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Keloid is a common benign skin tumor in the outpatient department, and

patients are often accompanied by itching and pain. Since the pathogenesis

is unknown, the effect of single method treatment is unsatisfactory, and

therefore the recurrence rate is high. Therefore, comprehensive treatment

is mostly used in clinical treatment. Adjuvant radiotherapy is currently one

of the most effective treatments for keloid. After long-term clinical practice,

brachytherapy and electron beam radiotherapy has increasingly become the

gold standard of treatment, because brachytherapy provides more focused

radiation treatment to focal tissue to significantly reduce recurrence rate, and

better preserve normal tissue. With the development of new radiotherapy

techniques, more options for the treatment of keloid. Currently, adjuvant

radiotherapy has been widely recognized, but there is no consensus on the

optimal protocol for adjuvant radiotherapy for keloids. This review provides a

review of published treatment options and new radiotherapy techniques for

adjuvant radiotherapy of keloids and gives a comprehensive evaluation for

clinical treatment.
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Introduction

Keloid is a dermatofibrosis characterized by excessive fibroblast proliferation and
collagen deposition that invades normal tissue beyond its original borders, often
secondary to trauma, surgery, and inflammation (1, 2), with an incidence of 5–15%
during wound healing (3). Keloid often develops in patients with a family history
of the disease or dark-skinned patients (4, 5). Due to the high recurrence rate, this
disease remains one of the most pressing clinical challenges. The recurrence rate of
keloids in patients who received adjuvant radiation therapy has been reported to be
approximately 20%, while the recurrence rate in patients who underwent surgery alone
ranged from 50 to 99% (6–8). In addition, Mankowski et al. (9) showed that patients
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receiving adjuvant radiotherapy also had a lower recurrence
rate than those receiving radiation therapy alone (22 and
37%). Therefore, postoperative adjuvant radiotherapy
for keloids significantly reduces the recurrence rate (10).
Radiotherapy uses radiation to deliver energy to cells to
reduce recurrence rates by causing changes in fibroblast
structure and activity through direct and indirect effects,
thereby killing cells to reduce overproliferation (11). Radiation
itself has some carcinogenic potential and therefore the
surrounding tissues should be provided with the necessary
protection during treatment, especially in children (12,
13). A review of the literature detailed that radiotherapy
for keloids induces cancer including fibrosarcoma, basal
cell carcinoma, thyroid cancer, and breast cancer, but the
probability is extremely low (14). Although radiotherapy has
the potential to induce tumors, the risk of surrounding tissue
carcinoma from the dose and frequency of radiation used
to treat keloids is very low (15, 16). And a survey showed
that 78% of oncologic radiologists considered radiotherapy
an acceptable treatment for keloids (17). Radiotherapy
modalities used to treat keloids include x-ray therapy, electron
beam therapy, and brachytherapy (18, 19). This review
summarizes the progress of research on different radiation
modalities and treatment options in postoperative adjuvant
radiotherapy for keloids.

Methodology

In this review, we conducted a literature search for
studies related to keloid scars using PubMed, Web of Science,
Embase, and Cochrane. The keywords used in the search were
“keloid,” “adjuvant radiotherapy,” and “treatment protocol.”
Review articles were used as an initial source of information
and, where relevant, information was obtained from primary
research papers.

Mechanism of radiotherapy

Radiation therapy has been used for the surgical or non-
surgical treatment of keloids (8). Currently, the mechanism
of radiation therapy for keloids is unclear, but researchers
have provided multiple theoretical bases. At the cellular level,
postoperative incisions are dominated by naive fibroblasts and
unstable collagen fibers, which are more sensitive to radiation,
and their damage by ionization can lead to impairment of cell
migration, proliferation, and synthetic-secretory functions, thus
affecting fibroblast proliferation and collagen synthesis, blocking
the cell cycle and inducing apoptosis, and thus inhibiting keloid
recurrence (13). A period of a few weeks with premature
differentiation and senescence was observed after an immediate
cell cycle arrest (20). And after cellular exposure to radiation,

the levels of reactive oxygen species such as superoxide
(O2-), hydrogen peroxide (H2O2), and hydroxyl radicals (-OH)
increase dramatically, leading to damage to macromolecules and
DNA (21–24), and thus inhibiting fibroblast proliferation.

