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The use of phages as antibacterials is becoming more and more common

in Western countries. However, a successful phage-derived antibacterial

treatment needs to account for additional features such as the loss of infective

virions and the multiplication of the hosts. The parameters critical inoculation

size (VF) and failure threshold time (TF) have been introduced to assure that the

viral dose (Vφ ) and administration time (Tφ ) would lead to the extinction of the

targeted bacteria. The problem with the definition of VF and TF is that they are

non-linear equations with two unknowns; thus, obtaining their explicit values

is cumbersome and not unique. The current study used machine learning

to determine VF and TF for an effective antibacterial treatment. Within these

ranges, a Pareto optimal solution of a multi-criterial optimization problem

(MCOP) provided a pair of Vφ and Tφ to facilitate the user’s work. The algorithm

was tested on a series of in silico microbial consortia that described the

outgrowth of a species at high cell density by another species initially present

at low concentration. The results demonstrated that the MCOP-derived pairs

of Vφ and Tφ could effectively wipe out the bacterial target within the context

of the simulation. The present study also introduced the concept of mediated

phage therapy, where targeting booster bacteria might decrease the virulence

of a pathogen immune to phagial infection and highlighted the importance

of microbial competition in attaining a successful antibacterial treatment.

In summary, the present work developed a novel method for investigating

phage/bacteria interactions that can help increase the effectiveness of the

application of phages as antibacterials and ease the work of microbiologists.
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Introduction

First employed in the medical field about a century
ago, bacteriophages (phages) are currently experiencing a
renewed clinical and veterinary interest particularly for their
potential to contain antibiotic-resistant bacteria (1, 2). Phages
are employed, albeit still in an experimental way, to treat
clinical bacterial infections (3) including those due to antibiotic
resistant species (4, 5), resolve caries (6, 7), preserve food,
and decontaminate livestock (8). Although phages will likely
be used in conjunction with antibiotics, at least in clinical
settings (9, 10), their broad range of applications necessitates
a deep understanding of their behavior to predict the efficacy
of the treatment. Because phages are not static entities but
rather replicate in proportion to their hosts’ density, failing
to account for this characteristic may result in therapeutic
failure (11). To establish a self-sustaining infectious chain,
there is the need for a minimum concentration of hosts
for the phages known as “proliferation threshold” (12,
13):

XP ≈
λ (η − µ)

δβη
(1)

where µ is the growth rate of the bacterial host, and the other
parameters are the life-history tracts of the phages (λ = decay
rate; η = reciprocal of the latency time τ; δ = adsorption rate;
β = burst size). XP is reached at a time known as “proliferation
onset time”:

TP ≈
1
µ

ln
(

λ (η− µ)

δηβN

)
(2)

where N is the total bacterial population. These parameters
depend on each pair of bacteria and phages and provide a
guidance on the possible outcome of the phage application.
Consequently, if phages are given before TP, they will not
replicate successfully. However, if the viral load administered
(Vφ) is high enough, phages will massively lyse their hosts
even in the absence of replication, and the treatment (known
as “passive”) will resemble antibiotic features where the
drug does not amplify once administered. Conversely, if the
administration time (Tφ) is occurring after TP, the phage-
derived antibacterial treatment is defined as “active” because
the virus will actively replicate establishing a self-sustained
infectious cycle.

The parameter “critical inoculation size” (VF) was
introduced to provide a guide to the minimum amount of
phages that Vφ should be administered to achieve an effective
therapy (12). The critical inoculation size is defined as:

VF = εexp
(

ω
(
TP − Tφ

)
+

ω

µ
e−µ(TP−Tφ) − 1

)
(3)

where ε is the dilution factor to obtain one phage in the system
and ω is the decay or wash-out of the microbes. Similarly, the

“failure threshold time” (TF) provides a guide for the inoculation
time:

TF = TP −
1
ω

ln
(

Vφ
ε

)
−

1
µ

(4)

