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Background: Endoscopic disease activity monitoring is important for the

long-term management of patients with ulcerative colitis (UC), there is

currently no widely accepted non-invasive method that can effectively predict

endoscopic disease activity. We aimed to develop and validate machine

learning (ML) models for predicting it, which are desired to reduce the

frequency of endoscopic examinations and related costs.

Methods: The patients with a diagnosis of UC in two hospitals from January

2016 to January 2021 were enrolled in this study. Thirty nine clinical and

laboratory variables were collected. All patients were divided into four groups

based on MES or UCEIS scores. Logistic regression (LR) and four ML algorithms

were applied to construct the prediction models. The performance of models

was evaluated in terms of accuracy, sensitivity, precision, F1 score, and

area under the receiver-operating characteristic curve (AUC). Then Shapley

additive explanations (SHAP) was applied to determine the importance of the

selected variables and interpret the ML models.

Results: A total of 420 patients were entered into the study. Twenty four

variables showed statistical differences among the groups. After synthetic

minority oversampling technique (SMOTE) oversampling and RFE variables

selection, the random forests (RF) model with 23 variables in MES and the

extreme gradient boosting (XGBoost) model with 21 variables in USEIS, had

the greatest discriminatory ability (AUC = 0.8192 in MES and 0.8006 in

UCEIS in the test set). The results obtained from SHAP showed that albumin,

rectal bleeding, and CRP/ALB contributed the most to the overall model. In
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addition, the above three variables had a more balanced contribution to each

classification under the MES than the UCEIS according to the SHAP values.

Conclusion: This proof-of-concept study demonstrated that the ML model

could serve as an effective non-invasive approach to predicting endoscopic

disease activity for patients with UC. RF and XGBoost, which were first

introduced into data-based endoscopic disease activity prediction, are

suitable for the present prediction modeling.

KEYWORDS

ulcerative colitis, machine learning, SHAP, predictive models, endoscopic disease
activity, mayo endoscopic score, ulcerative colitis endoscopic index of severity

1 Introduction

Ulcerative colitis (UC) is an idiopathic inflammatory
disorder affecting the colon and rectum, with an increasing
incidence worldwide (1, 2). To date, the etiology and
pathogenesis of UC are not well clarified, and this disease
remains incurable (3). Current therapy of UC focuses on the
induction and maintenance of endoscopic remission, which is
associated with clinical remission, fewer hospitalizations, and
abdominal surgeries (1, 4, 5). Due to the characteristic of
repeated recurrence, most patients require long-term or even
life-long treatment. During such processes, frequent monitoring
of UC disease activity is crucially important, as it can guide dose
and regimen adjustments to reduce the risk of recurrence, which
in turn improves the long-term survival rate and quality of life in
patients with UC (6, 7). As an essential assessment of UC disease
activity, colonoscopy can help clinicians determine the status of
intestinal mucosal lesions directly, which is crucial to evaluating
disease extent and severity. However, colonoscopy as an invasive
examination is often an unpleasant experience for patients, and
these patients have to bear the economic burden and risks
of serious complications at the same time. In addition, the
epidemic of COVID-19 has made it more difficult for patients to
undergo colonoscopy (8). Therefore, a convenient and accurate
method to evaluate endoscopic disease activity is needed.

In UC, the inflammatory disease activity scoring systems
are preferably established by endoscopy (9, 10). Non-endoscopic
disease activity indices, such as the Seo Index and simple
clinical colitis activity index, can also quantify the severity of
the disease and predict prognosis clinically (10, 11). However,
non-endoscopic disease activity indices fail to correlate well
with endoscopically proven intestinal inflammation (10, 12).
Moreover, some clinical scales in disease activity scoring
systems include a degree of subjectivity, so the results can be
biased. Some biochemical markers, such as C-reactive protein
(CRP), erythrocyte sedimentation rate (ESR), fecal calprotectin
(FC), and fecal immunochemical test, have been proposed
as indicators of the extent of UC. Although these indicators

have the advantages of being non-invasive and repeatable, they
still have limited sensitivity and specificity, and some of them
have not been widely performed (10, 13–16). For example,
FC, which has a good predictive ability of mucosal healing,
is limited by the popularity of the kit and cannot be widely
practiced under the influence of the COVID-19 epidemic. Many
previous studies attempt to establish the predicting models
by using symptomatic, laboratory, endoscopic, radiological, or
pathological features, and most of them employed statistical
methods such as univariate and multivariate analyses to
search for the predictors (17–20). These models sometimes are
relatively difficult to be broadly applied and optimized owing to
high demands on the amount and quality of the data. Therefore,
an efficient strategy needs to be developed and adopted to
address the above problems.

In recent years, machine learning (ML) has emerged as a
powerful tool in medicine, primarily owing to its discriminatory
and decision-making capabilities. ML algorithms have the
characteristics of continuously updating learning and capturing
relationships among variables, which can be a good approach
to solving the problems in UC disease activity prediction model
building. Previous studies have demonstrated that ML models
can provide better accuracy and discrimination for the diagnosis
of inflammatory bowel disease (IBD), prediction of biologic
treatment response in UC patients, and prognoses of patients
with acute severe colitis (21–25). It creates opportunities for
exploring the relationships among features and building highly
efficient models. Automated image recognition using deep
learning methods also has been applied in the endoscopic
images and pathological images recognition of IBD (21, 26–
28). Moreover, in search of new well-performing markers at
the gene and microbiome level, the ML methods showed the
greatest contribution in variables screening (29, 30). Based
on the development of these techniques, introducing ML into
the area of UC evaluation can provide a promising approach
for researchers. Previous studies of ML for predicting gut
disease severity have focused on patients with Crohn’s disease.
Nevertheless, to the best of our knowledge, there have been no
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previous attempts to use ML algorithms based on clinical data
and laboratory tests to predict endoscopic activity in patients
with UC (25). The implementation of this ML predictive model
can provide physicians and patients with useful information on
endoscopic disease activity, which would be of great benefit to
UC patients who require long-term management.