However, at the molecular level, radiation inhibited
fibroblast proliferation and induced cellular senescence (11).
The mRNA and protein expression of senescence-associated
genes p16, p21, and p27 were increased in a time-dependent
manner after 4 Gy irradiation. This expression is followed by
the activation of a dynamic feedback loop by p21, followed
by mitochondrial dysfunction and elevated levels of reactive
oxygen species, leading to DNA damage and sustained DNA
damage reaction (25). Thus, the survival of fibroblasts after
radiation-induced cell cycle arrest depends not only on
persistent DNA damage and p21 levels but mainly on the cellular
CDK2/p21 ratio (26). Tosa et al. (27) combined the results
from primary fibroblasts isolated from keloids of five patients
who were subjected to irradiation with 15 Gy of electrons,
and after 15 min they were compared with unirradiated
primary fibroblasts and normal fibroblasts, and the results
showed that after irradiation, the expression of 28 genes of
keloid fibroblasts was upregulated, accounting for 29.2% of
the total number of genes; meanwhile, the expression of 68
genes was downregulated, accounting for the expression of
68 genes was down-regulated, accounting for 70.8% of the
total number of genes. Among them, several down-regulated
genes were involved in the regulation of cell proliferation and
extracellular matrix production, while some up-regulated genes
were involved in the regulation of apoptosis and extracellular
matrix degradation. Ji et al. (11) found that radiotherapy
dysregulated the proliferation and apoptosis of keloid fibroblasts
and inhibited the proliferation of keloid fibroblasts compared to
normal fibroblasts. Li et al. (28) found that miR-21 was highly
expressed in keloid tissues, and its expression level decreased
after 15 Gy electron irradiation. Synthesis and this process
are affected by electron beam irradiation, therefore, electron
beam irradiation can reduce the production of type I collagen
by further activating p38 protein through miR-21/Smad7. This
study explored the effect of electron beam irradiation on
microRNA (miRNA) for the first time, which provides a new
idea to discover the molecular mechanism of radiotherapy for
keloid treatment. Yan et al. (29) showed that ionizing radiation
can inhibit autophagy and promote apoptosis in keloid cells
by reducing the expression level of miR-21-5p, and miR-21-
5p can regulate this process through the human chromosome
10 deletion phosphatase and tensin homolog (PTEN) and
phosphorylated protein kinase B (p-AKT) signaling pathways,
thereby preventing local invasion and recurrence of keloids.

