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Background: When facing unprecedented emergencies such as the

coronavirus disease 2019 (COVID-19) pandemic, a predictive artificial

intelligence (AI) model with real-time customized designs can be helpful for

clinical decision-making support in constantly changing environments. We

created models and compared the performance of AI in collaboration with

a clinician and that of AI alone to predict the need for supplemental oxygen

based on local, non-image data of patients with COVID-19.

Materials and methods: We enrolled 30 patients with COVID-19 who

were aged >60 years on admission and not treated with oxygen therapy

between December 1, 2020 and January 4, 2021 in this 50-bed, single-

center retrospective cohort study. The outcome was requirement for oxygen

after admission.

Results: The model performance to predict the need for oxygen by AI in

collaboration with a clinician was better than that by AI alone. Sodium chloride

difference >33.5 emerged as a novel indicator to predict the need for oxygen

in patients with COVID-19. To prevent severe COVID-19 in older patients,

dehydration compensation may be considered in pre-hospitalization care.
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Conclusion: In clinical practice, our approach enables the building of a better

predictive model with prompt clinician feedback even in new scenarios. These

can be applied not only to current and future pandemic situations but also to

other diseases within the healthcare system.

KEYWORDS

clinical practice, COVID-19, artificial intelligence-human collaboration, sodium
chloride difference, oxygen needs

Introduction

In real-world clinical settings, clinicians are under time
pressure for making decisions (1–3). Furthermore, during a
pandemic, there is an increased urgency for clinicians to predict
the disease course and make decisions in a timely fashion, even
with limited data.

Nowadays, scientists and researchers use machine-learning
(ML) and deep-learning (DL) models in several applications,
including agriculture (4, 5), environment (6–12), text sentiment
analyses (13), medicine (14), and cyber security (15–17).

Regarding clinical decision-making support systems
utilizing artificial intelligence (AI), such as ML, recent studies
have shown the potential of clinician involvement across the
stages of design and implementation to overcome known
challenges namely, increasing usability, clinical relevance,
understandability, and delivering the system in a respectful
manner (1, 18, 19). In the field of medical AI, recent studies
have begun to explore collaborative setups between AI and
clinicians. However, these studies have been mainly based
on imaging data (20–28) and few studies have assessed non-
image data types (29, 30). Therefore, there is scope for further
research on AI-clinician collaboration involving non-image
data types. Furthermore, to bridge the gap between AI and
clinical implementation, it has been suggested that clinicians
should train the AI model with local data, based on the needs of
their patients and the hospital requirements (31).

During the ongoing coronavirus disease 2019 (COVID-
19) pandemic, researchers have shown the effectiveness of ML
in various fields (32–34); however, potential applications of
ML for disease prevention are unclear in real-world medical
settings. Furthermore, translational bioinformatics in COVID-
19 research has suggested the effectiveness of ML models with
customized designs (35).

Abbreviations: ACE/ARB, angiotensin-converting enzyme inhibitor/
angiotensin receptor blocker; ADROP, Japan Respiratory Society
Community-Associated Pneumonia Severity Index; AI, artificial
intelligence; BMI, body mass index; COVID-19, coronavirus disease
2019; IQR, interquartile range; KL-6, sialylated carbohydrate antigen; (Na
– Cl), sodium chloride difference; NMI, normalized mutual information;
NSAID, non-steroidal anti-inflammatory drug; SARS-CoV-2, severe acute
respiratory syndrome coronavirus 2.

Some studies have provided valuable insights on ML
using predictive models built with limited data on patients
with COVID-19 (36, 37), including prediction of the
need for supplemental oxygen (38, 39) and big data for
predicting the need for hospital admission (40). However,
the performance of AI-clinician collaborative models is not
yet clear. Furthermore, the efficiency of the incorporation
of direct clinician perception into AI predictive models also
remains unknown.

Despite limited data, clinicians can identify patients’ features
and make rapid decisions from non-image data, such as vital
signs, medications, and laboratory test results. However, there
is a lack of appropriate tools to integrate their perception
with AI predictive models for their customization. Recently,
Wide LearningTM (WL), an explainable AI with ML tool,
has led to the understanding of combination features from
complex parameters (41). It has the potential to enable
clinicians to combine their perception with AI, resulting in
AI-clinician collaboration.

In this study, we created models and compared the
performance of AI in collaboration with a clinician
with that of AI alone in predicting the need for oxygen
supplementation in patients with COVID-19, based on
local non-image data.

Materials and methods

Research objective

The objective was to create models and compare the
performance of AI in collaboration with a clinician to that
of AI alone in predicting the need for supplemental oxygen
in patients with COVID-19 admitted to hospital, based on
local non-image data.

