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Introduction:Ophthalmic diseases are approaching an alarming count across

the globe. Typically, ophthalmologists depend on manual methods for the

analysis of di�erent ophthalmic diseases such as glaucoma, Sickle cell

retinopathy (SCR), diabetic retinopathy, and hypertensive retinopathy. All these

manual assessments are not reliable, time-consuming, tedious, and prone to

error. Therefore, automatic methods are desirable to replace conventional

approaches. The accuracy of this segmentation of these vessels using

automated approaches directly depends on the quality of fundus images.

Retinal vessels are assumed as a potential biomarker for the diagnosis of many

ophthalmic diseases. Mostly newly developed ophthalmic diseases contain

minor changes in vasculature which is a critical job for the early detection and

analysis of disease.

Method: Several artificial intelligence-based methods suggested intelligent

solutions for automated retinal vessel detection. However, existing methods

exhibited significant limitations in segmentation performance, complexity,

and computational e�ciency. Specifically, most of the existing methods

failed in detecting small vessels owing to vanishing gradient problems. To

overcome the stated problems, an intelligence-based automated shallow

network with high performance and low cost is designed named Feature

Preserving Mesh Network (FPM-Net) for the accurate segmentation of

retinal vessels. FPM-Net employs a feature-preserving block that preserves

the spatial features and helps in maintaining a better segmentation

performance. Similarly, FPM-Net architecture uses a series of feature

concatenation that also boosts the overall segmentation performance.

Finally, preserved features, low-level input image information, and up-

sampled spatial features are aggregated at the final concatenation stage for

improved pixel prediction accuracy. The technique is reliable since it performs

better on the DRIVE database, CHASE-DB1 database, and STARE dataset.
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Results and discussion: Experimental outcomes confirm that FPM-

Net outperforms state-of-the-art techniques with superior computational

e�ciency. In addition, presented results are achieved without using any

preprocessing or postprocessing scheme. Our proposed method FPM-Net

gives improvement results which can be observed with DRIVE datasets, it gives

Se, Sp, and Acc as 0.8285, 0.98270, 0.92920, for CHASE-DB1 dataset 0.8219,

0.9840, 0.9728 and STARE datasets it produces 0.8618, 0.9819 and 0.9727

respectively. Which is a remarkable di�erence and enhancement as compared

to the conventional methods using only 2.45 million trainable parameters.

KEYWORDS

ophthalmic diseases, retinal vasculature, retinal image segmentation, semantic

segmentation, computer–aided diagnosis

1. Introduction

Ophthalmic diseases are increasing at an alarming rate.

Early and automated diagnosis can help in preventing chronic

ophthalmic disorders. Ophthalmic diseases include glaucoma,

macular degeneration, Sickle cell retinopathy (SCR), and

hypertensive and diabetic retinopathy. All of these are common

but serious ophthalmic diseases and can lead to vision loss if

not diagnosed at an early stage. An ophthalmological image

assessment is commonly used for retinal disease analysis which

shows retinal vessel changes that can lead to vision loss

problems (1). Another vision loss syndrome that is affected

by retinal ischemia is Sickle cell retinopathy (SCR). Reduced

vessel density and altered vasculature shape are symptoms of

sickle cell retinopathy (SCR) illness. Important biomarkers for

early SCR identification include retinal vessels (1). A high

blood sugar level causes the retinal illness known as diabetic

retinopathy, which causes retinal vessels to enlarge or leak

(2). A retinal condition called hypertensive retinopathy causes

restricted retinal vessels as a result of elevated blood pressure

which can be especially noticeable in the micro-vasculature (3).

The location of the retinal vascular blockage can be determined

using retinal vascular changes, which are often seen in bigger

arteries. These retinal vascular illnesses are strongly related

to the retinal morphologies of arteries and some other vessel

diseases (1). Aimed at the early finding of chronic ophthalmic

disorders by using different fundus images are retinal vessels

which are a vital biomarker.

Precise retinal image analysis is necessary for early

ophthalmic diagnosis. The complicated nature of the retinal

blood vessels makes them essential biomarkers for diagnosing

and analyzing many retinal disorders. However, it can be

difficult to detect little changes in retinal vessels. Retinal

vascular morphology includes location, thickness, tortuosity,

formation, and removal, and is linked to several ocular

illnesses (4). Ophthalmologists assess and record changes in

the retinal vasculature manually. This procedure is time-

consuming and labor-intensive. Additionally, the diagnosis of

the aforementioned disorders can be made using the size of

the retinal vessels, which is a distinct change that is difficult

to find and evaluate using manual image analysis (4) by

medical practitioners. Automatic illness inquiry is becoming

more prevalent as deep learning technology progresses to help

doctors make quicker and more accurate diagnoses (1). As

the analysis of medical images is a crucial component of

computer-aided disease diagnosis. Due to their dependability

and adaptability, artificially intelligence-based approaches are

more well-known in syndrome investigation than traditional

image processing techniques. Deep learning-based algorithms

help medical specialists to analyze various diseases using

computer vision approaches (1–8).

Computer vision has an immense potential to evaluate

these retinal disorders through image analysis for premature

diagnosis. Ophthalmologists and other medical professionals

are dealing with a variety of diagnostic challenges with the use

of deep learning techniques like medical image segmentation.

Semantic segmentation using deep learning is a cutting-edge

technology for medical image segmentation that helps to avoid

the manual processing of images for disease or symptom

diagnosis (7). Most of the work done already for the retinal

vessels segmentation is based on general image processing

schemes; in which several image augmentation patterns were

used to enhance the image contrast and detection process,

which is usually based on some specific threshold. In such a

case, a specific threshold cannot perform better with changes

in the image acquisition system. Therefore, to incorporate

the portability of the method, learning-based-segmentation

algorithms are famous.

The process of semantic segmentation entails giving class

labeling to each pixel of the image. Semantic segmentation

may be thought of as the process of identifying an image class

and isolating it from the other image classes by overlaying a
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segmentation mask on top of it. Features extraction features

and representations are frequently necessary for semantic

segmentation to obtain an optimal correlation of the image,

effectively reducing the noise. The suggested study explains the

deep-learning-based semantic segmentation technique called

Feature Preserving Mesh Network (FPM-Net) for the detection

of precise retinal vasculature in fundus images. Here, we use

multiple convolution layers with a combination of depth-

wise separable convolutions to lessen the overall trainable

parameters. Due to the spatial information being lost as a result

of the pooling of layers, we employed feature-preserving blocks

to maintain feature map sizes that were large enough to handle

the lost spatial information. The dense connection prevents

the vanishing gradient issue that plagues traditional networks’

feature latency (9), leading to improved training. This feature-

preserving block results in enhanced sensitivity of the suggested

FPM Network without using costly preprocessing techniques.

Finally, preserved features, low-level input image information,

and up-sampled spatial features are aggregated at the final

concatenation stage for improved prediction accuracy.

The suggested FPM-Net method was applied to the fundus

images in three different publically available databases (5),

The technique is reliable since it performs better even after

being trained on the DRIVE database (2), STARE database

(10), and CHASE-DB1 (10), making it appropriate for images

captured under various situations without retraining. After

experiments, the outcomes of segmentation concluded a

meliorated performance with accuracy (Acc), sensitivity (Se),

specificity (SP), and area under the curve (AUC) for retinal

vasculature segmentation. The suggested method FPM-Net has

a much better performance than conventional methods.