Another feature to consider in phage therapy is that the
interaction with other species influences bacterial behavior. For
instance, it has been shown that the pathogenic Escherichia
coli strain O157:H7 can adhere to substrates more easily
when in the presence of Pseudomonas aeruginosa (14). In
addition, it has been demonstrated experimentally that certain
microorganisms inhibit the growth of other microbial species.
For example, the commensal Lactobacillus crispatus slows
the growth rate of the pathogens Gardnerella viginalis and
Neisseria gonorrhoeae (15), whereas Lactobacillus brevis inhibits
Chlamydia trachomatis (16). The opposite occurrence is also
possible, with microorganisms experiencing increased growth
rates when co-cultured with boosting species. For instance, the
pathogens Aggregatibacter actinomycetemcomitans and Candida
albicans increased the growth rate of Streptococcus mutans, a
bacterium ubiquitous in the oral flora (17, 18). Moreover, it has
been shown that phages might be able to reduce the density of a
target species only in the presence of a competing microbe. For
instance, phages T7 and T5 could induce the extinction E. coli
in a culture only when Salmonella enterica was present (19).
Microbes can, therefore, influence each other’s fitness including
phagial virulence. In vivo, the situation is even more complicated
because it is necessary to account for the immune response
against both bacteria and phages (20). Within this context, the
case might arise of a phage-resistant pathogen whose booster
species is instead sensible to phage infection. In that case,
targeting the booster species might reduce the virulence of the
pathogen and hereby help the clearance of the infection.

Both Eqs. 3 and 4 were defined to account for these
biological characteristics to improve the effectiveness of phage-
derived antibacterial treatments. However, the issue with the
definitions of VF and TF is that Eqs. 3 and 4 are a posteriori
approximations which depend on the sought-after unknown
quantities Tφ and Vφ required for effective therapy. Since both
Eqs. 3 and 4 are non-linear equations, resolving this dependency
requires solution of a system of non-linear inequalities, which is
cumbersome and, without further conditions, not unique.

The aim of the present work was to use a numerical
approach to identify TF , VF , Tφ , and Vφ . A decision tree
algorithm was developed to explore the different outcomes of
microbial consortia undergoing phage treatment and to identify
the best pairs of Vφ and Tφ for achieving either active or passive
treatment. The identification of a Vφ/Tφ pair will facilitate the
microbiologist’s work in implementing an effective therapy. The
algorithm was tested on a series of microbial consortia: (i) the
scenario described by Payne and Jansen in their study on phage
therapy; (ii and iii) dual bacteria combinations; (iv) two species
boosting each other’s fitness.
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Materials and methods

Microbial growth models

The focus of the present analysis was on what can be
described as “allochthonous invasion,” based on the definition
of autochthonous species (a permanent component of a specific
micro-environment) and allochthonous (introduced anew into
such a niche) species (21). At the beginning of the simulation
(t0), the initial density of autochthonous species was considered
higher than that of the allochthonous species, but the latter
outgrew the former at a later time t.

Bacterial growth was implemented using logistic functions
and the phage expansion was linked to the bacterial host by the
following ordinary differential equations (ODEs):

Ẋ = µX
(

1−
N
κ

)
− δXP − ωX −H (t)X (5)

İ = δXP − ηI − ωI −H (t) I (6)

Ṙ = ξR
(

1−
N
κ

)
− ωR−H (t)R (7)

Ṗ = ηβI − δXP − λP − ωP − h (t) P (8)

X and I indicate the population of susceptible and
infected bacteria, respectively, whereas R is the population of
bacteria resistant to phage (P) infection, that is a competitive
species. The terms µ and ξ indicated the growth rate of the
susceptible/infected and resistant bacteria. The logistic terms
were expressed as the ratio of the total bacterial population N
to the carrying capacity κ. The phagial life-history traits were: β,
burst size; δ, adsorption rate; and λ, decay rate (22). In addition,
η represented the reciprocal of the latency time τ. An additional
parameter ω was included for a possible wash-out of microbes;
this was set to 0.15 ml/h in all models. The terms H(t) and
h(t) represent the immune response against bacteria and phages,
respectively. These terms were dependent on time because the
immune response is not immediate (12). Since the present study
focused on in vitro applications of phages, both H(t) and h(t)
were set to zero. A list of the parameters used in the present
study is reported in Table 1.

The examples used in the present work were derived
either from batch (closed vessel) or continuous (chemostat)
culture. In the former case, the growth was converted from an
explicit consumption of a limiting nutritive resource to implicit
consumption under the assumption that the limiting resource
would have remained constant. In particular, the specific growth
rates were calculated from the maximum growth rates using the
Monod term:

µ =
µmaxS
KS + S

(9)

with S being the concentration of the limiting nutrient, and KS

being the half-saturation constant (23, 24).