Outcome

The outcome was the requirement for supplemental oxygen
after admission.
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Data source

The analysis used a single set of data extracted from records
of patients hospitalized in Aichi Prefectural Aichi Hospital,
a 50-bed facility in Okazaki, Japan, established in October
2020 for the treatment of adult patients with mild-to-moderate
COVID-19. The hospital records were collected and analyzed
by physicians. All data used to develop the models were based
on transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD) (42).

Study design

We conducted a retrospective study using hospital records.
We enrolled 30 patients with COVID-19 admitted to the
hospital from December 1, 2020 to January 4, 2021 who were
not treated with oxygen therapy and were aged >60 years on
admission. We excluded patients with COVID-19 aged <60
years and those treated with oxygen therapy on admission.

Measurements

All patients were tested for severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) by polymerase chain
reaction (PCR) on admission to the hospital, and all patients
tested positive. Patients’ vital signs measured on admission
were used in the analysis. Venous blood and urine samples
were collected within 2 days of admission. Complete blood
cell and differential leukocyte counts were performed in
the clinical laboratory using an automatic analyzer XN-3000
(Sysmex, Kobe, Japan).

Variables

Baseline demographic and clinical data were collected
from patient records. The data collected included information
regarding age; sex; residence before hospitalization (43) (home,
hospital, or long-term care facility); comorbidities (44, 45)
(number of comorbidities, cardiovascular disease, dementia,
fracture, diabetes, cancer, hypertension, hyperlipidemia, chronic
kidney disease, and chronic obstructive pulmonary disease);
level of consciousness on admission (46); symptoms (fever,
cough, and anorexia); body mass index (BMI); radiographic
findings (abnormalities on chest radiograph and observation
of pleural fluid on chest radiograph, checked by over two
pulmonologists in our hospital); Japan Respiratory Society
Community-Associated Pneumonia Severity Index score;
any regular medications (number of regular medicines,
dosage form with powder or liquid, and sedatives); other
ongoing treatments (43, 44); intake of angiotensin-converting

enzyme inhibitor/angiotensin receptor blocker, calcium
channel blocker, azithromycin, β-blocker, aspirin and related
drugs, non-steroidal anti-inflammatory drugs, metformin,
insulin, immunosuppressants, vitamin D, hydroxychloroquine,
corticosteroids, antibiotics, proton pump inhibitors, favipiravir,
and remdesivir; and vital signs on admission (temperature,
systolic blood pressure, diastolic blood pressure, SpO2, and
heart rate). We collected laboratory data including hemoglobin,
platelet count, blood urea nitrogen, creatinine, total serum
protein, serum albumin, total cholesterol, sodium, potassium,
chloride, phosphorus, calcium, uric acid, lactate dehydrogenase,
creatinine kinase, total bilirubin, aspartate aminotransferase,
alanine aminotransferase, glucose, serum iron, C-reactive
protein, ferritin, fibrinogen, D-dimer, procalcitonin, sialylated
carbohydrate antigen (kl-6), and urine sediment.

Statistical analysis

Continuous variables were reported as the mean ± standard
deviation or median and interquartile range (IQR). Patients
were divided into two groups according to whether they needed
supplemental oxygen after admission. To evaluate baseline
characteristics and laboratory biomarkers, continuous variables
were compared between the two groups using the Wilcoxon
signed-rank test, and categorical variables were compared using
the chi-square test. Statistical significance was set at p < 0.05
with a two-tailed test. All statistical analyses were performed
using JMP Pro version 15.0.0 (SAS Campus Drive, Cary, NC,
USA).

Wide learning methods

WL is an ML technology developed by the Artificial
Intelligence Laboratory, Fujitsu Limited, Kawasaki, Japan. This
method is one of ML techniques for classification and is an
extension of classic logistic regression.

WL transforms continuous variables into multiple
categorical variables by dividing them into multiple value
ranges using entropy in information theory for the objective
variable. It examines the statistics of all possible combinations
of variable categorizations up to a specified number of variables
per combination. Furthermore, it selects closely related
combinations from among these using a specified statistic, such
as the chi-square value as the selection criterion, and creates a
logistic regression model using these as explanatory variables.

Models based on logistic regression can evaluate the
contributions represented by variables as regression coefficients,
but WL can improve classification accuracy and explainability
because it can divide the original variables into appropriate value
ranges and evaluate variables that appear in combination. All
combinations of variables up to length three (i.e., a maximum
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of three variables per combination), were evaluated using the
constrained pattern mining tool to prevent overfitting (41).
Although it was not a problem in this analysis because it was
a small study, there is a risk of a computational explosion due
to the combination, considering the practical amount of data
and the number of variables per combination. The method of
Iwashita et al. (41), is derived from contrast pattern mining
and it uses dynamic item ordering during the pattern search
to prevent computational explosion (41, 47). Therefore, WL
can search for combinations of variables that would require an
exponential amount of time on a worst-case basis, in less time
for practical purposes.