Dysregulated long noncoding RNAs (LncRNAs) play an
important role in keloid formation by regulating many
processes, including fibroblast proliferation and extracellular
matrix deposition. Recent studies have shown that LncRNA
also has an important role in the formation of keloids (30).
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The development of keloids is remarkably associated with
fibroblast proliferation, invasion, migration, and apoptosis.
LncRNA and miRNA can interact and co-regulate with each
other. LncRNA is known as a competitive endogenous RNA
and can negatively regulate miRNA to influence its activity
(31). LncRNA can also prevent miRNA from acting on
mRNA and can enhance the translation of mRNA. Over 2,500
LncRNAs were found to be differentially expressed between
keloid tissue and normal human skin by microarray and qRT-
PCR (32). Of these, 1,731 LncRNAs were upregulated and
782 LncRNAs were downregulated (33). In another study,
a total of 2,068 LncRNAs were found to be differentially
expressed in earlobe keloids by microarray. Of these, 1,290
LncRNAs were up-regulated and 778 LncRNAs were down-
regulated (34). Among them, H19 promotes proliferation by
targeting miR-29a and miR-214-5p in keloid fibroblasts (35–
37). HOXA11-AS promotes proliferation and migration by
targeting miR-124-3p and miR-205-5p in keloid fibroblasts
(38–40). CAS1 promotes proliferation, invasion, and migration
by targeting miR-205 in keloid fibroblasts and inhibits the
apoptotic process (41, 42). LINC01116 promotes proliferation,
invasion, and migration by targeting miR-203 and miR-3141
in keloid fibroblasts and produces an extracellular matrix,
and inhibits the apoptotic process (43, 44). LncRNA-ATB
was upregulated in keloid fibroblasts by targeting miR-
200c and ZNF217 to promote their TGF-β2 secretion (45,
46). AC073257.2 was upregulated in keloid fibroblasts by
targeting GLI2 to promote their growth and proliferation (47).
LINC00937 was upregulated in keloid fibroblasts by targeting
miR-28-5p down-regulation in keloid fibroblasts to inhibit
their proliferation and extracellular matrix deposition (48).
The efficacy of radiotherapy depends mainly on the sensitivity
of the irradiated cells to radiotherapy. Some LncRNAs and
miRNAs can enhance the sensitivity of cells to radiotherapy,
mainly by regulating different genes involved in processes
closely related to radiotherapy sensitivity, including affecting
DNA damage and inducing cell cycle arrest, regulating the
process of DNA damage repair and apoptosis, and activating
EGFR signaling (49–56). As radiotherapy research advances,
the role of LncRNA for keloid prognosis prediction, treatment
process monitoring, and response prediction will certainly
become clearer and has the potential to become a potential
biomarker for keloids.

Radiation therapy techniques

Postoperative adjuvant radiotherapy is currently the most
effective clinical treatment for keloids (10, 57, 58). Commonly
used are external beam radiotherapy (EBRT) and brachytherapy,
with EBRT being the earliest radiotherapy method used,
consisting mainly of X-ray and electron beam (59). The
recurrence rate of high dose rate (HDR) brachytherapy was

significantly lower than ERBT, but the recurrence time of keloids
was later with EBRT than with brachytherapy, with a mean delay
of 2.5 years (60). The relationship between their modes of action,
as well as dose and depth, is shown in Figure 1.

X-ray

The X-ray can be produced by X-ray tubes and usually
deliver superficial low-dose radiation to the lesion. In 1906,
De Bearman and Gourgerot first used X-ray to treat keloids
(61). In 1961, Cosman et al. (62) proposed that X-ray treatment
be performed immediately after surgical excision of keloids to
prevent a recurrence. Studies have shown a recurrence rate
of only 21% and a controlled rate of 73–88% for immediate
postoperative x-ray treatment (63, 64). Son et al. (65) treated
20 keloids in 15 patients with a single dose of 8 Gy at 50 kV
of X-ray and followed up for 6 months, showing a recurrence
rate of 6.25%. As revealed in Table 1, the shorter treatment
time and the lower dose required for X-ray compared to other
radiotherapy modalities resulted in a lower incidence of acute
skin complications. However, there are some defects in the
treatment of keloids, such as the greater penetration of X-ray
and the greater damage to the surrounding normal tissues; the
lack of strict radiotherapy protocols, definite histopathological
results, and clear consensus on complications; and the lack of
follow-up time and the bias of statistical results due to the
assessment of efficacy by recurrence rate only, which is rarely
used in the treatment of keloids nowadays. Most reports on
x-ray are limited to small samples in single-center retrospective
studies. The recurrence rates in this literature are within the
range of outcomes typically reported for EBRT (6). Despite
the low frequency of clinical application of x-ray, the available
literature supports its value as an equally effective and safe form
of radiotherapy. It may be used when the extent and complexity
of the keloid lesion are such that excessive consideration of
damage to the surrounding tissue is not allowed.