Estimation of growth rates

The microbes’ life traits were based on information retrieved
from the literature. When not provided by the experimental
settings of the studies considered herein, the growth rates were
calculated as a function of the bacterial population at time t0

(N0) and at time t (Nt) with the formula (24):

µ =
log10 (Nt)− log10 (N0)

log10 (2) (t − t0)
(10)

The growth rate was numerically computed as the slope
of a linear model based on the bacterial densities displaying a
linear distribution.

Since the model for case 4 included occurrences where
the growth of a given microbe was influenced by that of
another species, we addressed the use of dynamic growth rates,
modifying the ODE system as follows. The growth rate of a
microbe X cultivated alone was indicated with µε (from the
Greek ε’ρηµι′α: erēmíā, loneliness), whereas µo (from the Greek
òµαρτη̃: homarte, at the same time and place) indicated its
growth rate in presence of another microbe Y (booster) capable
of enhancing the bacterial growth. Similar to X, Y ’s growth rates
could be indicated by νε and νo. A consortium of a bacterium
and a booster required µ terms that could shift between µε

and µo. Since the species in the model started mixed together,
the baseline growth rate was µo, but a loneliness term ε was
added to shift µo toward µε with decreasing amounts of the
booster species. The loneliness term was defined as: ε =1ϑ , with
1 = (µo – µε). The ϑ was a “quorum term” obtained by adapting
the Hill function (25):

ϑ =
ρn

ρn + %n (11)

with ρ being the density of the affected species, % the density
of the booster species, and n = 1. The property of ε was that
it ranged between 1 in absence of booster species (ϑ = 1) and
1/2 when the bacterial densities were equal (ϑ = 1/2). Thus, the
constant growth rate µ in Eq. 5 was substituted by a function M
defined as:

M = f (µε,µo, ρ, %) = µo − ε = µo −1ϑ = µo

− (µo − µε) ϑ = µo − (µo − µε)
ρ

ρ + %
(12)

obtaining Ẋ = f(µε, µo, ρ, %)X(1 – N/κ) – δXP – ωX (replacing
Eq. 5) and the dynamic of the booster species Y is given by
Ẏ = f(νε, νo, ρ, %)Y(1 – N/κ) – ω Y.

Ensemble simulations

The computation of VF and TF (Eqs. 3 and 4) is in general
difficult due to their non-linearity. To study how Vφ and
Tφ affected the treatment outcome, an ensemble simulation
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TABLE 1 Variables and parameters used in the present study.

Parameter Symbol Units Case 1 Case 2 Case 3 Case 4

Growth rate targeted species µ h−1 0.500 0.79 0.32 0.23–0.49

Growth rate competitor species ξ h−1 – 0.22 0.20 0.18

Growth rate booster species ν h−1 – – – 0.24–0.42

Carrying capacity κ CFU×ml−1 6.5× 106 6.5× 106 5.0× 109 5.0× 109

Adsorption rate δ ml×min−1 1.66× 10−9 5.0× 10−10 5.0× 10−10 4.5× 10−10

Decay rate λ PFU× h−1 5.000 0.068 0.068 0.072

Burst size β PFU 100 150 150 115

Latency time t min – 23 23 42

Reciprocal of latency time η h−1 5.0 2.61 2.61 1.4

Wash out rate ω ml× h−1 0.15 0.15 0.15 0.15

Simulation time t h 20 60 67 100

with 16 384 repetitions was performed. For each iteration, the
viral amounts Vφ and administration times Tφ varied. The
values for viral density were randomly selected between 102

and 1012 plaque forming units (PFU/ml), with logarithmic
scaling. The range for the viral amount was chosen on the
assumption that, while it is possible to make virus dilutions at
any desired concentration, administering less than 100 particles
per milliliter would have been both impractical and ineffective.
Overly concentrated viral suspensions, on the other hand,
could produce virion aggregation, reducing the efficiency of
the preparation. A topic review of the literature carried out
for the present work showed that virtually all phage therapies
administer between 104 and 109 PFU/ml. Thus, the range was
deemed broad enough to cover virtually all phage therapy
situations. The administration times were equidistant from 0 h
to the end of the simulation’s time frame.

For each iteration, the trajectory of the phage was
analyzed to determine the treatment’s outcome, following the
classification suggested by Payne et al. (12). Host density above
102 PFU/ml at the end of the simulation marked a “failed”
treatment. The therapy was considered “passive” when the phage
density never exceeded 105% of the initial administered amount
(Vφ). The therapy was considered “delayed” if the peak in phage
density was obtained after more than 4 h and when it was at least
105% of Vφ . The therapy was considered “active” if the phage
density increased immediately over 105% of Vφ .