Model: An ordinary linear model with statistically selected
variable combinations as explanatory variables.

Input: Categorical and continuous data in table style
(e.g., CSV format).

Hyper parameters: We used only one parameter as a hyper
parameter: Strength of L1 regularization of logistic regression
(λ), where L1 represents regularization, and λ represents the
complexity parameter.

Computational complexity: Our method used two main
processes: combination counting and logistic regression.

Combination counting was calculated as follows: O (ML

× N), where O represents the computational complexity,
L represents the length of the variable combination (i.e.,
the maximum number of variables per combination), M
represents the number of variables, and N represents the
number of samples.

Logistic regression depends on the regression method. We
used LogitNet in the glmnet package for fitting generalized
linear models via penalized maximum likelihood (48), for the
logistic regression.

AI-alone and AI-clinician models

Training procedures were used for the AI-alone and AI-
clinician models. We evaluated the performance of the two
models with weight, normalized mutual information (NMI),
supp (ratio of positive hit samples to all positive samples),
conf (ratio of positive hit samples to all hit samples.),
and the chi-square value. One clinician, a nephrologist,
participated in the study.

We created AI-alone and AI-clinician models as follows
(Figure 1): (1) First, we developed an AI-alone model with
Wide LearningTM, based on local non-image data from patients
with COVID-19. (2) Second, the clinician checked the AI-
alone model in a manner similar to examining patients in real
clinical settings. Then, the clinician’s perception was quickly
added in combination with the factors derived from the AI-
alone model. For example, the AI-alone model showed Na
or Cl separately, but the nephrologist combined these as the
sodium chloride difference (Na – Cl), which is used for acid-base
balance evaluation in real-world clinical settings. (3) Finally, we
combined factors in the AI-alone model, performed retraining,
and then developed AI in collaboration with the clinician,
to create AI-clinician models. The input from the clinician
was provided before the retraining of the AI-alone model.
For example, if (Na – Cl) was added to the AI-alone model,
then, retraining was performed, and an AI-clinician model was
created.

AI-non-clinician and
AI-clinician-non-clinician models

For comparison, we also made AI-non-clinician models and
AI-clinician-non-clinician models. The methods were the same
as those used to evaluate the AI-alone and AI-clinician models,
described in section “AI-alone and AI-clinician models,” above.

AI-non-clinician model: We used the composite variable,
neutrophil-to-lymphocyte ratio (NLR) (49–51), which is a
“non-clinician” variable, combined it with the AI-alone
model, performed retraining, and finally created AI-non-
clinician model.

AI-clinician-non-clinician model: We combined the
variables Na – Cl, which is a “clinician” variable and the
NLR, which is a “non-clinician,” variable with the AI-alone
model. Then, we performed retraining and finally created the
AI-clinician-non-clinician model.

Ethics

The study was approved by the Ethics Committee of
Nagoya University Graduate School of Medicine (No. 2021-
0196, approval date: August 11, 2021). The requirement

FIGURE 1

Schematic view of the development of the AI-alone and AI-clinician models. (1) AI-alone models based on non-image data. (2) Clinician
perception derived from AI-alone models. (3) AI-clinician models with clinician perception.
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TABLE 1 Clinical characteristics of patients with COVID-19 based on local non-image data.

Received supplemental oxygen after admission

All patients (n = 30) Yes (n = 10) No (n = 20) p-value

Age, median (IQR), years 82.6 (74.5–88.0) 86.0 (81.0–93.5) 81.0 (73.5–87.8) 0.137

Sex 0.127

Female 23 (76.7) 6 (60.0) 17 (85.0)

Male 7 (23.3) 4 (40.0) 3 (15.0)

Before hospitalization

Home 11 (36.7) 5 (50.0) 6 (30.0)

Hospital 10 (33.3) 2 (20.0) 8 (40.0)

Long-term care facility 9 (30.0) 3 (30.0) 6 (30.0)

Coexisting disorders

Numbers of coexisting disorders, median (IQR) 3.7 (1.8–5.0) 4.1 (1.8–6.3) 3.5 (1.3–5.0) 0.509

Cardiovascular disease 10 (33.3) 3 (30.0) 7 (35.0) 0.784

Dementia 13 (43.3) 5 (50.0) 8 (40.0) 0.602

Fracture 8 (26.7) 3 (30.0) 5 (25.0) 0.770

Diabetes 7 (23.3) 3 (30.0) 4 (20.0) 0.542

Cancer 4 (13.3) 3 (30.0) 1 (5.0) 0.058

Hypertension 13 (43.3) 6 (60.0) 7 (35.0) 0.193

Hyperlipidemia 5 (16.7) 2 (20.0) 3 (15.0) 0.729

Chronic kidney disease 3 (10.0) 1 (10.0) 2 (10.0) 1.000

Chronic obstructive pulmonary disease 0 (0.0) 0 (0.0) 0 (0.0)