Herein, we performed a study on the endoscopic severity of
inflammation for patients diagnosed with UC, and collected the
clinical characteristics, laboratory data, and endoscopic results.
Then, logistic regression (LR), random forests (RF), extreme
gradient boosting (XGBoost), multilayer perceptron (MLP), and
support vector machine (SVM) models were built to analyze and
predict endoscopic severity. The proposed framework consists
of three components. First, we performed the imbalanced
treatment of the dataset using a synthetic minority oversampling
technique (SMOTE) algorithm, then five models were built to
predict endoscopic disease activities in UC. At the last, the best
model was demonstrated through Shapley values. This study
introduces ML to endoscopic disease activity prediction in UC
for the first time. We aim to identify variables and establish
a prediction model of UC endoscopic disease activity based
on generally available clinical information. The model can also
help monitor and guide medicating for UC, which may avoid
frequent colonoscopy examinations.

2 Materials and methods

2.1 Study population

This cohort study included patients from the Department of
Gastroenterology, Second Xiangya Hospital, and Department of
Gastroenterology, Xiangya Hospital, Central South University.
The case collection was conducted from January 2016 to January
2021. The inclusion criteria for this study were adult patients
(age ≥ 18 years) with a confirmed diagnosis of UC. Patients
with malignancy, chronic or severe underlying diseases were
excluded. We assert that all procedures contributing to this
work comply with the ethical standards of the relevant national
and institutional committees on human experimentation and
with the Helsinki Declaration of 1975, as revised in 2008. The
research was approved by the Ethics Committee of the Second
Xiangya Hospital of Central South University (NO. 20181230).
The data are anonymous, and written informed consent for
participation was therefore waived for this study following the
national legislation and the institutional requirements.

2.2 Diagnostic criteria

Diagnosis of UC was based on the Consensus on
Diagnosis and Treatment of Inflammatory Bowel Disease
(2012, Guangzhou) (31). The endoscopic status of the UC

patients was assessed according to the Mayo endoscopic score
(MES) (32) and ulcerative colitis endoscopic index of severity
(UCEIS) (33). All endoscopic examinations were performed by
gastroenterologists who were experienced in IBD and optical
diagnosis. The MES and UCEIS were obtained from endoscopy
reports written by certified gastroenterologists. Here, MES 0 and
UCEIS 0 were defined as endoscopic remission; MES 1 and
UCEIS 1–3 were defined as mild disease activity; MES 1 and
UCEIS 4–6 were defined as moderate disease activity; MES 3
and UCEIS 7–8 as severe disease activity. The score of stool
frequency and rectal bleeding were assessed using the modified
Mayo scoring system (34), that is, stool frequency: 0 = normal;
1 = 1–2 stools more than normal; 2 = 3–4 stools more than
normal; 3 = 5 or more stools more than normal. Rectal bleeding:
0 = no blood seen; 1 = streaks of blood with stool less than half
the time; 2 = obvious blood with stool most of the time; 3 = blood
alone passed. Classification of patient disease location according
to Montreal classification: E1 = Ulcerative proctitis, E2 = Left
sided UC (distal UC), E3 = Extensive UC (pancolitis).

2.3 Data collection and analysis

According to expert advice and literature review,
clinically relevant data of the participants were recorded
including demographic data, clinical manifestation, laboratory
examinations, medication history, and endoscopic findings.

Demographic data were as follows: age, gender, weight,
family history, history of abdominal operations including
appendectomy and other surgeries, history of alcohol, and
smoking history. Clinical manifestations were as follows:
body temperature, pulse rate, decrease of weight in recent 1
year, stool frequency, rectal bleeding, disease duration, and
disease location. The score of stool frequency and rectal
bleeding were assessed using the modified Mayo scoring
system. Laboratory examinations were as follows: white blood
cells, hemoglobin, platelets, neutrophils, lymphocyte, monocyte,
eosinophilia, basophils, mean corpuscular volume, hematocrit,
red cell distribution width, mean platelet volume, plateletcrit,
albumin, ESR, CRP, CRP/albumin (CRP/ALB), serum calcium,
urea, and fecal calprotectin. Medication history includes
history of 5-aminosalicylate (5-ASA), hormone, azathioprine,
thalidomide, anti-tumor necrosis factor (TNF), and other
biologics. Endoscopic findings were assessed according to
the MES and UCEIS.

A total of 420 UC patients were included in the analysis.
Thirty-nine variables were first analyzed for their predicting
power of endoscopic disease activity in UC patients. All patients
were divided and assigned to four groups based on endoscopic
disease activity score (remission, mild, moderate, or severe).
All data were presented as means ± standard errors of the
means (SEM), medians (quartile range), or proportions with
corresponding percentages (n, %).

Frontiers in Medicine 03 frontiersin.org

https://doi.org/10.3389/fmed.2022.1043412
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1043412 December 15, 2022 Time: 16:4 # 4

Li et al. 10.3389/fmed.2022.1043412

2.3.1 Variable screening and data processing
The work flow diagram of this research is shown in

Figure 1. Variables were compared with each other among
four groups. We used One-way analysis of variance (ANOVA)
for data with normal distributions, non-parametric tests for
data without normal distributions, and the Chi-square test was
used to compare enumeration data. Statistical significance was
expressed as a P-value with a significance level of 0.05. We
carried out the variable selection to remove invalid variables
containing irrelevant or redundant information.

Then all data were stratified into a training set, validation
set, and test set randomly according to the MES or UCEIS level,
with the distribution of 60% as a training set for model training,
20% as a validation set for the model tuning, and remaining 20%
as the test set for model performance evaluation.

The importance of each variable was assessed using the
recursive feature elimination (RFE) algorithm in the training
set, with all variables being sorted according to their level
of importance (35). After the variables had been sequentially
reduced in the order of importance, the remaining variables
were introduced into the corresponding ML algorithm.

During the model’s initialization, imbalanced datasets cause
performance loss in the classification model. The models tend
to predict the sample as the category with the majority of
samples. To address the serious imbalance in the number of
patients with different disease activities, we used the SMOTE in
model training to tackle the data imbalance problem. SMOTE
generates a synthetic instance by interpolating the m instances
(for a given integer value m) of the minority class that lies close
enough to each other to achieve the desired ratio between the
majority and minority classes (36).

