental stage represents a highly rapid
phase of organ development and growth (66). Epidemiological
studies on the Chilean population suggest early life sensitivity
to As-induced carcinogenicity. Studies showed an increased rate
of mortality due to multiple organ cancers, including renal
and bladder cancers, in young adults exposed to As through
drinking water (0.85 ppm) in the early stages of life (9, 24, 67).
Transitional cell carcinoma of the renal pelvis and ureter and
renal cell carcinoma were common in the Chilean population,

FIGURE 8

Prenatal As exposure leads to ultrastructural damages in DCT.
The TEM analysis showed damage to the mitochondrial
membrane and its cristae. The damaged mitochondria (M) (A–D)
and damaged basement membrane infoldings were prominent
in 38 weeks old prenatally As exposed animals (E–F). The
asterisk shows the site of damage.

with increased risks manifesting 40 years after As exposure was
reduced (68).

As the prenatal period is known to be the highly vulnerable
stage, the present study aimed to identify the effect of prenatal
As exposure on risk factors that promote CKD, a less studied
aspect of As exposure. Our current study is in continuation
with our previous study, where we showed a dose-dependent
increase in KIM-1 and Cinc-1 (IL-8 analog) expression in 2-day
old prenatally As exposed pups (0.1 and 4 ppm) (41). Previous
studies have also observed that prenatal exposure to As at high
doses (50 ppm) could promote renal injury (47). In the present
study, the animals were subjected to pre-gestational 15 days As
exposure (0.04 and 0.4 ppm), which continued during mating
and until the gestational period.

During the initial stages of the experiment, various CKD-
promoting factors such as altered cytokine levels in the blood
plasma and impaired glucose metabolism were assessed. The
study showed a significant increase in TGF-β1, IL-1α, MIP-
2α, MIP-3α, RANTES, TNF-α, and VEGF levels in the blood
plasma in 2-day-old prenatally exposed pups, which persisted
till 38-weeks of age (Figure 1).

Previous studies showed upregulation of RANTES in the
renal tubular epithelium (69) and TNF-α in mouse mesangial
cells (59, 70, 71). In addition, an elevated level of TNF-α has also
been associated with loss of renal function (72).
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FIGURE 9

Prenatal As exposure promotes collagen deposition in the kidney. Kidney sections of exposed animals were stained with trichrome staining at
38 weeks of age. The blue stained regions represent the collagen. The level of collagen is significantly higher around the glomerular region and
their enlarged inset view shows the specific site of collagen deposition (A). Collagen deposition was also prominent in the medullary region. The
specific site of collagen deposition is shown in the inset view (B). The asterisk shows the site of collagen deposition. The level of collagen in the
glomerular and medullary region (C) is graphically represented. Bar = 50 µm. ***p < 0.0001.

Many of the identified cytokines are associated with obesity
and metabolic changes (73). The elevated expression level
of TGF-β1 and TNF-α has a strong correlation with the
pathogenesis of type I diabetes (52, 53, 74). In our study, a
persistent increase in TGF-β1 and proinflammatory cytokines
accompanied by increased blood glucose levels might lead to
progressive loss of kidney function in prenatally exposed rat
offspring. Increased Tgf-β1 expression at mRNA level was also

observed in the kidneys of exposed male progeny at 2-day, 12-
and 38 weeks of age (Figure 12A). In addition, an increase in
Tgf-β1 expression in kidneys was correlated with the level of
extracellular matrix deposition (Figures 9–11).