The structure of this paper is as follows. Some conventional

and automated methods relevant to this work will be presented

in Section 2. The embedding strategy and method are given in

Section 3. Results can be found in Section 4 and discussions in

Section 5. In Section 6, a conclusion is provided.

1.1. Research motivation

An increasing rate of growth is being observed in ophthalmic

illnesses. Chronic ocular problems can be avoided with early

and automated diagnosis. Retinal vascular alterations, which

are frequently observed in larger arteries, can be used to

pinpoint the exact location of the retinal vascular occlusion.

The retinal morphology of arteries and a few other vessel

diseases are closely related to these retinal vascular diseases

(1). Retinal vessels, an important biomarker, are used to detect

chronic retinal problems early by employing various fundus

image observations. However, it could be challenging to spot

slight variations in retinal vessels. The location, thickness,

tortuosity, creation, and removal of retinal vessels all affect their

morphology and are associated with several retinal diseases (4).

Ophthalmologists manually evaluate and document changes to

the retinal vasculature. This process takes a lot of time and

effort. Additionally, the size of the retinal vessels, which is a

unique alteration that is challenging to discover and analyze

using manual image analysis (4), can be used to diagnose the

aforementioned illnesses.

The evaluation of these retinal illnesses by image processing

for early diagnosis has enormous potential for computer vision.

Ophthalmologists and other medical practitioners are using

deep learning methods like medical image segmentation to

address a range of diagnostic issues. Deep learning-based

semantic segmentation is an absolute technique for medical

image segmentation that eliminates the need for manual image

processing for the identification of illness or symptom (7).

2. Related work

Automated approaches are important for lowering the

diagnostic workload of medical specialists, and the detection of

retinal vasculature can be helpful for the premature investigation

of a variety of eye-related diseases. There are two basic methods

for segmenting retinal vessels: feature-based deep learning

techniques and traditional image processing approaches.

Various studies have been conducted using traditional

techniques and common image-processing algorithms. Here

we describe recent advances in image analysis and deep

functionality learning techniques. Traditional image processing

techniques have been studied recently, and deep learning-based

techniques have grown with great constancy and performance

(1). Researchers have previously developed a variety of machine-

learning methods to separate the blood vessels from imaging

the retinal fundus. When handling testing conditions such

as recognized low-contrast micro-vessels, vessels with focal

reflexes, and vessels within the sight of diseases, a significant

number of visible retinal vessel division techniques are prone to

more unfavorable results (2).

Numerous image-enhancement techniques are frequently

used before thresholding in traditional image processing-based

vessel segmentation approaches. In addition to using contrast-

limited adaptive histogram equalization (CLAHE) to rise the

divergence of fundus images, Alhussein et al. developed a

segmentation method centered on Wiener and morphological

filtering (3). The primary vascular region was located using

the detector-based vessel identification approach developed by

Zhou et al., and after the noise was removed, a Markov model

was used to locate retinal vasculatures (11). In a similar vein,

Ahamed et al. reported segmenting the autonomic vasculature

multiscale line detection-based approach. To increase contrast,

they added CLAHE toward the green channel and for the

final segmentation, they combined morphological thresholding

and hysteresis (4). For the segmentation of retinal vessels,

Shah et al. employed a multiscale line-detection technique.
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The images aimed at vessel segmentation were made better

on the green channel using Gabor wavelet superposition and

multiscale line detection (4). Using top hat with homomorphic

filtering, Soto et al. presented a three-stage method. Following

the initial stage of visual smoothing for image enhancement,

two phases were employed to separately segment both thin

and thick vessels. The segmentation findings were improved

in the final stage with the application of morphological post-

processing (5). Li et al. introduced an unsupervised technique in

which integrated-tube marked point processes were applied to

extract the vascular network from the images and to preprocess

the images, image-enhancing techniques were applied. Utilizing

the discovered tube width expansion, the final segmentation

was carried out (7). Aswini et al. introduced an un-supervised

technique consisting of hysteresis thresholding with two folds

to identify retinal vessels. In their approach, morphological

smoothness and background reduction were used to improve

the fundus images before thresholding (8). Another approach

based on image processing segmented the vasculature using the

curvelet transform and line operation after pre-processing using

anisotropic diffusion filtering, adaptive histogram equalization,

and color space translation (11). Sundaram et al. suggested a

hybrid strategy based on bottom-hat transform and multiscale

image augmentation, where the segmentation work was carried

out using morphological procedures (10). To reduce the

aggravating noise that prevents vessel segmentation, using

a probabilistic patch-based denoiser was recommended by

Khawaja et al. (2) that combines a customized Frangi filter with

a denoiser. After the CLAHE procedure, images are enhanced

using an aggregated block-matching 3-D speckled filter, Naveed

et al. suggested an unsupervised technique. Multiscale line

detectors along with Frangi detectors were used in their model

to segment data (12).

All the above-discussed methods are traditional image

processing and some deep-feature-based learning techniques are

used to investigate retinal vasculature segmentation. Learning-

based approaches are increasingly well-known because, through

feature-based learning, they may imitate the expertise of medical

professionals. Furthermore, techniques for image augmentation

make it possible to complete the task with lesser training

samples. For supervised vessel segmentation, Oliveira et al.

suggested an entirely convolutional deep-learning technique.

They employed a multiscale convolutional network in a patch-

based scenario, which was investigated by some kind of

stationary wavelet transform (13).

Fraz et al. integrated the vessel centerlines identification

method with themorphological bit plane slicing technique. They

coupled bit plane slicing with vessel centerline on the enhanced

gray-level images of retinal blood vessels (14). In addition to

performing a mathematical morphological procedure on the

image, Ghoshal et al. suggested an enhanced vascular extraction

method from retinal images. They made negative grayscale

images from the original and the image that had been removed

from the vessels, then they excised to balance the image and then

improved to produce thin vessels by turning the produced image

into a binary image. To produce the vessel-extracted image,

they finally combined the thin vessel image and binary image.

They claimed that their performance results were satisfactory

(15). The answers from the two-dimensional Gabor wavelet

transform at various scales of each pixel were utilized as features

by Soares et al. after they used this transform with supervised

learning. They rapidly categorized a complicated model using a

Bayesian classifier (16). To determine the properties necessary

for segmenting retinal blood vessels, Ricci and Perfetti suggested

a technique based on line operators. Because their model uses a

line detector to analyze the green channel of retinal images, it is

quicker and requires fewer features than prior approaches (17).

A multi-layered forward-oriented artificial neural network was

trained using the suggested artificial neural network approach

by Marin et al. using a seven-dimensional feature vector. They

employed the sigmoid activation function in each neuron of the

three-layer network. They claimed that additional datasets are

also successfully used by the trained network (18). A technique

using a CNN architecture was created by Melinscak et al. to

determine if each pixel is a vessel or a backdrop (19). According

to Wang et al. proposal for a new retinal vascular segmentation

approach that uses patch-based learning and Dense U-net, the

approach seems attractive in terms of standard performance

criteria (20). For segmenting retinal vessels, Guo et al. developed

a CNN-based two-class classifier comprising two convolution

layers and pooling layers, one dropout layer, and one loss layer.