The performance of all models was measured with accuracy,
sensitivity, precision (positive predictive value), F1 score
(macro-weighted), and macro-area under the receiver-operating
characteristic curve (AUC). The best performance is determined
by maximizing the AUC. To translate the 4-class model scores
to the metrics investigated, a one-vs.-all analysis of the scores
was performed. By comparing the values of the models in
the test dataset, we determined the model with the best
predictive performance. The Delong test was used to compare
the differences in the performance of the different models.

2.3.2 Prediction model building
Predictive models were built using selected informative

variables with the help of LR, RF, XGBoost, MLP, and SVM
classification algorithm in Python. All models were trained in
the training set, the optimal number of variables was adjusted
in the validation set, and finally, the models’ performance was
compared in the test set.

2.3.2.1 Logistic regression

Logistic regression is one of the most common and widely
applied methods used for the analysis. The algorithm of LR

has been detailed elsewhere (37). Pre-screened variables were
taken for further LR analyses. The regression coefficients of the
predictive model were regarded as the weights for the respective
variables, and the score for each patient was calculated. For
each sample, the probabilities of each degree were calculated
and the class with the highest probability was the classification
result of this sample.

2.3.2.2 Random forests

Random forests is an ensemble learning algorithm
generating decision trees based on the training data. In training,
models have been built using the full 60% of the training data,
automatic tuning of hyperparameters (number of trees and
maximum depth of the tree) was performed by using the grid
search (scikit-learn GridSearchCV) (38). This tuning process
was repeated for each possible combination of parameter values
in the training set. These predictions were summarized to one
outcome per participant by majority voting.

2.3.2.3 Extreme gradient boosting

Extreme gradient boosting is also a kind of tree-based
ML method. It uses multiple (hundreds of) classification
and regression trees, which can learn non-linear relations
among input variables and outcomes in a boosting ensemble
manner, to capture and learn non-linear and complex
relations accurately. It has been widely used in classification
and regression tasks. One of the major advantages of
using this algorithm is that XGBoost provides L1 and L2
regularization. L1 regularization handles sparsity, whereas L2
regularization reduces overfitting (39). Hyperparameters tuning
was performed by using the grid search (the number of trees,
learning rate, and maximum tree depth).

2.3.2.4 Multilayer perceptron

Multilayer perceptron can have one or more non-linear
hidden layers between the input and output layers. MLP
can be utilized to construct effective classifier algorithms
for distinguishing data that are not linearly separable (40).
We trained the MLP model with one hidden layer, the
best hyperparameters were determined using the grid search
(number of nodes for hidden layer).

2.3.2.5 Support vector machine

Support vector machine is a supervised learning method
that constructs a hyperplane or set of hyperplanes in a high-
or infinite-dimensional space used for classification. It does not
build a model for each class, but only finds the discriminative
hyperplane with the largest margin determined by the support
vectors from the training data (41). Here, we used SVM on the
training dataset to predict the disease activity.

The algorithms and the statistical analysis were
implemented in Python 3.5.2 (Python Software Foundation,
Wilmington, DE, USA). All automatic tuning of
hyperparameters and the models were created using the
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FIGURE 1

Workflow diagram. MES, mayo endoscopic subscore; UCEIS, ulcerative colitis endoscopic index of severity; SMOTE, synthetic minority
oversampling technique; LR, logistic regression; RF, random forests; XGBoost, extreme gradient boost; MLP, multilayer perceptron; SVM,
support vector machine; RFE, recursive feature elimination; AUC, area under the receiver-operating characteristic curve.
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TABLE 1 Analysis of the clinical and laboratory variables in patients with ulcerative colitis.

Variables MES UCEIS

MES
remission
(n = 18)

MES mild
(n = 57)

MES
moderate
(n = 183)

MES severe
(n = 162)

P-value UCEIS
remission
(n = 16)

UCEIS mild
(n = 74)

UCEIS
moderate
(n = 282)

UCEIS severe
(n = 48)

P-value

Clinical variables

Age (year) 38.5 ± 15.0 44.3 ± 13.1 46.4 ± 12.6 44.6 ± 13.1 0.070 39.8 ± 15.5 45.9 ± 12.8 45.6 ± 12.9 42.5 ± 13.3 0.146

Gender (male, %) 14 (77.8%) 33 (57.9%) 124 (67.8%) 96 (59.3%) 0.169 13 (81.2%) 47 (63.5%) 176 (62.4%) 31 (64.6%) 0.505

Disease duration 27.0 (14.6, 42.6) 24.0 (12.0, 90.0) 24.0 (10.0, 60.0) 22.5 (5.8, 49.2) 0.245 29.5 (16.3, 46.3) 29.5 (11.8, 44.0) 22 (8.8, 50) 12 (1.3, 69) 0.031

Smoking history 0 (0%) 11 (19.3%) 40 (21.9%) 37 (22.8%) 0.152 0 (0%) 15 (20.3%) 66 (24.4%) 7 (14.6%) 0.092

Disease location 0.000 0.000

E1 12 (66.7%) 36 (63.2%) 69 (37.7%) 27 (16.7%) 10 (62.5%) 45 (60.8%) 84 (29.8%) 5 (10.4%)

E2 6 (33.3%) 21 (32.8%) 114 (62.3%) 135 (83.3%) 6 (37.5%) 29 (39.2%) 198 (70.2%) 43 (89.6%)

Stool frequency
(0: 1: 2: 3)

13:5:0:0
72.2%: 27.8%: 0%:

0%

14:30:8:5
24.6%: 52.6%: 14.0%:

8.8%

6:63:46:68
3.3%: 34.4%: 25.1%:

37.2%

2:15:47:98
1.2%: 9.3%: 29.0%:

60.5%

0.000 12:4:0:0
75%: 25%:

0%: 0%

14:32:13:15
18.9%: 43.2%: 17.6%:

20.3%

9:73:75:125
3.2%: 25.9%: 26.6%:

44.3%

0:4:13:31
0%: 8.3%: 27.1%:

64.6%

0.000

Rectal bleeding
(0: 1: 2: 3)

18:0:0:0
100%: 0%: 0%: 0%

14:21:15:7
24.6%: 36.8%: 26.3%:

12.3%

20:39:98:26
10.9%: 21.3%: 53.6%:

14.2%

5:30:95:32
3.1%: 18.5%: 58.6%:

19.8%

0.000 16:0:0:0
100%: 0%: 0%: 0%

17:24:23:10
23.0%: 32.4%: 31.1%:

13.5%

22:60:159:41
7.8%: 21.3%:
56.4%: 14.5%

2:6:26:14
4.2%: 12.5%: 54.2%:

29.2%

0.000

Pulse rate 69.3 ± 6.6 79.0 ± 9.9 80.3 ± 11.0 85.9 ± 13.1 0.000 68.8 ± 5.8 78.8 ± 9.8 82.2 ± 12.0 88.1 ± 13.8 0.000

Temperature (◦C) 36.6 ± 0.3 36.5 ± 0.2 36.6 ± 0.3 36.6 ± 0.4 0.310 36.6 ± 0.3 36.6 ± 0.2 36.6 ± 0.4 36.6 ± 0.3 0.700

Weight (kg) 56.6 ± 9.4 57.8 ± 9.2 57.4 ± 11.0 54.0 ± 9.7 0.011 58.0 ± 8.9 59.1 ± 11.4 55.3 ± 10.1 55.8 ± 9.8 0.030

Decrease of weight 0.0 (0.0, 0.0) 0.0 (0.0, 2.5) 0.0 (0.0, 4.0) 3.5 (0.0, 6.0) 0.000 0.0 (0.0, 0.0) 0.0 (0.0, 2.0) 1.0 (0.0, 5.0) 5.0 (0.5, 8.5) 0.000

Medications

5-ASA 17 (94.4%) 46 (80.7%) 152 (83.1%) 127 (78.4%) 0.343 15 (93.8%) 65 (87.8%) 229 (81.2%) 33 (68.8%) 0.033

Hormone 7 (38.9%) 3 (5.3%) 72 (39.3%) 121 (74.7%) 0.000 7 (43.8%) 15 (20.3%) 142 (50.4%) 39 (81.2%) 0.000

Immunomodulator 6 (33.3%) 0 (0%) 1 (0.5%) 2 (1.2%) 0.000 6 (37.5%) 0 (0%) 2 (0.7%) 1 (2.1%) 0.000

Laboratory variables

White blood cells 6.11 ± 2.10 6.55 ± 1.96 7.97 ± 2.91 9.20 ± 3.83 0.000 6.01 ± 1.98 6.89 ± 2.20 8.44 ± 3.38 9.28 ± 3.91 0.000

Hemoglobin 139.22 ± 16.90 129.60 ± 22.13 122.64 ± 24.25 104.65 ± 24.61 0.000 141.44 ± 12.68 129.66 ± 20.99 114.64 ± 26.32 106.31 ± 24.21 0.000

Platelets 215.78 ± 69.76 234.93 ± 90.30 284.05 ± 112.56 353.88 ± 131.27 0.000 212.13 ± 71.78 245.15 ± 95.84 315.01 ± 128.92 337.88 ± 113.82 0.000

Neutrophils 3.99 ± 1.90 4.15 ± 1.59 5.56 ± 2.74 6.75 ± 3.28 0.000 3.90 ± 1.78 4.48 ± 1.94 5.99 ± 2.98 7.04 ± 3.53 0.000

Lymphocyte 1.94 ± 0.82 1.73 ± 0.70 1.67 ± 0.72 1.49 ± 0.61 0.006 1.97 ± 0.87 1.70 ± 0.63 1.61 ± 0.70 1.42 ± 0.55 0.024

Monocyte 0.3 (0.2, 0.4) 0.4 (0.3, 0.6) 0.4 (0.3, 0.7) 0.4 (0.6, 0.9) 0.000 0.3 (0.2, 0.4) 0.4 (0.3, 0.6) 0.5 (0.4, 0.7) 0.6 (0.4, 0.9) 0.036

(Continued)
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scikit-learn package library (version 0.22.2) except the XGBoost
model which was created by the XGBoost package library
(version 1.1.1).

2.4 Model interpretation

The model with the highest AUC in the test set was
regarded as the best model, which was included for further
analysis. Although it is possible to visualize which variables
have a greater impact on the model, it is hard to determine
the relationship between the variables and results. Therefore,
the Shapley additive explanations (SHAP) approach is applied
to further model interpretation. SHAP is a method that allows
for variable interpretation of non-linear black-box ML models
(42). It is a game theory-based model explanation and is the
only theoretically supported explanation currently. The mean
absolute value of the SHAP values for each variable represents
their average contribution to the overall model predictions, and
it can clarify whether the influence of a variable is positive
or negative. Compared to other methods that simply rank
importance or decision direction, SHAP combines the influence
of variable importance and trend characteristics of variables, to
explain the variables in the model in a multidimensional way.
SHAP values of the variables were calculated, and were further
analyzed for clarifying the main role of each variable in the
model prediction. SHAP values were computed and visualized
with the SHAP Python package (version 0.29.1).

3 Results

3.1 Patient population and baseline
characteristics

A total of 420 patients were entered into the study.
According to the MES, patients were classified as MES remission
group (n = 18), MES mild group (n = 57), MES moderate
group (n = 183), and MES severe group (n = 162). According
to the UCEIS, patients were classified as UCEIS remission
group (n = 16), UCEIS mild group (n = 74), UCEIS moderate
group (n = 282), and UCEIS severe group (n = 48). The mean
age of enrolled patients was 45.1 ± 13.0 years, and 63.57%
(267/420) of patients were male. Group analysis according to the
different definitions of outcomes was performed. Thirty-nine
variables from UC patients were evaluated by one-way ANOVA
variance analysis, non-parametric tests, and Chi-square analysis.
Twenty-four variables showed statistical differences among the
four groups (P < 0.05). Fecal calprotectin was removed before
modeling because the missing rate was > 50%. Finally, 23
variables were selected as candidate variables for further analysis
(Table 1).
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3.2 Variables selection and model
construction

After data were stratified into a training, validation, and
test set, the proportion of each level of MES or UCEIS is
similar among the three sets. Moreover, patients were similar
in age and gender distribution among the sets (Supplementary
Figures 1, 2).

Supplementary Table 1 shows the ranking of the variables
based on the permutation importance method in RFE algorithm
in the training set. The results of permutation importance
demonstrated that the top two variables were albumin and
CRP/ALB in both MES and UCEIS, through the process of RFE
variables selection, we determined the optimal variable numbers
and AUC of each algorithm. The prediction of endoscopic
disease activity was carried out with LR, RF, XGBoost, MLP, and
SVM classifiers, the full results of hyperparameters automatic
tuning can be found in Supplementary Table 2.