Condition on admission

Alert 19/26 (73.0) 8/9 (88.9) 11/17 (64.7) 0.186

Symptoms 23 (76.7) 9 (90.0) 14 (70.0) 0.222

Fever 16 (53.3) 5 (50.0) 11 (55.0)

Cough 2 (6.7) 1 (10.0) 1 (5.0)

Anorexia 2 (6.7) 1 (10.0) 1 (5.0)

BMI, median (IQR) 22.1 (18.9–24.1) 24.2 (20.0–28.8) 20.5 (17.2–23.2) 0.206

Radiologic findings

Abnormalities on chest radiograph 14 (46.7) 4 (40.0) 10 (50.0) 0.605

Pleural fluids on chest radiograph 0 (0.0) 0 (0.0) 0 (0.0)

ADROP 0.881

0 3/26 (11.5) 1/9 (11.1) 2/17 (11.8)

1 12/26 (46.2) 4/9 (44.4) 8/17 (47.1)

2 10/26 (38.5) 4/9 (44.4) 6/17 (35.3)

3 1/26 (3.8) 0/9 (0.0) 1/17 (5.8)

Regular medicines

Numbers of regular medicines, median (IQR) 6.1 (3.8–8.3) 5.9 (4.5–6.5) 6.3 (3.3–9.0) 0.810

Dosage forms with powder or liquid 19 (63.3) 5 (50.0) 14 (70.0) 0.284

Sedatives 5 (16.7) 1 (10.0) 4 (20.0) 0.488

ACE/ARB 9 (30.0) 4 (40.0) 5 (25.0) 0.398

Calcium channel blocker 9 (30.0) 5 (50.0) 4 (20.0) 0.091

Azithromycin 0 (0.0) 0 (0.0) 0 (0.0)

β-blocker 0 (0.0) 0 (0.0) 0 (0.0)

Aspirin-related 0 (0.0) 0 (0.0) 0 (0.0)

NSAIDs 1 (3.0) 0 (0.0) 1 (5.0) 0.472

Metformin 0 (0.0) 0 (0.0) 0 (0.0)

Insulin 0 (0.0) 0 (0.0) 0 (0.0)

Immunosuppressants 0 (0.0) 0 (0.0) 0 (0.0)

(Continued)
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TABLE 1 (Continued)

Received supplemental oxygen after admission

All patients (n = 30) Yes (n = 10) No (n = 20) p-value

Vitamin D 3 (10.0) 1 (10.0) 2 (10.0) 1.000

Hydroxychloroquine 0 (0.0) 0 (0.0) 0 (0.0)

Corticosteroids 0 (0.0) 0 (0.0) 0 (0.0)

Anticoagulant 3 (10.0) 0 (0.0) 3 (15.0) 0.197

Statin 3 (10.0) 2 (20.0) 1 (5.0) 0.197

Antibiotics 4 (13.3) 1 (10.0) 3 (15.0) 0.704

Antidepressants 4 (13.3) 0 (0.0) 4 (20.0) 0.129

Proton pump inhibitors 9 (30.0) 2 (20.0) 7 (35.0) 0.398

Favipiravir 5 (16.7) 1 (10.0) 4 (20.0) 0.488

Remdesivir 1 (3.0) 0 (0.0) 1 (5.0) 0.472

Vital signs on admission

Temperature (IQR), ◦C 36.4 (36.1–36.6) 36.4 (36.2–36.6) 36.4 (36.0–36.6) 0.975

Systolic blood pressure (IQR), mmHg 135 (118–146) 135 (117–148) 135 (118–146) 0.909

Diastolic blood pressure (IQR), mmHg 75 (70–80) 75 (70–80) 75 (70–81) 0.950

SpO2 (IQR), % 96 (95–97) 96 (95–97) 96 (96–97) 0.543

Heart rate (IQR), /min 77 (70–90) 80 (72–90) 76 (68–90) 0.413

The values shown are frequencies or proportions and percentages, unless stated otherwise.
ACE/ARB, angiotensin-converting enzyme inhibitor/angiotensin receptor blocker; ADROP, Japan Respiratory Society Community-Associated Pneumonia Severity Index; BMI, body
mass index; IQR, interquartile range; NSAID, non-steroidal anti-inflammatory drug.

for obtaining informed consent was waived owing to the
retrospective study design. All procedures performed were in
accordance with the ethical standards of the institutional and
national research committee of the institution at which the study
was conducted and with the 1964 Helsinki Declaration and its
later amendments or comparable ethical standards.

Results

Patients’ coronavirus disease 2019
characteristics and laboratory
biomarkers on local non-image data

The patients’ median age was 82.6 (IQR, 74.5–88.0) years,
and 76.7% of the patients were female. Baseline demographic
and clinical data are presented in Table 1. Patient characteristics
and laboratory biomarkers did not differ between the patients
who required supplemental oxygen and the patients who did not
require oxygen (Tables 1, 2).