They concluded that the suggested approach had good accuracy

and was quick to teach (21). Concerning the information loss

brought on by image scaling during preprocessing, Leopold

et al. proposed PixelBNN, an effective deep learning system for

automatically segmenting fundus morphologies, and reported

that it had a reduced test time and reasonably high performance

(9). Technology advancements have produced images with a

higher pixel density, sharp features, and a lot of data. As a

result, good image quality can satisfy the requirements for actual

application in image analysis and image comprehension (22).

CNN is effective in classifying images and detecting objects,

although the results vary depending on the network design,

activation function chosen, and input picture quality. Poor

quality input images have a detrimental impact on a CNN’s

performance, according to research (23), even if it is not

immediately apparent. IterNet, a novel model based on UNet

that can uncover hidden vessel information from the segmented

vessel image rather than the raw input image, was proposed

by Li et al. IterNet is made up of several mini-UNet iterations

that can be up to four times deeper than a typical UNet (24).

A new approach for segmenting blood vessels in retinal images

was put out by Tchinda et al. The artificial neural networks

and conventional edge detection filters are the foundation of

this approach. The features vector is first extracted using edge

detection filters. An artificial neural network is trained using the
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obtained characteristics to determine whether or not each pixel

is a part of a blood artery (25).

According to the properties of the retinal vessels in fundus

images, a residual convolution neural network-based retinal

vessel segmentation technique is presented. The encoder-

decoder network structure is built by joining the low-level

and high-level feature graphs, and atrous convolution is added

to the pyramid pooling. The improved residual attention

module and deep supervision module are used. The results

of the trials performed using the fundus image data set

from DRIVE and STARE demonstrate that this algorithm can

successfully segment all retinal vessels and identify related

vessel stems and terminals. This approach can identify more

capillaries and is viable and successful for segmenting retinal

vessels in fundus images (11). One of the most serious

infectious diseases in the world, tuberculosis causes 25% of

all preventable deaths in underdeveloped nations. This cross-

sectional descriptive research set out to assess the effects of

ocular TB on visual acuity both before and after 2 months

of vigorous anti-tubercular treatment. Three individuals with

pleural TB, seven with disseminated tuberculosis, and 133

with pulmonary tuberculosis comprised the sample. Every

patient got a standard eye examination, which included

measuring visual acuity and performing necessary indirect

ophthalmoscopes, biomicroscopy, applanation tonometry, and

fluorescence angiography. None of the patients exhibited

tuberculosis-related vision impairment. The incidence of ocular

involvement was determined to be 4.2% (6/143). Five of the six

individuals with ocular involvement and one of the suspected

ocular lesions satisfied the diagnostic criteria for probable ocular

lesions. Two individuals showed bilateral findings of different

ocular lesions: one had sclera uveitis and the other had choroidal

nodules. The remaining four patients all had unilateral lesions,

including unilateral choroidal nodules in the right eye, unilateral

choroidal nodules in the left eye, and unilateral peripheral retinal

artery blockage in the right eye (two cases). After 2 months of

rigorous therapy, patients made favorable improvements with

no discernible visual loss (26).

3. Suggested methodology

3.1. Suggested FPM-Net’s outline

As explained in section 2, retinal vessels are assumed as

an important potential biomarker for the diagnosis of many

ophthalmic diseases. A very growing number of ophthalmic

illnesses are found in a large number of people around the globe.

Preventing persistent ocular problems can be aided by early and

automated diagnosis. Precise retinal image analysis is necessary

for early ophthalmic diagnosis. Numerous AI-based techniques

provide intelligent solutions for automatic retinal vessel

recognition. However, segmentation performance, complexities,

and computing efficiency were significantly constrained by

previous approaches. Due to the vanishing gradient issue, and

conventional architectural design, the majority of the currently

used approaches specifically failed to achieve a higher true

positive rate. Figure 1 provides an outline of the suggested

technique. The suggested technique simply uses fundus images

as input deprived of applying the requirement of any pre-

processing scheme. FPM-Net is applied to the input image for

pixel-wise classification. The suggested network categorizes each

pixel into two major categories: “vessel” (for vessel pixel) and

“background” (for pixels other than vessels). Because of this,

it provides a binary segmentation mask with values of “1” on

vessels as well as “0” on the other classes. FPM-Net incorporates

a feature-preserving block for enhanced performance and

fast convergence.

3.2. Architecture of suggested FPM-Net

A suggested network for segmenting vessels that was created

especially to improve the sensitivity (a better true positive

rate) of retinal vascular detection is called a Feature Preserving

Mesh Network (FPM-Net). The suggested FPM-Net is shown in

Figure 2. Observe (Figure 2) that FPM-Net is a dense network

composed of multiple convolution operations, and a shallow

feature up-sampling block (FUB) followed by mesh-connected

dense feature down-sampling block (FDB), and this overall

architecture differs from conventional semantic segmentation

networks like Seg-Net, U-Net, and DeepLabV3 in terms of

encoder-decoder architecture where the decoder is same as

an encoder.

To address above mentioned issues with conventional

networks, FPM-Net is following four design principles. First,

multiple uses of convolution layers in deep networks (e.g.,

VGG16) cause spatial loss if they are used without a feature

reuse policy and the overall performance deteriorates (27).

Following Dense-Net (22), to cover the spatial loss, dense

connections are used between the convolution layers available

in the network which guarantees the immediate feature transfer

without latency. Secondly, the convolution layers with a larger

number of channels contribute to increasing the number of

learnable parameters substantially. To reduce the network cost,

we use depth-wise separable convolution on the deep side of

the network. Third, the spatial information that is available

in the initial layers is very important as it contains the low-

level features to represent the edges. The FPM-Net is utilizing

a dense mesh that is connecting all the convolutional layers

and transfers this valuable low-level information from FDB to

FUB directly. This ensures the immediate edge information

transfer without latency which results in better segmentation

performance and quicker convergence of the network. Fourth,

the multiple pooling operation causes severe spatial information

loss that inevitably leads to a deterioration in performance (28).
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FIGURE 1

Outline of the suggested FPM-Net approach.

FIGURE 2

The suggested Feature Preserving Mesh Network (FPM-Net) architecture for retinal vessels segmentation.

Traditional convolutional neural networks employ excessive

pooling operations for reducing the feature map size which

is equally important to control memory usage. To cover the

issues created by multiple pooling layers (minor information

loss due to small feature map size), FPM-Net is using the

feature preserving block (FPB) which keeps the feature map size

larger to represent approximately all the valued features that

can signify the vessel pixels. FPB is composed of a few low-cost

convolution layers, and it is responsible to transfer a large feature

map to the FUB. This FPM-Net provides better segmentation

accuracy and is computationally efficient because it does not

require a huge number of parameters for its training. This

structure is completely diverse from traditional structures like

Segmentation Networks (SegNet) (29) and U-Shaped Network

(U-Net) (30), which employ a decoder similar to an encoder to

produce an architecture that is excessively deep and has a lot of

trainable parameters with many channels. Figure 2 explains the

connectivity pattern of FPM-Net.

Figure 3 represents a schematic diagram for FPM-Net

interconnection and the solid feature concatenation standards.