Altered expression of metabolic factors has been linked
with weight gain and loss of glucose homeostasis (73, 75).
Glucagon levels were lower, while Leptin and Ghrelin levels
were persistently elevated (Figures 2E, F). Glucagon is released
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FIGURE 10

Collagen deposition corresponds with increased fibronectin
expression in the cortical region of the kidney. Kidney sections
of exposed animals were stained at 38 weeks of age. Increased
fibronectin and TGF-β1 expression were observed in the cortical
region. Bar = 25 µm.

by alpha cells of islets when there is decreased blood glucose
level. It is counterbalanced by insulin secretion. Leptin is
an adipocytokine associated with satiety signaling and is
reported to be increased during obesity (73) without any
beneficial effect on energy homeostasis, suggesting leptin
resistance (76). Ghrelin is a hunger hormone produced by the
gastrointestinal (GI) tract and is known to increase appetite.
Elevated Leptin and Ghrelin may also inhibit insulin production
from beta cells, thereby preventing efficient glucose metabolism,
as suggested by some earlier studies (77, 78). Dysregulated
expressions of glucagon, leptin, and ghrelin (Figures 2E, F) may
have contributed to weight gain (Figure 2A; Supplementary
Figure 3) and altered glucose metabolism (Figures 2B–D)
observed in gestationally As exposed adult offspring. Altered
OGTT (Figure 2C) but normal ITT (Figure 2D) suggests
that while animals had impaired glucose tolerance (glucose
intolerance), their insulin responsiveness was not affected.
Previous studies also showed that perinatal As exposure induces
glucose intolerance in the offspring (79). Prenatal As exposure

may affect glucose homeostasis by altering its uptake, transport,
or metabolism, which may further lead to defects in ATP-
mediated insulin release, thereby limiting cellular response to
elevated glucose levels (80–82).

As prenatal As exposure induced elevated cytokine and
adipokine levels in the blood plasma and impaired glucose
metabolism is associated with kidney damage, we assessed
the levels of nephrotoxic biomarker, histopathological and
ultrastructural alterations at the cellular and subcellular levels.
In the present study, nephropathy was observed in prenatally
exposed adult offspring as assessed through histopathological
parameters at 38 weeks of age (Figures 4D, E, 9). The renal
injury was corroborated by an increase in early and late
nephrotoxicity markers such as kidney injury molecule-1 (KIM-
1) (Figure 4C), total protein level in urine (Figure 4B) and
plasma creatinine level (Figure 4A) at 12- and 38-weeks of age.
KIM-1 level was also significantly higher in the kidney lysate of
2-day-old prenatally exposed pups.

FIGURE 11

Collagen deposition corresponds with increased fibronectin
expression in the medullary region of the kidney. Kidney
sections of exposed animals were stained at 38 weeks of age.
Increased fibronectin and TGF-β1 expression were observed in
the medullary region. Bar = 25 µm.
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FIGURE 12

Expression of TGF-β1 and DNA methylation alterations in TGF-β1 gene-body. Prenatal As exposure induces TGF-β1 expression in the kidney (A).
Change in TGF-β1 gene-body methylation in exposed progeny was studied through methylated DNA immunoprecipitation (MEDIP) assay.
Hypermethylation of the TGF-β1 gene-body was shown and represented as fold enrichment over controls (B). The data represent the
mean ± SEM, n = 5 (number of experimental sets). *p < 0.05, **p < 0.001, and ***p < 0.0001.

Kidney damage was characterized by increased deposition of
ECM proteins (Figure 9), including fibronectin (Figures 10, 11),
and the glomerular region showed signs of diabetes-associated
injury, including mesangial expansion, increased cellularity, and
closed capillaries (Figures 4D, F, G, 9). These histopathological
changes were supported by ultrastructural changes as observed
by TEM, such as damaged glomerular podocytes (Figures 5B,
D) and mitochondria in PCT (Figure 7) and DCT (Figure 8)
in the prenatally exposed 38-week-old offspring. Moreover,
increased accumulation of PAS-positive material in the
glomerulus of the As exposed groups (Figures 4E, H) suggested
increased deposition of glucose-rich moieties in the kidney,
which is often associated with high blood sugar levels.