Comparison of model performance

We compared the performance of the AI-alone, AI-
clinician, AI-non-clinician, and the AI-clinician-non-clinician
models to predict the need for supplemental oxygen based
on characteristics and laboratory biomarkers of patients with

COVID-19 (Figure 2). The variable combinations and model
performance results are shown in Table 3. The highest weight
and NMI values of the AI-clinician model were 1.4647 and
0.8245, respectively, and those of the Al-alone model were
0.9441 and 0.6490, respectively. Weight was highest in the
AI-clinician model (Table 3).

Of note, the AI-alone model included Na or Cl separately.
The AI-alone model did not combine Na and Cl, i.e., the
AI-alone model did not combine (Na – Cl), (Na + Cl), or
(Na ÷ Cl). However, the clinician understood the variable
combination, “(Na – Cl),” derived from the AI-alone model
because nephrologists use (Na – Cl) for acid-base balance
evaluation in clinical settings.

Comparison between the AI-clinician
model and risk factors based on
published literature for predicting the
need for supplemental oxygen in
patients with coronavirus disease 2019

Figure 3 shows a comparison of the performance of the
AI-clinician model and risk factors selected from published
literature for predicting the need for supplemental oxygen based
on characteristics and laboratory biomarkers of patients with
COVID-19. The NMI of risk factors, such as dyslipidemia,
hypertension, diabetes, and cancer, selected based on published
literature (44, 45) were 0.0031, 0.0440, 0.0095, and 0.0891,
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TABLE 2 Laboratory findings of patients with COVID-19 based on local non-image data.

Received supplemental oxygen after admission

Parameter All patients (n = 30) Yes (n = 10) No (n = 20) Reference range p value

White blood cells (/µL) 4,911 (3,875–5,773) 4,868 (3,900–5,773) 4,932 (3,805–5,940) 3,300–8,400 0.890

Neutrophil count (/µL) 3,137 (2,070–3,848) 3,209 (2,185–3,853) 3,102 (1,995–3,910) – 0.811

Neutrophils (%) 62.8 (53.1–72.0) 64.8 (57.2–72.2) 61.8 (52.3–72.4) 39.8–70.0 0.536

Lymphocyte count (/µL) 1,213 (928–1,435) 1,064 (658–1,368) 1,287 (948–1,585) – 0.276

Lymphocytes (%) 25.7 (16.8–33.2) 22.7 (16.0–28.8) 27.3 (16.7–33.6) 25.0–48.0 0.306

Monocytes count (/µL) 490 (318–645) 562 (438–673) 454 (280–585) – 0.180

Monocytes (%) 10.1 (6.8–12.4) 11.8 (8.3–15.0) 9.3 (6.3–11.3) 3.0–9.0 0.090

Hemoglobin (g/dL) 12.3 (11.0–13.7) 12.1 (10.5–14.0) 12.4 (11.7–13.8) 11.0–14.7 0.627

Platelets (×104/µL) 20.2 (15.6–23.0) 17.8 (14.2–20.2) 21.4 (16.3–25.7) 13.0–34.0 0.118

Blood urea nitrogen (mg/dL) 19 (13–22) 20 (17–22) 19 (12–21) 8.0–22.0 0.846

Creatinine (mg/dL) 0.7 (0.5–0.9) 0.8 (0.6–1.0) 0.7 (0.5–0.8) 0.6–1.1 0.398

Total serum protein (g/dL) 6.5 (6.2–6.8) 6.5 (6.2–6.7) 6.6 (6.2–7.0) 6.7–8.3 0.739

Total cholesterol (mg/dL) 172 (75–156) 161 (133–185) 178 (157–195) 130–219 0.240

Serum albumin (g/dL) 3.3 (3.0–3.5) 3.3 (3.0–3.7) 3.3 (3.0–3.4) 4.0–5.0 0.605

Na (mmol/L) 138 (136–141) 139 (137–141) 138 (136–141) 138–146 0.513

K (mmol/L) 3.9 (3.5–4.1) 3.7 (3.5–3.9) 4.0 (3.5–4.3) 3.6–4.9 0.252

Cl (mmol/L) 103 (100–106) 102 (101–104) 103 (99–106) 99–109 0.911

Phosphorus (mg/dL) 3.4 (3.0–3.8) 3.2 (3.0–3.5) 3.5 (3.0–4.0) 3.0–4.7 0.342

Calcium (mg/dL) 8.8 (8.5–9.0) 8.8 (8.5–9.0) 8.8 (8.4–9.1) 8.4–10.2 0.978

Uric acid (mg/dL) 4.1 (3.1–5.0) 4.5 (3.3–6.3) 3.9 (2.8–4.8) 3.6–7.0 0.387

Lactate dehydrogenase (U/L) 202 (169–231) 188 (161–215) 209 (176–240) 119–229 0.234