The input convolution block uses the fundus images as input,

runs them through many convolutional layers in FDB to extract

significant features Fed for the investigation of the retinal

vasculatures, and then sends the enhanced dense features Fed
to the UB-A of FUB. K (Fed) is created by concatenating

the enhanced dense features T(Fed) and intermediate feature

information Fif that were acquired by the DFB-B and DFB-D,

respectively. The K(Fed) feature, represented by Equation (1),

is produced via depth-wise concatenation using both T(Fed)

and Fif, where © represented depth-wise concatenation in green
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FIGURE 3

The schematic diagram for FPM-Net connectivity, FDB, FUB, FPB, and PCB represents the feature down-sampling block, feature up-sampling

block, feature preserving block, and pixel classification block, respectively.

color. The Fb feature is being added to the feature-preserving

block from the DFB-A. Since there haven’t been any significant

pooling operations, the feature Fp originating from the feature-

preserving block (FPB) contains rich feature information that

corresponds to the majority of the vessels in the images transfer

to the final concatenation represented in red color.

K(Fed) = T(Fed)©Fei (1)

Mdense = K
′

(Fed)©Fp©Fif (2)

Here, M is a densely concatenated feature made through

the K’(Fed), a feature after the up-sampling block, Fp preserved

features, upcoming from the feature preserving block, and

edge information fei, upcoming from the input convolution

block. Where © denotes depth-wise concatenation. After final

concatenation represented in red color concluded the output

result having Equation (2).

3.3. Structure of feature preserving block

As shown in Figure 2, the suggested FPM-Net uses a feature-

preserving block (FPB) to preserve valuable spatial information

and disseminates it for the final concatenation. FPB takes

the input from the dilated convolution, performs its function,

and provides the feature results for the concatenation to

the later layer. Because in the initial layer there is potential

spatial information and features that can signify most of the

vasculatures which will be helpful in the final prediction. The

main problem that occurs while segmenting the image, the

small objects were lost called the vanishing gradient but in

FPB this vanishing gradient issue is solved. It simply uses three

convolution layers and one transposed convolution to increase

feature map size the feature map is resized to its original size

using transposed convolution. As discussed above, the edge

information from the initial layer, preserved features from FPB,

and enhanced dense features are concatenated in the final stage

which will boost the segmentation performance and improve the

overall accuracy. After the final concatenation, softmax and pixel

classification layers are utilized. The schematic structure of the

feature-preserving block is mentioned in Figure 4.

3.4. Structure of suggested pixel
classification block

The final concatenation has shown in red before the pixel

classification block is given the rich features, K, from the up-

sampling block. The PCB encompasses a 1 × 1 bottleneck

(used to reduce the number of channels for pixel classification

block), softmax, and dice pixel classification layer. The image

pixels are categorized using a dice pixel classification layer that

uses dice loss to solve the class imbalance and give improved

segmentation. In this instance, “vessel” and “background” are

two segmentation classes with values of “1” and “0,” respectively.

The pixel classification block is made up of a convolution whose

filters are matched to the number of classes. The image pixels are

identified using a pixel classification layer that uses dice loss to

solve the class imbalance (31) and give improved segmentation.

The dice loss (LDL) is represented mathematically as,

LDL = 1− (
2×

∑j
iQp−i RT−i

∑j
iQ

2
p−i + R2T−i

) (3)
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FIGURE 4

The structure of feature preserving block.

Where j refers to all of the image’s observable

pixels, i is the pixel under consideration, Q refers to

the predicted labels, and R refers to the actual ground

truth labels. RT−i is the actual ground truth label, and

Qp−i is the expected possibility that pixel i belongs to a

certain class.

4. Experimental results

4.1. Datasets

Intend to find results, vessels analysis was done on the

DRIVE (2), CHASE-DB1 (10), and STARE (10) datasets

for the suggested technique and additional studies for

overall evaluation. These datasets are publicly accessible,

and pixel-wise expert annotations on the photographs allow

researchers to assess the algorithms. The following describes

these datasets.

In the DRIVE dataset, 40 red, green, and blue fundus

images in total are included in the collection. The dataset

comes with carefully separated ground truths for analysis. The

images have a 565 x 584-pixel resolution and a 45◦ field of

view (FOV). For improved training, the 20 training images are

enhanced. Examples of expertly annotated images on or after

the DRIVE dataset are displayed in Figure 5A. In the CHASE-

DB1 dataset with 28 images using a fundus camera (Nidek

NM-200D) with a typical FOV of 30◦. Complying with the

validation requirement, with a total of 28 images, 20 images

(with augmentation) were used in our studies for training

purposes and the remaining eight for testing purposes. Examples

of image pairings with professional annotations are shown in

Figure 5B. The STARE dataset is a collection of 20 retinal images

taken by a TopCon TRV-50 with a FOV of 35◦. For assessment

reasons, professional image annotations are given per image.

We used cross-validation using the leave-one-out method in our

studies, in which training is done on 19 images and just one left

for testing. Similarly to this, each image in the 20 studies was

chosen specifically for testing. Twenty experiments on average

were used to get the data. Examples of image pairings with

professional annotations from the STARE dataset are shown in

Figure 5C. The training and testing image descriptions for each

dataset are displayed in Table 1.

4.2. Experimental environment and
augmented data

The suggested FPM-Net was developed using Microsoft

Windows 10, MathWorks MATLAB R2022a, with a laptop

having specifications. An Intel Core i7-11800H processor and

RAM of 16 GB. The tests were performed using an NVIDIA

GeForce RTX 3070 8GB GDDR6 graphics processing unit.

Without using any method for weight initialization, migration,

sharing, or fine-tuning from previous networks, the suggested

models were trained from scratch. Tables 3A–C lists the

important training hyperparameters.

Deep learning’s segmentation effectiveness is closely

correlated with the capacity of training data with labels;

effective training requirements, and a substantial amount of

training data with labels. To boost the quantity of data, we used

image flipping and translation. The modified augmentation

method involved flipping 20 original images in both vertical

direction and horizontal directions to produce a total of 60

images. Then, the total images produced after the flipping

procedure are 3,000, from the DRIVE dataset were produced

by repeatedly translating these 60 images into (x, y) values

and then continuing to flip them. A training set is prepared

using a random image generation procedure, where the points

(x, y) satisfy the conditions. The CHASE-DB and STARE

databases were similarly enhanced to provide 1,500 and 1,300

images, respectively.

Considering the training details FPM-Net utilized

an epsilon of 0.000001, and the initial learning rate of

0.00005 was applied. Global L2 normalization is utilized

for training due to the benefits of quicker convergence

and robustness over rising variation. To train the FPM-

Net, a mini-batch size of 16 images is used because it is

a dense network and requires less GPU memory due to

bottleneck layers. In 25 epochs, both networks converge

(5,000 iterations).
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FIGURE 5

(A) DRIVE Dataset visualizations of the suggested FPM-Net: (i) Input original image, (ii) Expert annotation (Ground truth), and (iii) Predicted mask

by FPM-Net. (B) CHASE-DB1 Dataset visualizations of the suggested FPM-Net (i) Input original image, (ii) Expert annotation (Ground truth), and

(iii) Predicted mask by FPM-Net. (C) STARE Dataset visualizations of the suggested FPM-Net (i) Input original image, (ii) Expert annotation

(Ground truth), and (iii) Predicted mask by FPM-Net.

TABLE 1 Details of the testing and specifications of all three used

datasets in our method.