Electron beam

With advances in radiation technology, X-ray is gradually
being replaced by accelerator-generated electron beams.
Although some studies have shown that the recurrence rate
of postoperative electron beam treatment of keloids is not
significantly different from that of x-ray treatment (9, 66).
However, the energy is delivered to a depth of 2–5 cm by
the accelerator to keloids, and electron beam radiotherapy is
more suitable than x-ray therapy for flat and lumpy keloids
(67). Compared with X-ray, the more concentrated radiation
coverage is more suitable for treating localized superficial
lesions such as keloids without causing serious damage to
deeper tissues while treating them. Electron beam treatment
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FIGURE 1

Schematic representation of the radiation technique. (A) Process and prognosis of postoperative radiotherapy for keloids, (B) mechanism of
X-ray and selection of dose and depth, (C) mechanism of electron radiation and selection of dose and depth, and (D) mechanism of
brachytherapy and selection of dose and depth. Reproduced with permission from Journal of Plastic, Reconstructive & Aesthetic Surgery (19).

TABLE 1 Dose fractionation and recurrence rate of x-ray for keloids.

Case (keloids) Total dose/Fraction Interval (hour) Recurrence rate References

(68) 20 Gy/4 14 days 23.5% (103)

(28) 16 Gy/4 14 days 21.%

14 (15) (8–10) Gy/2 24 – (104)

1 15 Gy/3 2 – (105)

84 (197) (9–30) Gy/(1–10) 36 19% (60)

(188) 16 Gy/4; 24 Gy/6; 30 Gy/10 168 33% (106)

64 (86) 37.5 Gy/5 – – (107)

of keloids often uses energies of 4–6 MeV, and electron beam
treatment after surgical excision of keloids can significantly
reduce the recurrence rate, and its effectiveness is closely related
to the treatment protocol and the site of the keloid (68). Ogawa
et al. (69) showed that the local recurrence rate was 5.7% for
keloids in the earlobe, 14.3–20% in the chest, deltoid region,
and suprapubic region, and 16.7% in other areas. Wang et al.
(70) performed electron beam therapy in 58 patients within
4 h after surgery, and the treatment regimen was 12 Gy total
dose completed in 4 sessions for keloids in the earlobe and
neck, and 16 Gy total dose completed in 4 sessions for keloids
in other sites; all patients recovered well with a recurrence
rate of 8.6% at 22 months of follow-up. Thus, the choice of
electron beam radiotherapy dose depends on the site of the
keloid, with keloids in high tension areas (chest, scapular,

and suprapubic areas) requiring higher doses for treatment
compared to keloids in low tension areas (neck and auricle).
As revealed in Table 2, the electron beam therapy produced
by accelerators has a stable, controlled, and safe irradiation
dose. Electron beam radiotherapy is one of the most common
radiation modalities for keloid, and is often chosen when the
scar is large and tends to be flat. Currently there are different
treatment protocols depending on the site, with 18 Gy in 3
sessions for high recurrence sites, 8 Gy in 1 session for low
recurrence sites, and 15 Gy in 2 sessions for other body parts.
Keloids on the earlobe are usually adequately controlled with
a single session, while keloids on high recurrence areas such
as the anterior chest wall are treated with multiple and higher
cumulative doses (71).
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TABLE 2 Dose fractionation and recurrence rate of electron beam for keloids.