Some epidemiological studies show that As exposure has
been associated with CKD (32, 34, 36, 83–87). However, most
of these studies do not explain the mechanistic basis or clarify
whether the effects are a combination of gestational and adult
exposure, which is difficult to delineate in population studies.
Studies done on people born during the Dutch famine and
conditions of starvation in Bangladesh have shown that stress
during the gestation period could have lifelong effects on the
health of the progeny and lead to changes in the methylome
and metabolic disorders (88–94). Prenatal As exposure is known
to alter DNA methylation patterns and may also modulate
the expression of various proinflammatory and development-
related genes (19, 95–97). As the detrimental changes in
our experiments were observed just after birth (2 days), we
assessed whether epigenetic changes during fetal development
contributed to persistent changes in implicated genes even after
38 weeks of exposure. The expression of all three major Dnmts,
i.e., Dnmt-1, Dnmt-3a, and Dnmt-3b, was high from 2-day
to 38 weeks of age in As exposed groups (Supplementary
Figure 4). Prenatal As exposure also induced hypermethylation
of TGF-β1 gene-body (Figure 12B), which correlated with
increased TGF-β1 gene expression (Figure 12A) in kidneys of

prenatally As exposed rats. Some earlier studies have shown a
positive correlation between gene-body hypermethylation and
gene expression (98–100).

The non-monotonous dose-response (NMDR) of some of
the variables was an intriguing aspect observed in the current
study. The effects of iAs on physiological parameters may be the
cause of NMDR, exemplifying the complex interactions between
an environmental factor and the physiology and metabolism of
the exposed individual. These physiological parameters include
iAs’ complex interaction with nuclear and hormone receptors,
which further disrupts nuclear and hormonal signaling (26,
28, 29, 101). For instance, As has been shown to modulate
the glucocorticoid receptor pathway, alter steroid signaling,
and affect the thyroid, adrenal, and gonadal endocrine systems
(102, 103). The interaction of iAs with hormone and nuclear
receptors is complicated further by gestational exposure and its
biotransformation potential (104). Multiple studies have linked
NMDR and endocrine disruption (105), with different profiles
including the most common inverted U shape, with the response
at intermediate dose and no or low response at high and low
doses. In our recently published study, we found a similar
NMDR in terms of aggravated carcinogenesis in a mouse model
system at similar doses (106).

In the present study, kidneys seem to be the highly
vulnerable organ to prenatal As exposure in males via increasing
the production of profibrotic and adipogenic mediators.
Furthermore, prenatal As exposure may cause persistent
inflammation and metabolic impairment in male offspring via
altered DNA methylation patterns, the significance of which
needs to be determined in future studies that will also focus
on sex-specific differences. Molecular prediction analysis of
differentially expressed cytokines and genes using QIAGEN
Ingenuity Pathway Analysis (IPA) will provide further insights
into studying detailed potential signaling pathways involved in
prenatal As exposure-induced CKD progression (Figure 13).
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FIGURE 13

Molecular prediction analysis using QIAGEN ingenuity pathway analysis (IPA) software. The molecular prediction tool shows the plausible
mechanisms associated with the differentially expressed genes and cytokine, which will be used in our further study to determine the
mechanistic basis of prenatal As exposure induced renal injury.

Conclusion

Our study provides evidence that prenatal stress to very
low doses of As could be sufficient to promote the early
onset of chronic kidney disease in males. The onset of renal
injury following prenatal As exposure is strongly linked with
a persistent increase in the expression of proinflammatory,
profibrotic cytokines, and adipokines, leading to progressive
loss of renal function in male progeny. The kidney seems to
be the primary tissue modulated by prenatal As exposure. The
study highlights in utero stress due to As exposure as the major
causal factor responsible for the manifestation of As-associated
kidney and associated disorders in males using an animal model,
which may have relevance for the human population living in
As endemic areas. It may be helpful to monitor people who were
born in As endemic areas but have since moved to the unaffected

region, as they may still have a higher susceptibility to early onset
of adult disorders.
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