Name of
dataset

Total
images

Images
division
(training,
testing)

Experimentation

DRIVE (2) 40 images 20, 20 One experiment

CHASE-DB1

(10)

28 images 20, 8 One experiment

STARE (10) 20 images 19, 1 20 experiments

4.3. Ablation study for the suggested
FPM-Net

The rich edge information is found in the starting layers by

the network detection. By minimizing the vanishing gradient

problem, the network’s convergence is aided by the import

of this data through skip connections (44). To investigate the

efficacy of preserved features and dense connectivity for the

suggested FPM-Net, an ablation study was conducted. In the

ablation study, the training was done on FPM-Net architecture

with and without FPB. Table 2 shows that, while maintaining

the almost same number of parameters, FPB with preserved

feature outperformed FPM-Net with dense connectivity in terms

of true positive rate (SE), with a greater true positive rate. Table 2

clearly shows that feature concatenation caused a significant

performance difference.

TABLE 2 Performance measures with ablation study.

Method SE SP Acc AUC Parameters

FPM-Net

(without

FPB)

0.8035 0.9801 0.9591 0.9790 2.44M

FPM-Net

(with FPB)

0.8285 0.9827 0.9692 0.9851 2.45M

FPM-Net, Feature preserving mesh network; FPB, Feature preserving block; SE,

sensitivity; SP, specificity; Acc, Accuracy; AUC, Area under Curve; ms, microseconds.

4.4. Evaluation of suggested network

For the suggested network output, FPM-Net offers a mask

that displays all of the background and vessel pixels as “0”

and “1,” respectively. Sensitivity (SE), Specificity (SP), Accuracy

(Acc), and area under curve AUC, to measure the performance

of segmentation which are frequently utilized to assess how

well-retinal images are segmented, were computed using the

output mask of the suggested network and expert annotations

(16). SE is denoted as a true positive rate, which illustrates

how well the network can find vessel pixels. The SP as a true

negative rate demonstrates the capacity to identify non-vessel

pixels. The whole percentage of accurate predictions made thru

the approach is represented by Acc. Equations (4)–(6) give the

respective expressions for SE, SP, and Acc. A pixel with the

prefix TP is identified in the expert’s annotation as a vessel pixel

and is projected to be one. FN denotes a pixel that the expert
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annotation classifies as a vessel pixel even if it is expected to be

a background pixel. A pixel with the prefix TN is identified in

the expert’s annotation as a vessel pixel and is expected to be

one. FP denotes a pixel that the expert annotation classifies as

a background pixel but which is expected to be a vessel pixel.

SN =
TP

TP + FN
(4)

SP =
TN

TN + FP
(5)

Acc =
TP + TN

TP + FN + FP + TN
(6)

4.5. Comparison with other conventional
techniques

To evaluate and compare the suggested FPM network with

the conventional techniques, vessel analysis was done on the

publicly accessible DRIVE CHASE-DB1, and STARE datasets.

For the vessel category and the background category, the

network generates a mask with both the corresponding grayscale

values of “1” and “0,” respectively. The visual outcomes of

the suggested strategy for the three datasets stated above are

shown in Figure 5. The suggested FPM-Net network’s segmented

image with the mask overlapped is shown in the figures

along with the original images that were used as input into

the network, experts provided the expert annotated image to

evaluate research methods, the predicted mask at the network’s

production, and the predicted mask itself. The Numerical

Comparison of Suggested FPM-Net utilizing the most recent

technique is described in Tables 3A–C. By using our proposed

method FPM-Net, there is significant improvement can be

observed with DRIVE datasets, it gives Se, Sp, and Acc as 0.8285,

0.98270, 0.92920, for CHASE-DB1 dataset 0.8219, 0.9840, 0.9728

and STARE datasets it produces 0.8618, 0.9819 and 0.9727

respectively. Which is a remarkable difference and enhancement

as compared to old and conventional methods.

4.6. Visual outcomes of suggested
FPM-Net

In this instance, the suggested method’s graphical outcomes

for the identification of retinal vessels on the datasets of fundus

image e.g., DRIVE, CHASE-DB1, and STARE are shown. (i)

input original image, (ii) expert annotation (Ground truth), and

(iii) FPM-Net mask are shown in Figures 5A–C.

5. Discussion

Precise retinal image analysis is necessary for early

ophthalmic diagnosis. The complicated nature of the retinal

TABLE 3A The comparison of the DRIVE data set’s segmentation

results using various segmentation techniques.

Method Year Se Sp Acc

Cross modality learning (17) 2015 0.7569 0.9816 0.9527

GMM classifier (18) 2015 0.7249 0.9830 0.9620

SP model (19) 2016 0.7811 0.9807 0.9535

CRF model (20) 2016 0.7897 0.9684 –

VS method (21) 2017 0.7779 0.9780 0.9521

RU-Net and R2U-Net (9) 2018 0.7792 0.9813 0.9556

LadderNet (22) 2018 0.7856 0.9810 0.9561

U-Net+joint losses (23) 2018 0.7653 0.9818 0.9542

CTF-Net (24) 2018 0.7979 0.9857 0.9685

Three-stage DL Model (25) 2019 0.7631 0.9820 0.9538

SD-Unet (32) 2019 0.7891 0.9848 0.9674

Dilated Conv. (33) 2019 0.7903 0.9813 0.9567

GFM (15) 2020 0.7614 0.9837 0.9604

DL methods (10) 2020 0.7979 0.9794 0.9563

AA-UNet (34) 2020 0.7941 0.9798 0.9558

EDC-Net (35) 2020 0.7092 0.9820 0.9447

Iternet (36) 2020 0.7735 0.9838 0.9673

MLC scheme (37) 2021 0.7761 0.9792 0.9519

LAC network (38) 2021 0.7921 0.9810 0.9568

ResDo-UNet (39) 2021 0.7985 0.9791 0.9561

FPM-Net (proposed) 2022 0.8285 0.98270 0.96920

“–” means the value is not available in the relevant research study.

blood vessels makes them essential biomarkers for diagnosing

and analyzingmany retinal disorders. However, it can be difficult

to detect little changes in retinal vessels. Ophthalmologists assess

and record changes in the retinal vasculature manually. To

evaluate these retinal disorders through image investigation for

premature diagnosis, computer vision has immense potential.

Ophthalmologists and other medical professionals are dealing

with a variety of diagnostic challenges with the use of deep

learning techniques like medical image segmentation. Semantic

segmentation using deep learning is a cutting-edge technology

for medical image segmentation that helps to avoid the manual

processing of images for disease or symptom diagnosis. With

the advancement of supervised learning, autonomous sickness

analysis is becoming more prevalent to help doctors make a

quicker andmore precise diagnosis. This semantic segmentation

technique using deep learning will help ophthalmologists in

this regard. The suggested study suggests the deep-learning-

based semantic segmentation technique called FPM-Net for

the detection of precise retinal vasculature in fundus images.

Here, we use multiple convolution layers with a combination of
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TABLE 3B The comparison of the CHASE-DB1 data set’s segmentation

results using various segmentation techniques.