Case (keloids) Total dose/Fraction Interval (hour) Recurrence rate References

95 (9–32) Gy/(3–4) 24–48 – (108)

11 (20) 13.5 Gy/3 24 – (109)

58 (12–16) Gy/4 4 8.6% (70)

14 12 Gy/3 24 – (104)

23 (30) 15 Gy/3 2 – (110)

30 (47) (15–20) Gy/(3–4) 24 (36.7%); 14 days (63.3%) – (111)

9 15 Gy/3 2 6% (105)

30 (37) (5–12) Gy/(1–3) 24–48 16.2% (112)

124 (250) 20 Gy/5; (12–16) Gy/(3–4) 48 1.6%(20 Gy); 9.6%(< 20 Gy) (77)

568 (834) 18 Gy/2 48 (82.7%); > 48 (17.3%) 9.59% (86)

30 (37) (12–18) Gy/(3–6) 24 (64.9%); 24–72(16.2%); 72 (18.9%) 18.9% (91)

45 (45) (15–20) Gy/(3–4) 24 2.2% (113)

12 (16) 10 Gy/1 72 0 (114)

60 (91) 20 Gy/5; 16 Gy/4 72 50.5% (115)

119 (194) 16 Gy/4; 24 Gy/6; 30 Gy/10 168 33% (106)

96 (102) 15 Gy/3 24 45.8% (116)

218 (249) 15 Gy/3 48 29.3%

109 (121) (10–20) Gy/(2–4) 48 14% (69)

47 (60) 16 Gy/4 24 (83%); 24 (17%) 15% (117)

64 (86) 37.5 Gy/5 – – (107)

129 (147) 15 Gy/3 – 32.7% (118)

100 (134) (5–18) Gy/(2–6) 24 (86%); 48 (14%) 16% (119)

Brachytherapy

Brachytherapy was first used for the treatment of keloids in
1967 (72), because high-dose ERBT may damage the normal
tissue surrounding the lesion. There was no significant trend
in local control with brachytherapy compared to electron
beam radiotherapy (86.4% for HDR and 85% for EBRT)
(73). However, compared with X-ray or electron beam,
brachytherapy significantly reduces the recurrence of keloid
(9, 10, 74). Brachytherapy is more effective in postoperative
keloids. This therapy allows the radiation source to be
placed at the target site, providing more focused radiation
therapy to the focal tissue and better preservation of normal
tissue (75). Brachytherapy can be divided into interstitial
brachytherapy and surface brachytherapy. As shown in Table 3,
the overall recurrence rate of HDR brachytherapy was
low.

Interstitial brachytherapy is followed by irradiation of the
keloid by catheter delivery of the radiation source (inserted
at a depth of approximately 5 mm) to avoid damage to the
surrounding normal tissue (76). Interstitial brachytherapy can
be divided into low and high-dose-rate modalities based on the
difference in dose (Table 3). Studies have shown that both LDR
and HDR brachytherapy is considered safe and effective (77).
Since low-dose-rate brachytherapy patients need to be treated
in a lead chamber for 20–72 h, although it can effectively treat

keloids, it has been replaced by high-dose-rate brachytherapy
due to inconvenience and poor patient compliance. HDR
brachytherapy is mostly performed within 24 h after surgery,
with short irradiation time (less than 10 min) and high patient
compliance, and is suitable for outpatient. Surgery combined
with HDR brachytherapy significantly reduces the recurrence
of keloids with a high patient satisfaction rate (at 86.9%) (74).
For patients who failed surgical or postoperative ERBT, adjuvant
HDR brachytherapy had a local control rate of 88% (78). In a
study of 24 patients with a total of 32 keloids, patients underwent
keloid surgery with three HDR brachytherapy at a dose of 6 Gy
and a treatment depth of 5 mm, with a mean follow-up of
29.4 months and a local control rate of 94%(79). Tresoldi et al.
(80) reported a study of intraoperative radiation therapy with a
postoperative control rate of 90.5%, providing a new perspective
on early brachytherapy. Although HDR brachytherapy is highly
indicated, it has the disadvantage of catheter dislodgement,
which has prompted the emergence of surface brachytherapy.

Surface brachytherapy is a way to treat superficial lesions
by uniformly adsorbing radionuclides (32P, 90Sr, or 90Y, etc.)
onto filter paper or silver foil, making a special dressing radiator
according to the shape and size of the lesion, and applying
it close to the surface of the lesion (81). Wagner et al. (82)
treated 166 keloids in 139 patients with surgical excision and
an adjuvant 90Sr-90Y integrated applicator at a median total
dose of 14 (7.5–28.5) Gy. The results showed that the recurrence
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TABLE 3 Dose fractionation and recurrence rate of brachytherapy for keloids.