Decision tree algorithm

To compute ranges of viral load and administration times
for each type of therapy, a decision tree algorithm (26, 27) was
applied to the output of the ensemble simulation. The decision
tree provided a partition of the set of therapy pairs which
classified each pair by their expected therapy outcome and the
estimated accuracy of the prediction. The resulting ranges gave
a simplified representation of the regions of “active,” “delayed,”

“passive,” and “failed” outcomes. The boundary of these ranges
fulfilled a similar role as the critical values VF and TF introduced
by Payne et al. (12). In comparison to Eqs. 3 and 4, the output of
the decision tree did not depend on any asymptotic assumptions
on the dynamics of the concentrations. The ranges provide an
a priori approximation of VF and TF ; therefore, these values can
be used as a decision criterium for suitable therapy parameters
Vφ and Tφ . However, they were not as general in the sense that
the ranges were only valid for fixed model parameters.

Pareto optimal therapy pair

The decision tree-driven classification was not sufficient
to select optimal therapy pairs for a specific treatment. For
example, therapy pairs at the boundary of the computed ranges
are very sensitive to perturbations, resulting in undesirable
outcomes for the final user. Thus, the present study solved a
multi-criteria optimization problem (MCOP) (28) to provide
the user with a pair of phage load (Vφ) and administration
time (Vφ) that always resulted in the chosen outcome (“active,”
“delayed,” “passive,” and “failed”). MCOP is widely used to
guide the decision of treatment parameters (29). The criteria
employed to achieve an effective therapy was a maximal
insensitivity to perturbations combined with the shortest
possible administration time. For a given therapeutic pair (Vφ ,
Tφ), the measure of insensitivity was the largest radius R of
an ellipse such that all perturbed pairs Ṽφ , T̃φ which satisfied
the inequality (Tφ – T̃φ)2 + wφ2(log(Vφ) – log(Ṽφ))2 < R2

also yielded the desired therapy outcome (Figure 1). The
scaling constant wφ determined the shape of the ellipse of
perturbations. For all cases in this article, the value wφ = 2
was used. The data from the ensemble simulation provided a
fast way to approximate R(Vφ , Tφ). The weighted sum method
(28) in conjuncture with the particle swarm method (30) was
used to compute Pareto optimal solutions. The approach used
was prototypical in the sense that, depending on the specific
application, other criteria could be chosen instead.
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FIGURE 1

Heat maps for the selection of the most effective pair of Vφ and Tφ . The ensemble simulation generates a space of viral dose and administration
times whose employment lead to a different outcome. Each pixel of the plot represents the outcome of the simulation, color-coded according
to the natural logarithm of the host’s density at the end of the simulation (bar on the right of the plots). There are 128 intervals in both the x-axis
(administration time Tφ ) and the y-axis (viral load Vφ ), determining 16 328 simulations. The curves indicate the boundaries of the different
outcomes (active, delayed, passive, and failed therapies), representing critical values equivalent to VF and TF. The selection of optimal pairs of
viral load and administration times (equivalent to Vφ and Tφ ) was obtained with a Pareto approach implemented with as a multi-criteria
optimization problem (MCOP). These values are visualized by red dots.

Implementation

Computations were carried out in Julia 1.7 (31) and
implemented with the packages: DifferentialEquations
(solution of differential equations) (32); LsqFit, Dierckx,
and Roots (regression); DecisionTrees (classification); Optim
(optimization) (30); and PyPlot (plotting). Data estimation
from the original plots was obtained using WebPlotDigitizer
4.5.1 Bacterial growth rates were computed using a custom

1 https://automeris.io/WebPlotDigitizer/

function growthRate, built-in R 4.1, that selected the points of
bacterial density over time most describing a continuous line
and then generated a linear model on those points. The slope of
the model was used as the growth rate value. Retrieval of phages
species for a given bacterium was obtained by inquiring the
Virus-Host Database during the year 2021 (33).

Results

In the following sections, the ensemble simulations
were performed for selected cases describing allochthonous
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TABLE 2 Summary of the phage therapy outcomes obtained by decision tree approach for the cases presented in the present study.