First, we built the model based on the original training
set with all variables. According to the MES, the best
predictive performance in the test set was observed in XGBoost
(AUC = 0.8166), followed by SVM (AUC = 0.8020), LR
(AUC = 0.7863), RF (AUC = 0.7671), and MLP (AUC = 0.7231).
The XGBoost model outperformed the other algorithm-based
models with the highest AUC, accuracy, sensitivity, precision,
and F1 score (Table 2 and Figure 2A). And according to the
UCEIS, the best-performing models ranking order are SVM
(AUC = 0.7711), followed by RF (AUC = 0.7588), XGBoost
(AUC = 0.7517), LR (AUC = 0.7268), and SVM (AUC = 0.5810).
The SVM model had the highest AUC and accuracy. However,
we observed the highest values of sensitivity (0.4473), precision
(0.6194), and F1 score (0.4877) in the LR model (Table 2 and
Figure 2B). In original datasets, comparing the performance of
all models in MES and UCEIS classification groups revealed that,
although the accuracy of the model with UCEIS was better than
that of the model with MES, the AUC, sensitivity, precision,
and F1 score of the model were higher in MES, which might be
primarily due to the more unbalanced class of the original data
in UCEIS.

Except for the MLP, all other models showed an increase
in AUC after SMOTE oversampling, with the most notable
being the RF model. The algorithms with SMOTE application
outperformed the algorithms with original datasets in most
models (P < 0.05). The RF model performed best with the
highest AUC (0.8192) in MES-based datasets, and had the best
accuracy (0.6046), precision (0.6554), and F1 score (0.6258).
After the RF model, the XGBoost model ranked second in model
performance (AUC = 0.8183), which had the best sensitivity
(0.6332). The models based on SVM and LR algorithms slightly
underperformed than RF and XGBoost models. Meanwhile,
the model performance of MLP was worse than the original
data in MES-based datasets instead. Although the sensitivity
and precision of the MLP model have increased, the AUC still

decreased significantly, this situation may be caused by the
MLP not being able to simulate the data well after the noise
amplification caused by SMOTE. In UCEIS-based datasets, the
XGBoost model performed best with the highest AUC (0.7958),
accuracy (0.6979), sensitivity (0.5317), precision (0.5756), and
F1 score (0.5363), followed by SVM (AUC = 0.7863), RF
(AUC = 0.7851), LR (AUC = 0.7518), and MLP (AUC = 0.6824)
(Table 2 and Figure 3). With the above approach, we identified
the training set after the SOMTE method as the base dataset for
model building, and the MES-based data was modeled using the
best-performing RF algorithm, while the UCEIS-based data was
modeled using the XGBoost algorithm.

Then through the process of RFE feature selection and
SOMTE, the optimal variable numbers and AUCs of each
algorithm were determined (Table 3). The results revealed that
the prediction model with the highest AUC (0.8508) in the
validation set was the RF model based on the top 23 variables
in MES. Moreover, the model also showed good performance in
the test set (AUC = 0.8192). In UCEIS, the AUC of the XGBoost
model (0.8140) with 21 variables was higher than that of the
XGBoost model with 23 variables (0.7940) in the validation
set. So, we choose the XGBoost model with 21 variables as
best performed model in the USEIS dataset, and this model
achieved an AUC of 0.8006 in the test set. Other model scores
had a slight decrease after reduction, but the AUC increased
instead, considering the improvement of model overfitting after
reducing the variables. As described above, according to the
model performance, we chose the RF model with 23 variables
in the MES-SMOTE dataset the and XGboost model with 21
variables in UCEIS dataset as our final prediction model.

3.3 Model interpretation

To further understand and get an overview on the
importance of the variables, SHAP was implemented for global
model interpretation. SHAP scores are feature importance
scores based on Shapley values from game theory, and the SHAP
value for the same variable may differ across patients. Figures 4,
5 showed the main contribution of each variable in the model
prediction of endoscopic disease activity. The different colors
represent the contribution given by the variable under that
classification.

In the MES, the prediction model based on RF after SMOTE
was analyzed by SHAP (Figure 4). The four variables that were
found to contribute most to the overall model were albumin,
stool frequency, rectal bleeding, and CRP/ALB. These four
variables contributed significantly to all level classifications.
Albumin and stool frequency contributed similarly to the four
classifications. Rectal bleeding primarily contributed to the
discrimination of the remission level and CRP/ALB primarily
contributed to that of the severe level. Most of the variables
contributed to the classification of the four levels, except for
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TABLE 2 The performance of the models with all variables in the test set.

Algorithms Group Variables number Accuracy Sensitivity Precision F1 Score AUC

LR MES original 23 0.5882 0.4920 0.5384 0.5077 0.7863

MES SMOTE 23 0.5357 0.5215 0.5323 0.5117 0.7956

UCEIS original 23 0.6352 0.4473 0.6194 0.4877 0.7268

UCEIS SMOTE 23 0.5556 0.5125 0.4890 0.4957 0.7518

RF MES original 23 0.5349 0.3561 0.3578 0.3510 0.7671

MES SMOTE 23 0.6046 0.6102 0.6554 0.6258 0.8192

UCEIS original 23 0.6744 0.3157 0.3016 0.3008 0.7588

UCEIS SMOTE 23 0.6279 0.4807 0.5177 0.4915 0.7851

XGBoost MES original 23 0.6046 0.4957 0.6795 0.5269 0.8166

MES SMOTE 23 0.5873 0.6332 0.5770 0.5722 0.8183

UCEIS original 23 0.6627 0.3572 0.5344 0.3808 0.7517

UCEIS SMOTE 23 0.6979 0.5317 0.5756 0.5363 0.7958

MLP MES original 23 0.4235 0.3370 0.4948 0.3735 0.7231

MES SMOTE 23 0.4000 0.3658 0.5310 0.3105 0.6876

UCEIS original 23 0.6588 0.2701 0.2370 0.2500 0.5810

UCEIS SMOTE 23 0.2941 0.3570 0.3286 0.2857 0.6824

SVM MES original 23 0.5697 0.4062 0.4138 0.4048 0.8020

MES SMOTE 23 0.5556 0.4759 0.4970 0.4585 0.8164

UCEIS original 23 0.6744 0.3247 0.5436 0.3145 0.7711

UCEIS SMOTE 23 0.6825 0.5036 0.4356 0.4445 0.7863

LR, logistic regression; RF, random forests; XGBoost, extreme gradient boost; MLP, multilayer perceptron; SVM, support vector machine; AUC, area under the receiver-operating
characteristic curve; MES, mayo endoscopic subscore; UCEIS, ulcerative colitis endoscopic index of severity; SMOTE, synthetic minority oversampling technique.