Case (keloids) Total dose/Fraction Interval (hour) Recurrence rate References

HDR 31 (42) (15–20) Gy/(3–4) 3 days; 4 days 44.4% (120)

50 (71) 15 Gy 24 2% (121)

14 (14) 12 Gy/3 24 21% (122)

13 (20) 8 Gy/1 36 – (123)

43 (86) 18 Gy/2 – – (90)

54 (87) 18 Gy/3 3 –

49 (65) 12 Gy/2 3 –

29 (37) 18 Gy/3 36 8.1% (124)

(39) (8–12 Gy)/1 36 23% (60)

24 (32) 18 Gy/3 6 – (79)

28 (35) 12 Gy/2 4 3.1% (125)

39 (50) (9–12) Gy/4 4–6 38% (73)

21 (36) 20 Gy/4 24 9.7% (100)

35 (54) 6 Gy/1; 8 Gy/2 6 3% (126)

4 Gy/1; 6 Gy/2 6 44%

18 Gy/3 6 0

16 Gy/1 6 0

12 (17) 15 Gy/3 24 – (78)

147 (147) 12 Gy/4 0.5–1 3.4% (74)

LDR 31 (46) (12–18) Gy/1 4–6 30.4% (73)

TABLE 4 Advantages and disadvantages of adjuvant radiation therapy.

Category Advantage Defect

X-ray Short time, low dose, and fewer acute skin complications Large damage to the surrounding tissue, Uneven dose delivery

Electron beam Large surface areas homogeneous dose delivery, less damage to
the surrounding tissue

Complex dose calculation, unable to treat the non-plane

Interstitial radiotherapy High patient compliance, short time Intralesional catheter insertion, high dose rates

Surface brachytherapy No trauma, low price, strong plasticity Easy to fall off

Heavy ion High effectiveness and safety Less literature, no clear plan

rate was 20.5% and varied by the site of disease, with the lowest
recurrence rate in the face and neck (2%) and the highest
recurrence rate in the chest (49%). Surface brachytherapy has
been widely used in the treatment of keloids because of its non-
invasiveness, ease of operation, low adverse effects, low price,
and variability in the shape of the applicator. And the long-
term follow-up results showed no secondary malignancies in the
irradiated area (82).

HDR interstitial brachytherapy is the primary modality
of brachytherapy. After comparing multiple publications on
treatment regimen selection, their treatment regimens ranged
from 2 to 3 sessions delivering 12–18 Gy. After adjusting for
differences in gender, skin type, and keloid characteristics, no
differences in recurrence rates emerged (76, 79, 83). HDR
resulted in better symptom relief and was convenient and less
costly to treat (73). When the keloid is uneven and tends to be
curved, brachytherapy is often chosen.

Heavy ion radiotherapy

In recent years, heavy ion radiotherapy has been applied
in the clinical treatment of refractory and radiation-insensitive
tumors, but its application in the postoperative treatment
of keloids has been rarely reported. Chen et al. (84) first
performed carbon ion therapy after keloid surgery, and 16
patients received a total dose of 16 Gy in 8 sessions, with a
mean follow-up of 29.7 months, showing a cure rate of 95%,
and none of the patients had any complications. Heavy ion
radiotherapy can achieve ideal dose distribution and biological
effects by giving precise doses to the tumor site, disrupting the
DNA double-strand of tumor cells, with significant cell-killing
effects, and significantly reducing damage to normal tissues
and endangered organs, with high efficacy and safety. Thus,
heavy ion radiotherapy may be a potential clinical treatment
modality for keloids.
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Factors influencing the efficacy of
radiotherapy

The multiplication time of normal fibroblasts is 43.5 h. The
multiplication time of keloid cells is shortened to 29.5 h, and the
rapidly proliferating cells are more sensitive to radiation (85);
therefore, adjuvant radiotherapy should be performed as early
as possible to obtain better clinical results, and the results of
clinical studies show that radiotherapy performed within 24 h
after surgery has the best effect (58).