Creatinine kinase (U/L) 107 (30–109) 81 (35–101) 119 (29–154) 62–287 0.498

Total bilirubin (mg/dL) 0.6 (0.4–0.7) 0.6 (0.4–0.8) 0.6 (0.4–0.6) 0.3–1.2 0.610

Aspartate aminotransferase (U/L) 25 (17–30) 21 (17–25) 27 (17–30) 13–33 0.224

Alanine aminotransferase (U/L) 17 (10–20) 14 (8–20) 18 (11–22) 6–30 0.296

Glucose (mg/dL) 123 (99–127) 140 (97–146) 113 (100–123) 70–109 0.182

Serum iron (µg/dL) 36 (22–51) 26 (18–29) 42 (23–55) 54–181 0.070

C-reactive protein (mg/dL) 2.3 (0.4–3.0) 2.1 (0.6–2.4) 2.4 (0.3–3.4) 0.0–0.3 0.744

Ferritin (ng/mL) 294 (160–323) 236 (86–293) 321 (211–375) 50–200 0.487

Fibrinogen (mg/dL) 422 (352–502) 384 (287–453) 441 (400–502) 200–400 0.084

D-dimer (µg/mL) 3.1 (0.6–2.6) 2.2 (0.6–2.6) 3.5 (0.9–4.0) <1.0 0.533

Procalcitonin 0.21 (0.20–0.23) 0.18 (0.15–0.21) 0.22 (0.18–0.27) – 0.062

KL-6 (U/mL) 304 (185–352) 228 (175–292) 340 (206–437) 105–401 0.104

KL-6, sialylated carbohydrate antigen.

respectively (Figure 3B). The AI-clinician model performance
evaluation values were higher than those of the risk factors
selected based on published literature.

Stepwise selection of risk factors for
predicting the need for supplemental
oxygen in patients with coronavirus
disease 2019

Stepwise selection of risk factors to predict the need for
supplemental oxygen based on characteristics and laboratory
biomarkers of patients with COVID-19 are shown in Table 4.

The p-values of Na, Cl, neutrophil count, and lymphocyte count
were 0.496, 0.907, 0.803, and 0.261, respectively.

Discussion

We created a model using AI in collaboration with a
clinician by rapidly combining clinician perception, such as
knowledge of (Na – Cl), which is derived from variable
combinations, with AI alone, on local, non-image data types,
specifically patient demographic and clinical characteristics and
laboratory biomarkers.

This study has two main strengths. First, it simply and
rapidly added the clinician feedback to the AI-alone predictive
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FIGURE 2

Comparisons of the performance of the AI-alone, AI-clinician, AI-non-clinician, and AI-clinician-non-clinician models to predict oxygen needs
based on characteristics and laboratory biomarkers of patients with COVID-19. (A) AI-alone, (B) AI-clinician, (C) AI-non-clinician, and
(D) AI-clinician-non-clinician. The green dots show the model’s performance in predicting oxygen needs in patients with COVID-19. The red
dots show the model’s performance in predicting when patients with COVID-19 do not need oxygen support.

model and improved AI-alone predictive model. Second, the
clinician could consider variable combinations and the proper
treatment derived from AI, such as dehydration compensation
in older patients using (Na – Cl) > 33.5 mmol/L.

Real-time feedback algorithms, such as adaptive ML
technology, have already been used in diverse fields, including
healthcare (52), and can be used to help patients to evaluate
and monitor their health risks, and alert clinicians (53–56).
However, the clinician feedback and appropriate preventive
treatment have not been studied. In our study, the clinician
could propose treatment, such as dehydration compensation as

pre-hospitalization care with AI in collaboration with a clinician
predictive model, despite the limited sample size.

The discovery of (Na – Cl) > 33.5 mmol/L as a novel
indicator to predict the need for supplemental oxygen in
patients with COVID-19 is the main finding of this study. When
clinicians, particularly nephrologists, make decisions regarding
acid-base balance in practice, they use the (Na – Cl) level in
the venous blood (57) and consider patients with (Na – Cl)
levels of >36 mmol/L to have metabolic alkalosis. In this study,
a (Na – Cl) level >33.5 mmol/L indicated that patients may
have been mildly dehydrated, which may lead to asymptomatic
kidney failure and hydrogen ion secretion insufficiency. This
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TABLE 3 Variable combinations and model performance evaluations in AI-alone, AI-clinician, AI-non-clinician, and AI-clinician-non-clinician
models for predicting the need for supplemental oxygen based on characteristics and laboratory biomarkers of patients with COVID-19.