FIGURE 2

Comparison of the original test datasets-based models’ performance. Receiver operating characteristic curves showing the endoscopic disease
activity predictive performance of five algorithms based on the mayo endoscopic subscore (MES) (A) and ulcerative colitis endoscopic index of
severity (UCEIS) (B) in test datasets. LR, logistic regression; RF, random forests; XGBoost, extreme gradient boost; MLP, multilayer perceptron;
SVM, support vector machine; AUC, area under the receiver-operating characteristic curve.

neutrophils, decrease of weight, weight, mean platelet volume,
white blood cells, and biologics, which contributed almost
nothing to the discrimination of remission level. In particular,
biologics did not play a significant role in all classifications, but
the model efficacy decreased significantly after the deletion of
this variable during the model tuning, which may be due to

its intrinsic correlation with other variables. The importance
of the variables under each classification was further analyzed.
Figures 4B–E showed the analysis of all variables’ SHAP
values at each classification level, each point in the figure
represents a sample. The horizontal coordinate represents
the Shapley corresponding to each feature of each sample.
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FIGURE 3

Comparison of the oversampling datasets-based models’ performance. After the synthetic minority oversampling technique (SMOTE) method,
receiver operating characteristic curves show the endoscopic disease activity predictive performance of five algorithms based on the mayo
endoscopic subscore (MES) (A) and ulcerative colitis endoscopic index of severity (UCEIS) (B) in test datasets. LR, logistic regression; RF, random
forests; XGBoost, extreme gradient boost; MLP, multilayer perceptron; SVM, support vector machine; AUC, area under the receiver-operating
characteristic curve.

TABLE 3 The best performance of the models in the validation set and test set.

Algorithms Set Group Variables
number

Accuracy Sensitivity Precision F1 score AUC

RF Validation MES SMOTE 23 0.6046 0.4987 0.5402 0.5065 0.8508

MES SMOTE 22 0.5813 0.4968 0.5350 0.5011 0.8390

Test MES SMOTE 23 0.6046 0.6102 0.6554 0.6258 0.8192

XGBoost Validation UCEIS SMOTE 23 0.6470 0.5846 0.4906 0.5229 0.7940

UCEIS SMOTE 21 0.6350 0.5803 0.4832 0.5167 0.8140

Test UCEIS SMOTE 23 0.6979 0.5317 0.5756 0.5363 0.7958

UCEIS SMOTE 21 0.6979 0.5195 0.6109 0.5277 0.8006

RF, random forests; XGBoost, extreme gradient boost; AUC, area under the receiver-operating characteristic curve; MES, mayo endoscopic subscore; UCEIS, ulcerative colitis endoscopic
index of severity; SMOTE, synthetic minority oversampling technique.

A positive value indicates that the prediction probability of
this classification would be improved. In the remission level
prediction, albumin, stool frequency, rectal bleeding, and pulse
rate had stronger effects on model prediction according to
SHAP. The result showed that negative rectal bleeding, negative
stool frequency, albumin, and pulse rate in the normal range
were associated with an increased likelihood of remission level,
which is also consistent with clinical experience. In addition,
biologics and white blood cells made a negligible contribution
to the prediction of the remission level. In the mild level
prediction, the top four variables contributing to the model
were albumin, disease location, hormone, and stool frequency
in order. Albumin in the normal range, disease location in
the rectum, no previous use of hormones, and negative stool
frequency suggested an increased likelihood of the mild level.
While, in the order of predictors’ importance at the moderate
level, the top four variables in terms of contribution were
stool frequency, albumin, rectal bleeding, and disease location.
Increased stool frequency, low levels of albumin, rectal bleeding,
and lesion progression to the left colon meant an increased

probability of the moderate level. In addition, the decreased level
of albumin had certain SHAP values in both predicting and
excluding contribution, with some cases having higher SHAP
values in predicting the moderate level. In the severe level
prediction, albumin occupied the most important contribution
of the model, followed by CRP/ALB, stool frequency, and
hormone history. When compared to other levels’ predictions,
previous use of hormones played a very important role in the
discrimination of this category.

The UCEIS-based XGBoost prediction model was also
analyzed by SHAP (Figure 5). The analysis revealed that the
variable contributing most to the overall model was albumin,
followed by CRP/ALB, rectal bleeding, and pulse rate, which are
basically the same as the important indicators of MES based
model. In contrast to MES, albumin primarily contributed to
the discrimination of the moderate level, CRP/ALB contributed
to that of the severe level, whereas rectal bleeding primarily
contributed to that of the remission level, and pulse rate
primarily played an important role in the remission and mild
level. It is noteworthy that, except albumin, rectal bleeding, pulse
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FIGURE 4

Feature importance ranking based on Shapley additive explanations (SHAP) values in mayo endoscopic subscore based RF model. (A) The
contribution of each variable to the overall model. The different colors represent the contribution given by the variable under that classification.
(B–E) Analysis of all variables’ SHAP values at each classification level, each point in the figure represents a sample. The variables are ranked
according to the sum of the SHAP values for all patients in the remission level (B), mild level (C), moderate level (D), and severe level (E). Red
indicates that the value of a variable is high, and blue indicates that the value of a variable is low. The x-axis indicates the effect of SHAP values
on the model output. The larger the value of the x-axis, the greater the probability of this level. ESR, erythrocyte sedimentation rate; CRP,
C-reactive protein; ALB, albumin.
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FIGURE 5