In addition to the choice of radiotherapy timing, the choice
of dose and mode is also crucial to the final treatment effect. Too
high a dose may damage the normal tissues around the target
area and cause serious adverse effects; too low a dose may not
achieve the best therapeutic effect. Fractionation therapy allows
normal skin cells to recover while keloid cells transition from
the radiation-resistant stage to the radiation-sensitive stage.
Currently, two segmentation treatment modalities are widely
recommended. (1) Multiple splitting mode: a total dose of
17.5–20.0 Gy done in 4 or 5 sessions, each 1 day apart; (2)
few splitting mode: a total dose of 18 Gy done in 2 sessions,
each 1 week apart. The former is the traditional postoperative
radiotherapy modality for keloids, and its safety and efficacy
have been proven; however, some investigators believe that the
latter is more effective and can be tried for the prevention
of postoperative recurrence in refractory and high-recurrence
keloids (86). At present, the appropriate radiation dose for the
prevention of postoperative keloid recurrence is inconclusive
and still needs to be selected by weighing the effectiveness of the
treatment against the potential risk of adverse effects.

Safety and adverse effects of
radiotherapy

The potential of radiotherapy as a treatment modality to
induce malignancy has been of wide concern. In the X-ray
era before 1990, X-ray therapy was reported to have a zero
carcinogenic rate (87), which provided supporting evidence
for its clinical application. In a study by Preston et al. (88),
the probability of developing and dying from skin cancer was
1/7500 in a population aged 18–64 years with whole-body
exposure to an irradiation dose of 1 Gy. Based on this study, the
postoperative radiotherapy regimen for earlobe keloids reported
by Ogawa et al. (89) would expose approximately 0.05% of the
patient’s whole body to an 8 Gy dose of irradiation, with an
expected morbidity and mortality rate of only 1/2000000 from
secondary carcinoma in nearly 4000 patients treated with this
regimen. Therefore, the safety of radiotherapy is high.

In the treatment of keloids, radiotherapy may also
cause associated complications, which can be divided
into early and late complications depending on the time

of appearance of symptoms. Early complications include
erythema, desquamation, and transient hyperpigmentation,
and such adverse effects are seen in all patients within 7–
10 days after treatment; (9) late complications are symptoms
observed several weeks after treatment, and include permanent
hyperpigmentation, capillary dilatation, subcutaneous fibrosis,
and chronic ulceration, and the risk of complications after
radiotherapy is positively correlated with the irradiation dose
(90). In clinical practice, the risk of complications is generally
reduced by reducing the fractionated dose while keeping the
total dose constant and by lengthening the interval.

Conclusion and research
prospects

Electron beam radiotherapy is high-energy electrons by
accelerator-generated. The dose of electrons in the tissue
decays rapidly, making electron beam suitable for radiotherapy
of skin surface tumors, which minimizes damage to deeper
tissues. It can deliver different energies, typically 4–20 MV, and
higher energy beams can treat deeper tissue and will have a
higher surface dose (91). Although electron beam radiotherapy
has advantages in the treatment of superficial lesions, it has
complex difficulties, including complicated dose calculations,
high costs, and variability of treatment protocols for small
lesions (92). Therefore its treatment protocol design in irregular
structural lesions is more difficult and prone to computational
errors. Because the electron beam used for surface radiotherapy
requires high energy maintenance and is generated exclusively
by the accelerator, treatment is more expensive.