Case Microbial consortium Phage Outcome
(efficacy)

Vφ range†

(PFU × ml−1)
Tφ range‡

(h)

1 Hypothetical* Hypothetical Passive (100%) ≥2.6× 108
≥0

2 Escherichia coli* + Pseudomonas aeruginosa T4 Active (99.7%) ≤2.6× 109 15.5–56

Delayed (100%) ≤3.7× 106
≤13.26

Passive (100%) ≥2.6× 109
≥0

3 Escherichia coli* + Azotobacter vinelandii T4 Active (100%) ≤4.1× 1010
≤61.3

4 Streptococcus mutans* + Candida albicans + Lactobacillus reuteri λ Active (100%) ≤2.2× 109 36.8–89.5

Delayed (98.7%) ≤1.2× 105
≤30.6

Passive (100%) ≥9.6× 108
≤33

*Targeted bacterial species.
†The upper end of the range is 1011 PFU/ml.
‡The upper end of the range is the end of the simulation’s time.

invasions. The decision trees defined the limits for each type
of phage-derived antibacterial treatment (“passive,” “delayed,”
“active,” or “failed”), providing values equivalent to TF and VF

(Table 2). Moreover, a pair of viral load and administration
time, equivalent to the parameters Vφ and Tφ , was determined
by a multi-criteria optimization problem to provide the user
with convenient values for implementing the chosen treatment.
The cases reported below represented in vitro applications of
phages to eliminate a target bacterium; thus, the cases did not
involve the immune system. Moreover, the cases were based on
the application of lytic phages; the presence of prophages in
the host bacteria was not considered. The antibiotic resistance
capability of the hosts and their potential virulence factors were
also excluded from the modeling.

Case 1: Hypothetical bacterium and
phage

Payne and Jansen described the growth of a hypothetical
bacterium and the administration of its phage, highlighting
four main treatment outcomes: “failed,” “passive,” “active,” and
“delayed” (11). In the present study, the failed outcome was
used as a base to implement an effective passive therapy. The
parameters of the simulation, derived from the Payne and
Jansen’s study, were as follows. Initial concentration of bacteria
(X0): 1,000 colonies forming units per milliliter (CFU/ml); Vφ :
108 plaque forming units per milliliter (PFU/ml); Tφ : 2.5 h;
µ: 0.5 h−1; δ: 1.66 × 10−9 ml/min; η: 5 h−1; β: 100 PFU; λ:
5 PFU/h. The bacterial growth was adapted to account for a
logistic growth with κ = 6.5 × 106 CFU/ml and ω = 0.15 ml/h.
The simulation time-frame was 20 h (Figure 2A).

The decision tree algorithm developed herein reported only
one effective outcome: passive. The Pareto optimal pair of
viral load and administration time was identified as 4.5 × 109

PFU/ml and 2.8 h. The Pareto optimal pair of viral load and
administration time was identified as 1.99 × 1010 and 3.4 h.
The results of the therapy clearly illustrated the characteristics

of an effective passive approach: there was no increase in phage
density with respect to the initial input and there were no
bacteria left in the environment at the end of the simulation,
indicating that the infection had been cleared as required
(Figure 2B).

The outcome of the therapy was dependent on the time
scale of the application. While a range of 20 h allowed only
for passive therapy, a longer scale (for instance, 48 h) provided
also active and delayed outcomes which reduced the host
below 102 PFU/ml (Supplementary Figure 2). A dynamic plot
was implemented to actively explore the role of the different
parameters in modeling phage therapy (Supplementary File
1). The figure shows that the outcome of the phagial
administration is strongly dependent on the parameters used
in the computation, highlighting the fact that phage therapy
is case-specific.

Remarkably, an oscillation in population density was
serendipitously obtained with Vφ = 1.6 × 105 PFU/ml and
Tφ = 15.9 h. The model showed a first wave of phage expansion
followed by bacterial decrease and a second wave of phage
expansion that caused the collapse of the host population
(Supplementary Figure 3A).

Case 2: Escherichia coli vs.
Pseudomonas aeruginosa

The growth of Escherichia coli C-8 and P. aeruginosa
PAO283 was described by Hansen and Hubbell in 1980 using
batch cultures (34). The life-history traits reported by this study
for these bacteria were as follows. E. coli: yield (Y) 2.5 × 1010

cells per gram (cell/g) of limiting substance; half saturation
constant (KS) 3.0 × 10−6 grams per liter (g/L) of limiting
substance; µmax = 0.81 h−1. P. aeruginosa: Y = 3.8× 1010 cell/g;
KS = 3.0× 10−6 g/L; ξmax = 0.91 h−1. The bacteria were growth
in 100 ml flasks containing minimal medium with tryptophan
as limiting nutrient, provided at an initial concentration of
1.0 × 10−4 g/L. The growth rates were calculated according to
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FIGURE 2

Model of the competition between hypothetical bacteria and
phages. Outcome for case 1. (A) Failed therapy. The simulation
shows a passive therapy, since there is no amplification of the
phages, where the virions are depleted from the system before
the bacterium could be wiped out. To note the decrease in
bacterial concentration after the application of Vφ = 108 phages
at Tφ = 2.5 h and the increase in density of the escaped bacteria.
(B) Effective therapy. The only effective therapy possible was
passive therapy, with ample margins of administration. The
Pareto-derived pair for passive therapy was: 4.5 × 109 PFU/ml
and 2.8 h.