Feature importance ranking based on Shapley additive explanations (SHAP) values in ulcerative colitis endoscopic index of severity score based
XGboost model. (A) The contribution of each variable to the overall model. The different colors represent the contribution given by the variable
under that classification. (B–E) Analysis of all variables’ SHAP values at each classification level, each point in the figure represents a sample. The
variables are ranked according to the sum of the SHAP values for all patients in the remission level (B), mild level (C), moderate level (D), and
severe level (E). Red indicates that the value of a variable is high, and blue indicates that the value of a variable is low. The x-axis indicates the
effect of SHAP values on the model output. The larger the value of the x-axis, the greater the probability of this level. ESR, erythrocyte
sedimentation rate; CRP, C-reactive protein; ALB, albumin; 5-ASA, 5-aminosalicylic acid.
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rate, hematocrit, ESR, plateletcrit, and monocyte, the remaining
variables contributed essentially nothing to the determination of
the remission level. Further analysis of all variables SHAP values
at each classification level showed that negative rectal bleeding
and normal range of albumin had strong efficacy in predicting
the remission level, while a low level of CRP/ALB had strong
efficacy in predicting the mild level, and lower pulse rate had
strong efficacy in excluding the mild level. At the mild level,
the neutrophils ranked third in importance in the prediction
model, and a high-level neutrophil contributed significantly to
the prediction of a non-mild level. At the moderate level, the top
four variables contributing to the model were albumin, disease
duration, platelets, and stool frequency. Albumin showed a
higher level of SHAP values in non-moderate levels. At the
severe level, CRP/ALB occupied the most important variable
again and showed strong efficacy in excluding the severe level.
Albumin, decrease of weight, and ESR were followed by it,
mainly showing that high-level albumin, a lower decrease of
weight, and low-level ESR could exclude the severe level. Of note
is that rectal bleeding played little role in predicting moderate
and severe levels.

4 Discussion

Given the importance of long-term monitoring for UC
patients, there are a dire need and challenges for developing
better prediction tools to evaluate endoscopic disease activity
in a non-invasive approach. In the present study, we used
four ML algorithms to develop and validate non-invasive
variables predictive models for UC patients. RF and XGBoost
approach outperformed conventional LR models in predicting
endoscopic disease activity, and they demonstrated favorable
performance as an effective non-invasive tool for evaluating
endoscopic disease activity. The model was developed from
routinely collected clinical data and can be widely adopted
and used, and has the advantage of predicting all groups
simultaneously as one multi-label classifier. Moreover, with
the expansion of the database, the model can be continuously
improved and optimized for better precision and effectiveness.
Such kind of efficient predictive models may be able to bring
great convenience to disease management in patients with UC.

As already mentioned, endoscopic evaluation is often
needed for monitoring disease recurrence and assessing the
therapeutic effect in UC patients. This non-invasive predictive
model is a meaningful tool for patients with UC, especially
inactive patients. The management of inactive UC patients is
primarily done in the outpatient setting, including part of self-
management. The management of these patients becomes more
difficult in the setting of the COVID-19 epidemic since most
countries had reduced outpatient clinics and endoscopy (8). At
the time of disease progression in patients during the remission
period, symptoms may be infrequent and mild in character,

colonoscopy is unvalued or even resisted by them. Nevertheless,
the change in disease severity is directly correlated with clinical
relapse and endoscopic exacerbation in patients with UC,
which requires prompt therapeutic intervention (43, 44). Even
though a large number of laboratory indicators are used in
the model, compared to unconventional tests such as FC, the
laboratory tests included in this model can be completed in basic
hospitals or clinics. Therefore, the model in our study provides
straightforward access for UC patients’ management, which can
help patients to judge the endoscopic disease activity in time and
effectively, and guide them to perform a timely colonoscopy. In
addition, it also can contribute to the assessment of therapeutic
effects in UC patients, and reduce the number of unnecessary
invasive examinations.

Previous studies of evaluating endoscopic disease activity
in UC have mainly focused on clinical scoring, biochemical
measures, or building multi-index prediction models (10,
12, 45). However, the clinical scoring methods, such as the
Seo Index and simple clinical colitis activity index correlate
poorly with endoscopic disease activity (17). Currently, various
biomarkers have been reported in this area, some of them were
widely used in clinical practice, while others were limited to
laboratory tests. The former includes FC, CRP, serum albumin
to globulin ratio (AGR), and so on. FC and CRP have been
widely studied and play a possible role in evaluating disease
activity and monitoring medication response. Wang et al.
proposed AGR as a marker for evaluating disease severity
(46). However, their prediction value in UC was limited, they
do not estimate the severity of UC accurately, nor are they
sensitive/specific enough to monitor disease progression (13,
16, 47). The latter biomarkers include serum free thiols (R-
SH), leucine-rich alpha-2 glycoprotein (LRG), IFN-γ, TNF-α,
and other cytokines (10, 48, 49). Besides the sensitivity and
specificity issue, another outstanding question is the challenge of
generalization. Due to the COVID-19 epidemic and consumable
costs, even FC is still not fully popularized currently, so it is
more difficult to promote these biomarkers clinically. Similarly,
the potential transcriptional blood biomarkers-based diagnosis
still has a long way to go before it can be applied in the
clinical setting (50). Compare with a single biomarker, most
multi-index prediction models showed superior sensitivity,
specificity, and accuracy. For example, studies by Bourgonje
et al. (17), Langhorst et al. (51), and af Björkesten et al. (52)
have shown that multi-parameter models outperform single-
parameter. The majority of previous studies were applied to
conventional methods, and the selected variables in those
studies varied from clinical presentation to biochemical markers
and imaging data. However, due to the limitations caused
by the methodology and data collection inconsistencies, ideal
linear regression or multiple regression models have restricted
generalizability. In recent years, the promising results of ML
applied in IBD have been obtained in many studies. The
methods of model development, such as SVMs, decision
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trees, RF, gradient boosting, and neural network approach
were applied in differential diagnosis, predicting prognosis,
and therapeutic decisions of IBD (21). However, few studies
have applied ML to evaluating endoscopic disease activity in
patients with UC. In this study, we compared several ML
methods and determine the optimal method for predicting
patients’ endoscopic disease activity. The ML approach provides
more accurate predictive power than conventional methods.
Moreover, with the advantage of widely clinically applicable
variables, ML algorithms can update themselves with the latest
clinical data for higher accuracy, and achieve a more generalized
non-linear model.