X-ray differs from electron beam in that it delivers a
beam of photons rather than a beam of electrons. The
photon beam interacts with the tissue and thus undergoes an
ionization reaction to produce secondary electrons. Typically,
a lower energy photon beam is produced by an x-ray tube
operating in the kilovolt range (89). Compared to electron beam
radiotherapy, X-ray has a simpler dose calculation and it is easier
to obtain the maximum skin surface dose. The lower energy
beam avoids damage to deep structures and can be done on an
outpatient basis without the need for hospitalization (93). Since
X-ray for the treatment of keloids can be produced by x-ray
tubes, the cost is greatly reduced compared to electron beam
radiotherapy. However, the low energy of X-ray results in a faster
tissue dose and increases the deposition dose in the bone (94).
There is less literature on X-ray for keloid treatment (Table 1),
and its role in the treatment of skin lesions is not as clear as that
of electron beam radiotherapy (95).

In contrast to the two forms of ERBT, brachytherapy is
divided into interstitial and surface brachytherapy, depending
on the placement of the applicator. Interstitial brachytherapy
is further divided into HDR and LDR based on the dose.
LDR brachytherapy requires patients to be treated in a
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lead room for a longer period, usually 20–72 h (96).
In contrast, HDR brachytherapy can be performed in an
outpatient department because of its short treatment time,
proven better patient tolerability, and lower cost (97). And
with better symptom relief after HDR treatment (91.7% after
HDR vs. 67.9% after LDR, p = 0.03), the use of interstitial
brachytherapy in keloid treatment is currently limited to
the HDR modality (Table 3) (98). Compared to interstitial
brachytherapy, surface brachytherapy reduces the risk of
catheter displacement and wound dehiscence, especially in
the context of extended treatment periods. Brachytherapy
treatment requires multiple treatments in a short period to
minimize the risk of wound dehiscence and infection (99).
The indications for the application of brachytherapy are similar
to the previous indications for ERBT, but because it can be
tailored to the shape and size of the keloid and whether it
is curved, it can be better adapted to different cases (100).
Compared to ERBT, brachytherapy is recommended not to
involve more surrounding healthy tissue and requires a lower
dose of radiation to achieve the same treatment effect (101).
Therefore, despite the similar recurrence rates of external and
brachytherapy, brachytherapy is gradually increasing in clinical
use due to the convenience and lower cost of treatment leading
to high patient compliance.

Heavy ion radiotherapy is a new application in keloid. There
are very few literature reports on its efficacy and safety, but based
on the only literature available, it has a low recurrence rate and
complication rate. As research on keloid treatment continues to
advance and clinical translation continues, it is likely to become
a new form of radiotherapy for keloid treatment in the future.

X-ray are less commonly used in clinical practice because
of the paucity of research literature and the lack of multicenter
data on recurrence rates and complications. Currently, HDR
brachytherapy and electron beam radiotherapy represent the
two main radiation modalities for keloid treatment. For curved,
irregularly shaped lesions brachytherapy can be used, while
for larger areas, thicker tissues, and recurrence-prone sites
electron beam radiotherapy should be combined. Although
the differences in efficacy between the different radiotherapy
modalities were not statistically significant, they each have their
advantages and disadvantages (102), as shown in Table 4.

The review of the literature shows that postoperative
adjuvant radiation therapy remains one of the most effective
treatments for keloids, with electron beam radiation therapy and
HDR brachytherapy being the two main radiation modalities
used to adjuvantly treat keloids and provide effective lesion
control. Most studies have shown that HDR brachytherapy
has better dose coverage and that adjuvant radiation therapy
should be administered early (within 24 h), in fewer fractions
(usually 4), and at a higher dose (20 Gy) to reduce recurrence
rates. Currently, there are numerous studies on postoperative
adjuvant radiotherapy for keloids, but no uniform treatment
standard has been developed, and future studies should be
conducted for the standardized treatment of keloids. Heavy
ion therapy may be a potential treatment modality with good
future development in the treatment of keloids due to its
unique superiority.
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