Models Variable combinations Weight NMI Supp Conf χ2

A AI-alone 1 MCH ≥ 29.6 pg, lymphocyte (%) < 27.0%,
eosinophils < 50.0/µL, basophils < 20/µL, APTT < 39.0 s

0.9441 0.6490 0.80 1.00000 21.8182

2 KL-6 < 340 U/mL, TG ≥ 60 mg/dL, Cl < 106.2 mmol/L,
basophil (%) < 0.4%, urine WBC negative

0.8696 0.6490 0.80 1.00000 21.8182

3 CRP < 2.5 mg/dL, Na ≥ 136.3 mmol/L, WBC < 6,100/µL,
PCT < 0.24 ng/mL, lymphocyte (%) < 39.8%

0.7472 0.7895 0.90 1.00000 25.7143

4 CRP < 2.5 mg/dL, Cl ≥ 100.1 mmol/L, Cl < 106.2 mmol/L,
WBC < 6,100/µL, neutrophil (%) ≥ 47.0%, FDP < 14.0 µg/mL

0.6927 0.7895 0.90 1.00000 25.7143

5 TG ≥ 60 mg/dL, PCT < 0.24 ng/mL, eosinophil (%) < 0.8%,
basophil < 20/µL, APTT sec < 39.0

0.4488 0.6218 0.90 0.90000 21.6750

B AI-clinician
(Na – Cl)

1 CK < 270, (Na – Cl) ≥ 33.6 mmol/L, WBC < 6,100/µL,
PCT < 0.24 ng/mL, lymphocyte (%) < 39.8%

1.4647 0.8245 1.00 0.90909 25.9091

2 CK < 270, Cl ≥ 100.1 mmol/L, Cl < 106.2 mmol/L,
WBC < 6,100/µL, lymphocyte (%) < 39.8%,
FDP < 14.0 µg/mL

0.6442 0.7895 0.90 1.00000 25.7143

3 MCH ≥ 29.6, lymphocyte (%) < 27.0%, eosinophil < 50.0/µL,
basophil < 20/µL, APTT < 39.0 s

0.6183 0.6490 0.80 1.00000 21.8182

4 CRP < 2.5 mg/dL, (Na – Cl) ≥ 33.6 mmol/L, WBC < 6,100/µL,
PCT < 0.24 ng/mL, lymphocyte (%) < 39.8%

0.5224 0.7895 0.90 1.00000 25.7143

5 KL-6 < 340 U/mL, TG ≥ 60 mg/dL, (Na – Cl) ≥ 33.6 mmol/L,
basophil (%) < 0.4%, urine WBC negative

0.4859 0.6490 0.80 1.00000 21.8182

C AI-non-clinician
(NLR)

1 MCH ≥ 29.6 pg, lymphocyte (%) < 27.0%,
eosinophil < 50.0/µL, basophil < 20/µL, APTT < 39.0 s

1.1389 0.6490 0.80 1.00000 21.8182

2 KL-6 < 340 U/mL, TG ≥ 60 mg/dL, Cl < 106.2 mmol/L,
basophil (%) < 0.4%, urine WBC negative

0.9824 0.6490 0.80 1.00000 21.8182

3 CRP < 2.5 mg/dL, Cl ≥ 100.1 mmol/L, Cl < 106.2 mmol/L,
WBC < 6,100/µL, neutrophil (%) ≥ 47.0%, FDP < 14.0 µg/mL

0.8737 0.7895 0.90 1.00000 25.7143

4 CRP < 2.5 mg/dL, Na ≥ 136.3 mmol/L, WBC < 6,100/µL,
PCT < 0.24 ng/mL, lymphocyte (%) < 39.8%

0.7527 0.7895 0.90 1.00000 25.7143

5 TG ≥ 60 mg/dL, PCT < 0.24 ng/mL, eosinophil (%) < 0.8%,
basophil < 20/µL, APTT < 39.0 s

0.5561 0.6218 0.90 0.90000 21.6750

D AI-clinician-non-
clinician (Na – Cl,
NLR)