Method Year Se Sp Acc

U-Net (40) 2015 0.7841 0.9701 0.9578

Cross modality learning (17) 2016 0.7507 0.9793 0.9581

RU-Net and R2U-Net (9) 2018 0.7756 0.9820 0.9634

U-Net+joint losses (23) 2018 0.7633 0.9809 0.9610

LadderNet (22) 2018 0.7978 0.9818 0.9656

U-Net+joint losses (23) 2018 0.7633 0.9809 0.9610

Three-stage DL Model (25) 2019 0.7641 0.9806 0.9607

GNN (41) 2019 0.9463 0.9364 0.9373

MCP-EM (42) 2019 0.8106 0.9807 0.9654

Ipn-v2 and octa-500 (27) 2019 0.8155 0.9725 0.9610

AA-UNet (34) 2020 0.8167 0.9704 0.9608

HAnet (28) 2020 0.8239 0.9813 0.9670

Iternet (36) 2020 0.7970 0.9823 0.9655

CTF-Net (29) 2020 0.7948 0.9842 0.9648

LAC network (38) 2021 0.7818 0.9819 0.9635

HDS-Net (30) 2020 0.8176 0.9776 0.9632

ResDo-UNet (39) 2021 0.8020 0.9794 0.9672

FPM-Net (proposed) 2022 0.8219 0.9840 0.9728

depth-wise separable convolutions to lessen the overall trainable

parameters. Due to the spatial information being lost as a

result of the pooling of layers, we employed feature-preserving

blocks to maintain feature map sizes that were large enough

to handle the lost spatial information. The dense connection

prevents the vanishing gradient issue that plagues traditional

networks’ feature latency (9), leading to improved training. This

feature preserves block outcomes in improved sensitivity of

the suggested FPM-Net deprived of using costly preprocessing

techniques. Finally, preserved features, low-level input image

information, and up-sampled spatial features are aggregated at

the final concatenation stage for improved prediction accuracy.

In previous studies, researchers used different networks such as

AA-UNet (34), Iternet (36), NFN+ Net (46), D-GaussianNet

(47), HDS-Net (30), and ResDo-Net (39) for the identification

of Sensitivity (SE), Specificity (SP), Accuracy (Acc), and area

under curve AUC, to measure the performance of segmentation

which are frequently utilized to assess how well retinal images

are segmented. But in this paper, our proposed FPM-Net

produced more accurate results for SE, SP, Acc, and AUC

than the rest of the research done by others. In this paper,

a solid architecture is shown that enables precise semantic

segmentation of the retinal blood vessels. The central ideas are

discussed below.

TABLE 3C The comparison of the STARE data set’s segmentation

results using various segmentation techniques.

Method Year Se Sp Acc

ECB method (43) 2012 0.7548 0.9763 0.9543

SP model (19) 2016 0.7867 0.9754 0.9566

CRF model (20) 2016 0.7680 0.9738 –

Cross modality learning (17) 2016 0.7726 0.9844 0.9628

DSM-UNet (44) 2018 0.7673 0.9901 0.9712

U-Net+joint losses (23) 2018 0.7581 0.9846 0.9612

CRF-Net (45) 2018 0.7543 0.9814 0.9632

SD-UNet (32) 2019 0.7548 0.9899 0.9725

Three-stage DL Model (25) 2019 0.7735 0.9857 0.9638

Ipn-v2 and octa-500 (27) 2019 0.7595 0.9878 0.9641

AA-UNet (34) 2020 0.7598 0.9878 0.9640

Iternet (36) 2020 0.7715 0.9886 0.9701

NFN+ Net (46) 2020 0.7963 0.9863 0.9672

D-GaussianNet (47) 2021 0.7904 0.9843 0.9837

HDS-Net (30) 2021 0.7946 0.9821 0.9626

ResDo-UNet (39) 2021 0.7963 0.9792 0.9567

FPM-Net (proposed) 2022 0.8618 0.9819 0.9727

• An efficient semantic segmentation network may

give precise vessel detection deprived of the need for

costly preprocessing.

• The network can learn adequate features for enhanced

segmentation and quicker convergence because it delivers

enhanced spatial information from the initial layers.

• Creating a shallow architecture can save many trainable

parameters and it is not necessary to make feature up-

sampling and feature down-sampling blocks identical. To

reduce the network cost, we use depth-wise separable

convolution on the deeper side of the network.

• While considering vessel segmentation, a shallower

architecture with fewer layers and a smaller quantity

of trainable parameters performs superior to

robust architecture.

• The size of the ultimate feature map is essential. In contrast

to existing architectures that significantly down-sample

the image, FPM-Net avoids pooling layers and maintains

enough feature map size which contains valuable features

and offers better performance.

• Those techniques which are based on deep learning could

help ophthalmologists do analysis more quickly and offer

numerous approaches for analyzing diseases.

The original images used as input into the network, the

expert-annotated image provided by experts to assess research
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methodologies, the predicted mask at the network’s production,

and the predicted mask itself are all displayed in the figures

along with the suggested FPM-Net network’s segmented image

with the mask overlapped. Tables 3A–C describes the Numerical

Comparison of the Suggested FPM-Net using the most recent

method. By using our proposed method FPM-Net, there is

significant improvement can be observed with DRIVE datasets,

it gives Se, Sp, and Acc as 0.8285, 0.98270, 0.92920, for CHASE-

DB1 dataset 0.8219, 0.9840, 0.9728 and STARE datasets it

produces 0.8618, 0.9819 and 0.9727 respectively. Which is a

remarkable difference and enhancement in results as compared

to old and conventional methods.

5.1. Limitations and future work

Even though the suggested FPM-Net recognizes retinal

vessels with better segmentation performance, the suggested

technique still has certain limitations. A learning-based

segmentation technique, the suggested FPM-Net largely

depends on the input training data. Medical data for disease

analysis are extremely challenging to organize in large quantities.

The amount of training data must thus be artificially increased

by data augmentation. Additionally, the learning-based

approaches produce output masks depending on the knowledge

they have acquired, and the network’s ultimate prediction may

contain pixels that are both false positive and false negative.

We want to minimize the network’s overall cost in the

future by efficiently reducing the number of convolutions.

The proposed technique is based on deep learning, as well

as its efficiency solely depends on excellent training with

sufficient training data. Additionally, the accuracy of the labeling

generated by an ophthalmologist directly affects the precision of

learning-based techniques. This will make it feasible to evaluate

how well-upcoming deep-learning techniques screen for these

particular disorders. We also want to develop a little system

for mobile applications that run instantly. The medical sector

will subsequently utilize these networks for more semantic

segmentation purposes.

6. Conclusion

The goal of this study was to develop a network for

segmenting shallow vessels that might effectively be used to

support computer-aided diagnostics in the identification and

diagnosis of retinal disease. The proposed method utilized the

FPM-Net shallow network, which provides a successful remedy

for retinal vasculature for computer-aided diagnostics. The

recommended FPM network uses less memory, has more

trainable parameters, and fewer layers, and can be trained

with larger mini-batch sizes. A separate network with the

name of FPM-Net is used to maintain a reduced final feature

map during its convolutional phase. FPM-Net contains an

improved portion of FPB that incorporates an external path that

saves and delivers essential spatial information to increase the

accuracy and robustness of the technique. As a result, when

compared to other traditional approaches for detecting retinal

vessels, our suggested vessel segmentation networks are more

reliable and perform better without preprocessing, and they

may be utilized to help medical professionals to diagnose and

analyze diseases.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found at: Khawaja et al. (2) and Sundaram et al. (10).

Author contributions

SI: methodology and writing—original draft. MS, MH, and

AH: validations. RN and SL: supervision and writing—review

and editing. All authors have read and agreed to the published

version of the manuscript.