In this study, the amount of data for remission and
mild endoscopic disease activity is relatively small, which may
produce overfitting for the ML algorithm. The SMOTE method
has been used for solving the imbalance problem in this
study. During model training, data from the remission, mild,
and severe UC groups were upsampled by using the SMOTE
method, the data from each group reached an equal number
and it improved the models’ AUC after sampling in our study.
Data imbalance is a common problem during practical clinical
studies, and most retrospective studies face this situation, which
may influence the mining of the database for valid information.
Though not exempt from intrinsic limitations, SMOTE can help
solve the problem of dataset imbalance in the medical field
as demonstrated by previous research, such as in the context
of type 2 diabetes prediction (53), lung nodule recognition
(54), and postoperative delayed remission prediction (55). In
the present study, by comparing the model performance based
on SMOTE data and the original data, we can find that the
model performance has improved after SMOTE. It is interesting
that some models show a decrease in accuracy after SMOTE
but an increase in AUC. The reason for this may be that
SMOTE improves the imbalance of the data and reduces the
overfitting of the model, thus improving the AUC. And for ML
models with unbalanced data, the improvement of AUC is more
important than accuracy (56). Moreover, the ranking of the data
after SMOTE in terms of parameter importance is consistent
with the clinical practice, which also proves the feasibility of
the SMOTE method.

Many emerged ML models are black-box models that
lack variables relational analysis for clinical applications, and
the model in our study suffers from this problem as well.
Therefore, we introduced SHAP, an effective method for
parametric interpretation of ML models, to explain the output
prediction model, which provides a convincing interpretation
of the relationships between non-linear variables (42). As an
all-powerful approach to model interpretability, SHAP can
work for both global and local interpretations. SHAP analysis
of the model confirmed the importance of albumin, rectal
bleeding, and CRP/ALB in evaluating the disease activity of UC,
consistent with previous studies (10, 51). Further classification
analysis revealed that different variables have their own roles

in evaluating the active or remission of the disease. For
example, under the MES, rectal bleeding and pulse rate, which
were important in predicting remission level, were relatively
ineffective in predicting severe level. Also, a similar situation
is observed for rectal bleeding, pulse rate, and disease location
under the UCEIS. This suggests that the change in endoscopic
disease activity of UC is not adequately characterized by a single
variable. This phenomenon can partly reflect the fact that the
development of UC disease is not simply a linear change or
a gradual accumulation of inflammation, but a complex and
multi-factor intertwined result. It is relatively difficult to find
a single variable to globally determine the endoscopic disease
activity but requires a comprehensive and dynamic evaluation.
The ML model we have chosen can partially mimic these
complex relationships, making it possible to predict endoscopic
disease activity through a single model. Besides this, after SHAP
analysis, the clinicians can be guided to pay attention to the
targeted variables when handling patients in remission or active
phase, which is more conducive to the disease status evaluation.
Moreover, the variables in our study are covered by many large
cohort studies, the model can be better refined by incorporating
data from previous experimental studies. Addressing the ethical
and data issues involved will provide an opportunity for
further research.

The present study employed both MES and UCEIS score
systems in assessing the endoscopic disease activity of UC. Since
it is not possible to make a correct objective assessment of the
mucosa, different score systems have gradually been developed.
MES and UCEIS are the two score systems that are widely
developed in the clinic area currently (11, 57). MES is the
most widely used endoscopic index due to its simplicity, and
it has good inter-observer consistency (11). However, UCEIS is
more advantageous for the subclassification of the patients in
the active phase (58). Previous studies showed that UCEIS was
better than MES for the subtle detection of mucosal changes,
especially in predicting the rate of colectomy in patients with
acute severe UC (58–60). In the present study, the results
showed the model based on MES performed better than UCEIS-
based models. This probably resulted from a more severe data
imbalance in the UCEIS, which may lead to the overfitting
of the model. Although we avoided overfitting the model by
setting the relevant parameters and using SMOTE, the influence
of the basic data on the model was still critical. Under both
scoring systems, RF and XGboost models outperformed the
conventional LR-based model and other ML algorithm models,
indicating that RF and XGBoost are more suitable for predictive
modeling of endoscopic disease activity in UC patients on
the basis of clinical and laboratory tests. Then the variable
importance analysis revealed that albumin, CRP/ALB, and rectal
bleeding played important roles in both MES and UCEIS-based
models. The SHAP method explained the model while reflecting
the different details in the two scoring models. Comparing the
SHAP contributions revealed the above three variables had a
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more balanced contribution to each classification under the
MES than the UCEIS, which means UCEIS was relatively more
sensitive to the distinction between different active phases,
this might be the reason why UCEIS is more effective for
subclassification. In addition, stool frequency, disease duration,
urea, mean corpuscular volume, and history of 5-ASA had
different importance in the MES and UCEIS. The causes for
these differences were not well understood and need further
investigation.

There are some limitations to the present study. One
limitation of our study was the limited amount of data in
some groups. Although the problem of class imbalance had
been tackled by employing SMOTE in our study, a much
larger population sample size would be needed to simulate
the interactions among the variables. Meanwhile, this study
was a cross-sectional study, the efficacy of the model for
evaluating disease improvement after treatment cannot be
totally reflected, future prospective studies to evaluate change
in our machine-learning prediction models also correlate with
changes in endoscopic inflammation after treatment, which
hope to enlargement the dataset and reflect these changes
with sensitivity and specificity. Second, as our study was a
retrospective analysis, data on FC was missing. These laboratory
indicators have been shown to be good predictive markers of
disease severity (1, 61). If they could be included in further study,
a more efficient model can be built in the future.

5 Conclusion

In conclusion, the use of the ML model containing multiple
clinical and laboratory variables can serve as an effective non-
invasive approach to predicting endoscopic disease activity for
patients with long-standing UC, which can aid in determining
individual treatment and follow-up strategies as well. For the
first time, ML algorithms were introduced to UC endoscopic
disease activity prediction, moreover, the application of RF,
XGBoost, and SMOTE algorithms had a good performance on
the modeling. An interactive platform based on these models
can be further developed, patients will interact conveniently and
can in turn help to improve the database at the same time. It also
will spur the development of digital health in this field.
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