1 CK < 270, (Na – Cl) ≥ 33.6 mmol/L, WBC < 6,100/µL,
PCT < 0.24 ng/mL, lymphocyte (%) < 39.8%

1.4633 0.8245 1.00 0.90909 25.9091

2 CK < 270, Cl ≥ 100.1 mmol/L, Cl < 106.2 mmol/L,
WBC < 6,100/µL, lymphocyte (%) < 39.8%,
FDP < 14.0 µg/mL

0.6422 0.7895 0.90 1.00000 25.7143

3 MCH ≥ 29.6 pg, NLR ≥ 2.1, eosinophil < 50.0/µL,
basophil < 20/µL, APTT < 39.0 s

0.6201 0.6490 0.80 1.00000 21.8182

4 CRP < 2.5 mg/dL, (Na – Cl) ≥ 33.6 mmol/L, WBC < 6,100/µL,
PCT < 0.24 ng/mL, lymphocyte (%) < 39.8%

0.5251 0.7895 0.90 1.00000 25.7143

5 KL-6 < 340 U/mL, TG ≥ 60 mg/dL, (Na – Cl) ≥ 33.6 mmol/L,
basophil (%) < 0.4%, urine WBC negative

0.4995 0.6490 0.80 1.00000 21.8182

AI, artificial intelligence; APTT, activated partial thromboplastin time; Conf, ratio of positive hit samples to all hit samples; CK, creatine kinase; CRP, C-reactive protein; FDP, fibrin
degradation product; MCH, mean corpuscular hemoglobin; (Na – Cl), sodium chloride difference; NLR, neutrophil-to-lymphocyte ratio; NMI, normalized mutual information; PCT,
procalcitonin; Supp, ratio of positive hit samples to all positive samples; TG, triglyceride; WBC white blood cells.

may result in a shift from severe alkalosis to slight acidosis.
Arterial blood gas analysis is needed to evaluate the acid-base
balance accurately; however, to prevent severe COVID-19 in
older patients, dehydration compensation may be considered in
pre-hospitalization care.

We speculate that the AI-clinician model is
similar to patient examination by clinicians in clinical

settings; therefore, clinicians would be able to easily
determine the optimal treatment for patients using
the AI-clinician model. Furthermore, the AI-clinician
interaction might enable clinicians to find variable
combinations that are different from those identified
using statistical methods, leading to improved treatment
in clinical settings.
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FIGURE 3

(A) Comparison of the performance of the AI-clinician model and risk factors in the published literature for predicting the need for
supplemental oxygen based on characteristics and laboratory biomarkers of patients with COVID-19. The green dots show the AI-clinician
model’s performance in predicting oxygen needs in patients with COVID-19. The red dots show the AI-clinician model’s performance in
predicting when patients with COVID-19 do not need oxygen support. (B) Model performance evaluations in AI-clinician model and risk factors
in the published literature for predicting the need for supplemental oxygen based on characteristics and laboratory biomarkers of patients with
COVID-19. NMI, normalized mutual information; Supp, ratio of positive hit samples to all positive samples; Conf, ratio of positive hit samples to
all hit samples; χ2, Chi-squared value.

However, further studies with a larger sample size, multiple
clinicians, and prospective study designs, including randomized
trials or prospective cohort studies, are needed. Our approach
enables building of a better predictive model and ongoing
application as a predictive system in real-world clinical settings.
This approach could be applied not only to management of
current and future infectious disease epidemics, but also to the
medical management of other health-related conditions.

Our study has some limitations. First, while we evaluated
the model to predict whether patients with COVID-19 would
require supplemental oxygen, but we did not measure the
SARS-CoV-2 viral load or the variant, which may have
affected disease severity (58–61). However, we enrolled local
patients with COVID-19 from December 1, 2020 to January
4, 2021, during the third wave of the COVID-19 pandemic
in Japan; therefore, the SARS-CoV-2 variant is likely to
have been homogeneous. Second, a recent study found that
dialysis and hematologic tumors are risk factors for severe
COVID-19 in older patients (62). However, no patient received
dialysis or had hematologic tumors in our hospital, and
further studies are warranted. This study revealed that an
(Na – Cl) level of > 33.5 mmol/L is a novel indicator of
disease severity in patients with COVID-19, suggesting that
dehydration compensation as pre-hospitalization care may
prevent severe COVID-19 in older patients with COVID-19
without dialysis or hematologic tumors. Third, while focusing
on clinician perception in developing the AI model, we
evaluated one clinician’s perception in this study. Further

research with a larger sample size and several clinicians
is needed; however, this study shows that a model using
AI in collaboration with a clinician may improve the AI
model performance. Questions for future research in this field
include:

1. How does a clinician understand the variable
combinations derived from the AI model?

2. How do various clinicians understand the variable
combinations derived from the AI model?

3. How do clinicians grasp the variable combinations derived
from the AI model?

4. What kind of clinician perception can develop a better AI
model?

5. What kind of AI model can improve clinician perception?

TABLE 4 Stepwise selection of variables predicting the need for
supplemental oxygen based on clinical characteristics and laboratory
biomarkers of patients with COVID-19.

Parameter Estimate df Wald score/χ2 p-value

Intercept –0.6931 1 0 >0.999

Na 0 1 0.463 0.496

Cl 0 1 0.014 0.907

Neutrophil count 0 1 0.062 0.803

Lymphocyte count 0 1 1.265 0.261

df, degrees of freedom.
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In conclusion, our approach enables the development of a
better predictive model by adding quick clinician perception and
direct clinician feedback to the AI predictive model for decision-
making. This approach could also contribute to the management
of future infectious disease outbreaks and could be applied in
real-world medical settings.
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