Funding

This work was supported by a National Research Foundation

(NRF) grant funded by the Ministry of Science and ICT (MSIT)

and South Korea through the Development Research Program

(NRF2022R1G1A1010226 and NRF2021R1I1A2059735).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Frontiers inMedicine 12 frontiersin.org

https://doi.org/10.3389/fmed.2022.1040562
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Imran et al. 10.3389/fmed.2022.1040562

References

1. Owais M, Arsalan M, Choi J, Mahmood T, Park KR. Artificial intelligence
based classification of multiple gastrointestinal diseases using endoscopy videos for
clinical diagnosis. J Clin Med. (2019) 8:986. doi: 10.3390/jcm8070986

2. Khawaja A, Khan TM, Naveed K, Naqvi SS, Rehman NU, Junaid Nawaz S. An
improved retinal vessel segmentation framework using frangi filter coupled with
the pobabilistic patch based denoiser. IEEE Access. (2019). 7:164344–61.

3. Alhussein M, Aurangzeb K, Haider SI. An unsupervised retinal vessel
segmentation using Hessian and intensity based approach. IEEE Access. (2020)
8:165056–70. doi: 10.1109/ACCESS.2020.3022943

4. Ahamed ATU, Jothish A, Johnson G, Krishna SBV. Automated system for
retinal vessel segmentation. In: 2018 Second International Conference on Inventive
Communication and Computational Technologies (ICICCT). IEEE (2018).

5. Ramos-Soto O, Rodr-Esparza E, Balderas-Mata SE, Oliva D, Hassanien AE,
Meleppat RK, et al. An efficient retinal blood vessel segmentation in eye fundus
images by using optimized top-hat and homomorphic filtering. Comput Methods
Programs Biomed. (2021) 201:105949. doi: 10.1016/j.cmpb.2021.105949

6. Shah SAA, Shahzad A, Khan MA, Li C-K, Tang TB. Unsupervised method for
retinal vessel segmentation based on gabor wavelet and multiscale line detector.
IEEE Access. (2019) 7:167221–8.

7. Li T, Comer M, Zerubia J. An unsupervised retinal vessel extraction and
segmentation method based on a tube marked point process model. In: ICASSP
2020-2020 IEEE international conference on acoustics, speech and signal processing
(ICASSP). IEEE (2020).

8. Aswini S, Suresh A, Priya S, Krishna BVS. Retinal vessel segmentation
using morphological top hat approach on diabetic retinopathy images. In: 2018
Fourth International Conference on Advances in Electrical, Electronics, Information,
Communication and Bio-Informatics (AEEICB). IEEE (2018).

9. Leopold HA, Orchard J, Zelek JS, Lakshminarayanan V. PixelBNN:
Augmenting the PixelCNN with batch normalization and the presentation
of a fast architecture for retinal vessel segmentation. J Imaging. (2019) 5:26.
doi: 10.3390/jimaging5020026

10. Sundaram R, Ravichandran KS, Jayaraman P. Extraction of blood vessels
in fundus images of retina through hybrid segmentation approach. Mathematics
(2019) 7:169. doi: 10.3390/math7020169

11. Zhou C, Zhang X, Chen H. A new robust method for blood vessel
segmentation in retinal fundus images based on weighted line detector and
hidden Markov model. Comput Methods Programs Biomed. (2020) 187:105231.
doi: 10.1016/j.cmpb.2019.105231

12. Naveed K, Abdullah F, Madni HA, KhanMAU, Khan TM, Naqvi SS. Towards
automated eye diagnosis: An improved retinal vessel segmentation framework
using ensemble block matching 3D filter. Diagnostics (Basel). (2021) 11:114.
doi: 10.3390/diagnostics11010114

13. Oliveira A, Pereira S, Silva CA. Retinal vessel segmentation based
on fully convolutional neural networks. Exp Syst Appl. (2018) 112:229–42.
doi: 10.1016/j.eswa.2018.06.034

14. Fraz MM, Barman SA, Remagnino P, Hoppe A, Basit A, Uyyononvara
B, et al. An approach to localize the retinal blood vessels using bit planes
and centerline detection. Comput Method Pgm Biomed. (2012) 108:600–16.
doi: 10.1016/j.cmpb.2011.08.009

15. Ghoshal R, Saha A, Das S. An improved vessel extraction scheme
from retinal fundus images. Multimedia Tools Appl. (2019) 78:25221–39.
doi: 10.1007/s11042-019-7719-9

16. Soares JVB, Leandro JJG, Ceser RM, Jelinek HF, Cree MJ. Retinal vessel
segmentation using the 2-D Gabor wavelet and supervised classification. IEEE
Trans Med Imag. (2006) 25:1214–22.

17. Ricci, E, Perfetti R. Retinal blood vessel segmentation using line operators
and support vector classification. IEEE Trans Med Imag. (2007) 26:1357–65.

18. Marin D, Aquino A, Gegundez-Arias ME, Bravo JM.A new supervised
method for blood vessel segmentation in retinal images by using gray-level and
moment invariants-based features. IEEE Trans Med Imag. (2010) 30:146–58.

19. Melinscak M, Prentasic P, Loncaric S. Retinal Vessel Segmentation using Deep
Neural Networks. VISAPP (2015).

20. Wang C, Zhao Z, Ren Q, Xu Y, Yu Y.Dense U-net based on
patch-based learning for retinal vessel segmentation. Entropy. (2019) 21:168.
doi: 10.3390/e21020168

21. Guo C, Szemenyei M, Pei Y, Yi Y, Zhou W. SD-UNet: A structured dropout
U-Net for retinal vessel segmentation. In: 2019 IEEE 19th International Conference
on Bioinformatics and Bioengineering (BIBE). IEEE (2019).

22. Zhuang J. LadderNet: Multi-path networks based on U-Net for
medical image segmentation. arXiv [Preprint]. (2018). arXiv: 1810.07810.
doi: 10.48550/arXiv.1810.07810

23. Yan Z, Yang X, Cheng K-T. Joint segment-level and pixel-wise losses for
deep learning based retinal vessel segmentation. IEEE Trans Biomed Eng. (2018)
65:1912-23. doi: 10.1109/TBME.2018.2828137

24. Li L, Verma M, Nakashima Y, Nagahara H, Kawaski R. Iternet: Retinal image
segmentation utilizing structural redundancy in vessel networks. In: Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision. IEEE
(2020).

25. Tchinda BS, Tchioptop S, Noubom M, Louis-Dorr V, Wolf D. Retinal blood
vessels segmentation using classical edge detection filters and the neural network.
Inform Medicine Unlocked. (2021) 23:100521. doi: 10.1016/j.imu.2021.100521

26. de Oliveira SBV, Passos F, Hadad DJ, Zbyszynski L, de Almeida JPS, Castellani
LGS, et al. The impact of ocular tuberculosis on vision after twomonths of intensive
therapy. Braz J Infect Dis. (2018) 22:159–65. doi: 10.1016/j.bjid.2018.03.005

27. Li M, Zhang Y, Ji Z, Xie K, Yuan S, Liu Q, et al. Ipn-v2 and octa-500:
Methodology and dataset for retinal image segmentation. arXiv [Preprint]. (2020).
arXiv: 2012.07261. doi: 10.48550/arXiv.2012.07261

28. Wang D, Haytham A, Pottenburgh J, Saeedi O, Tao Y. Hard attention net
for automatic retinal vessel segmentation. IEEE J Biomed Health Inform. (2020)
24:3384–96. doi: 10.1109/JBHI.2020.3002985

29. Wang K, Zhang X, Huang S, Wang Q, Chen F. Ctf-net: Retinal vessel
segmentation via deep coarse-to-fine supervision network. In: 2020 IEEE 17th
International Symposium on Biomedical Imaging (ISBI). Iowa City, IA: IEEE (2020).
p. 1237–41.

30. Yang L, Wang H, Zeng Q, Liu Y, Bian G, A. hybrid deep segmentation
network for fundus vessels via deep-learning framework. Neurocomputing. (2021)
448:168–78. doi: 10.1016/j.neucom.2021.03.085

31. Sudre CH, Li W, Vercauteren T, Ourselin S, Jorge Cardoso M. Generalised
dice overlap as a deep learning loss function for highly unbalanced segmentations.
In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical
Decision Support. Quebec City, QC: Springer (2017). p. 240–8.

32. Guo C, Szemenyei M, Pei Y, Yi Y, Zhou W. SD-UNet: A structured dropout
UNet for retinal vessel segmentation. In: 2019 IEEE 19th International Conference
on Bioinformatics and Bioengineering (BIBE). Athens: IEEE (2019). p. 439–44.

33. Lopes AP, Ribeiro A, Silva CA. Dilated convolutions in retinal blood vessels
segmentation. In: 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG).
Lisbon: IEEE (2019). p. 1–4.

34. Lv Y, Ma H, Li J, Liu S. Attention guided U-Net with atrous convolution
for accurate retinal vessels segmentation. IEEE Access. (2020) 8:32826–39.
doi: 10.1109/ACCESS.2020.2974027

35. Sule O, Viriri S. Enhanced convolutional neural networks for segmentation
of retinal blood vessel image. In: 2020 Conference on Information Communications
Technology and Society (ICTAS). Durban: IEEE (2020). p. 1–6.

36. Li L, Verma M, Nakashima Y, Nagahara H, Kawasaki R. Internet: Retinal
image segmentation utilizing structural redundancy in vessel networks. In:
Proceedings of the IEEE/CVFWinter Conference on Applications of Computer Vision
(WACV). IEEE (2020). p. 3656–65.

37. Zou B, Dai Y, He Q, Zhu C, Liu G, Su Y, et al. Multi-label classification scheme
based on local regression for retinal vessel segmentation. IEEE/ACMTrans Comput
Biol Bioinform. (2020) 18:2586–97. doi: 10.1109/TCBB.2020.2980233

38. Li X, Jiang Y, Li M, Yin S. Lightweight attention convolutional neural
network for retinal vessel image segmentation. IEEE Trans Indust Inform. (2020)
17:1958–67. doi: 10.1109/TII.2020.2993842

39. Liu Y, Shen J, Yang L, Bian G, Yu H. ResDO-UNet: A deep residual network
for accurate retinal vessel segmentation fromfundus images. Biomed Signal Process
Control. (2023) 79:104087. doi: 10.1016/j.bspc.2022.104087

40. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks
for biomedical image segmentation. In: International Conference on Medical
Image Computing and Computer-Assisted Intervention. Munich: Springer (2015).
p. 234–241.

41. Shin SY, Lee S, Yun ID, Lee KM. Deep vessel segmentation by
learning graphical connectivity. Med Image Anal. (2019) 58:101556.
doi: 10.1016/j.media.2019.101556

42. Tang P, Liang Q, Yan X, Zhang D, Coppola G, Sun W. Multiproportion
channel ensemble model for retinal vessel segmentation. Comput Biol Med. (2019)
111:103352. doi: 10.1016/j.compbiomed.2019.103352

Frontiers inMedicine 13 frontiersin.org

https://doi.org/10.3389/fmed.2022.1040562
https://doi.org/10.3390/jcm8070986
https://doi.org/10.1109/ACCESS.2020.3022943
https://doi.org/10.1016/j.cmpb.2021.105949
https://doi.org/10.3390/jimaging5020026
https://doi.org/10.3390/math7020169
https://doi.org/10.1016/j.cmpb.2019.105231
https://doi.org/10.3390/diagnostics11010114
https://doi.org/10.1016/j.eswa.2018.06.034
https://doi.org/10.1016/j.cmpb.2011.08.009
https://doi.org/10.1007/s11042-019-7719-9
https://doi.org/10.3390/e21020168
https://doi.org/10.48550/arXiv.1810.07810
https://doi.org/10.1109/TBME.2018.2828137
https://doi.org/10.1016/j.imu.2021.100521
https://doi.org/10.1016/j.bjid.2018.03.005
https://doi.org/10.48550/arXiv.2012.07261
https://doi.org/10.1109/JBHI.2020.3002985
https://doi.org/10.1016/j.neucom.2021.03.085
https://doi.org/10.1109/ACCESS.2020.2974027
https://doi.org/10.1109/TCBB.2020.2980233
https://doi.org/10.1109/TII.2020.2993842
https://doi.org/10.1016/j.bspc.2022.104087
https://doi.org/10.1016/j.media.2019.101556
https://doi.org/10.1016/j.compbiomed.2019.103352
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Imran et al. 10.3389/fmed.2022.1040562

43. Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR,
Owen CG, et al. An ensemble classification-based approach applied to retinal
blood vessel segmentation. IEEE Trans Biomed Eng. (2012) 59:2538–48.
doi: 10.1109/TBME.2012.2205687

44. Zhang Y, Chung A. Deep supervision with additional labels for retinal vessel
segmentation task. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention. Hong Kong: Springer (2018). p. 83–91.

45. Hu K, Zhang Z, Niu X, Zhang Y, Cao C, Xiao F, et al. Retinal vessel
segmentation of color fundus images using multiscale convolutional neural

network with an improved cross-entropy loss function. Neurocomputing. (2018)
309:179–91. doi: 10.1016/j.neucom.2018.05.011

46. Wu Y, Xia Y, Song Y, Zhang Y, Cai W. NFN+: a novel network
followed network for retinal vessel segmentation. Neural Netw. (2020) 126:153–62.
doi: 10.1016/j.neunet.2020.02.018

47. Alvarado-Carrillo DE, Ovalle-Magallanes E, Dalmau-Cede1o OS.
DGaussianNet: Adaptive distorted Gaussian matched filter with convolutional
neural network for retinal vessel segmentation. In: International Symposium on
Geometry and Vision. Auckland: Springer (2021). p. 378–92.

Frontiers inMedicine 14 frontiersin.org

https://doi.org/10.3389/fmed.2022.1040562
https://doi.org/10.1109/TBME.2012.2205687
https://doi.org/10.1016/j.neucom.2018.05.011
https://doi.org/10.1016/j.neunet.2020.02.018
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

	Feature preserving mesh network for semantic segmentation of retinal vasculature to support ophthalmic disease analysis
	1. Introduction
	1.1. Research motivation

	2. Related work
	3. Suggested methodology
	3.1. Suggested FPM-Net's outline 
	3.2. Architecture of suggested FPM-Net
	3.3. Structure of feature preserving block
	3.4. Structure of suggested pixel classification block

	4. Experimental results
	4.1. Datasets
	4.2. Experimental environment and augmented data
	4.3. Ablation study for the suggested FPM-Net
	4.4. Evaluation of suggested network
	4.5. Comparison with other conventional techniques
	4.6. Visual outcomes of suggested FPM-Net 

	5. Discussion
	5.1. Limitations and future work

	6. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