Eq. 9: µ = 0.79 h−1for E. coli and ξ = 0.22 h−1 for P. aeruginosa.
The carrying capacity κ was estimated from the original graph
at 6.5 × 106 cells/ml. The initial seed of bacteria was extracted
from the original graphs: E. coli, 334 cells/ml; P. aeruginosa, 88
516 cells/ml. These quantities gave a P. aeruginosa/E. coli ratio of
265.4, in line with the reported 200:1 for the initial densities of
these bacteria. Escherichia coli outgrew P. aeruginosa about 9.2 h
after the beginning of the experiment and the latter was wiped
out in about 60 h. XP was calculated to 10 556 cells and TP at
4.4 h after the beginning of the experiment (Figure 3A).

To simulate the phage therapy, the life-history traits of
the coliphage T4 were retrieved from the literature (35):
δ = 5.0 × 10−10 ml/min; τ = 23 min (resulting in η = 2.61 h−1);
λ = 0.068 PFU/h; β = 150 PFU. The simulation time-frame
was 60 h with ω = 0.15 ml/h and κ = 6.5 × 106 CFU/ml.
The decision tree identified three possible effective outcomes:
“passive,” “active,” and “delayed active.” The best pair of viral
load and administration time for active therapy were identified

FIGURE 3

Model of the competition between Escherichia coli and
Pseudomonas aeruginosa. Outcome for case 2. (A) Bacterial
competition in absence of phages. The data estimated from the
original plots for E. coli and P. aeruginosa is represented
together with the fitting obtained using ODE models for E. coli
and P. aeruginosa. (B) Bacterial competition in presence of
phages. The Pareto-derived pair for active therapy was:
2.0 × 105 PFU/ml and 17.7 h, leading to the extinction of the
invading bacterium E. coli and the recovery of the resident
species P. aeruginosa.

in 4.8 × 105 PFU/ml and 20.2 h (Figure 3B). The best pair of
viral load and administration time for delayed treatment were
identified in 2.2 × 104 PFU/ml and 5.4 h (data not shown).
The best pair of viral load and administration time for passive
treatment were identified in 3.2 × 109 PFU/ml and 3.6 h (data
not shown).

As for case 1, an oscillation in population density was
serendipitously obtained with Vφ = 1.0 × 106 PFU/ml and
Tφ = 10.0 h. The model showed a first wave of phage expansion
followed by bacterial decrease and a second wave of phage
expansion that caused the collapse of the host population
(Supplementary Figure 3B).

Case 3: Escherichia coli vs.
Azotobacter vinelandii

The growth of the bacteria E. coli B/r and A. vinelandii
OP was described by Jost and collaborators in 1973 using
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FIGURE 4

Model of the competition between Escherichia coli and
Azotobacter vinelandii. Outcome for case 3. (A) Bacterial
competition in absence of phages. The dots represent the data
estimated from the original plots for E. coli and A. vinelandii, the
lines the conversion to a logistic model. (B) Bacterial
competition in presence of phages. The Pareto-derived pair for
active therapy was: 9.0 × 109 PFU/ml and 66.8 h, leading to the
extinction of the invading bacterium E. coli and the recovery of
the resident species A. vinelandii.

continuous culture (36). The authors reported specific growth
rates of 0.32 and 0.23 h−1 for E. coli and A. vinelandii, with KS

of 1.0 × 10−7 and 1.2 × 10−2, respectively. The concentration
of glucose in the reactor was 0.005 mg/ml, providing maximum
growth rates of 0.32 and 0.07 h−1 for E. coli and A. vinelandii.
The carrying capacity κ was estimated from the original graph at
5.0 × 109 CFU/ml. The calculated growth rate of A. vinelandii
matched what reported in the public domain (37) but did not
allow the building of a fitting model (Supplementary Figure 4).
A value of ξ = 0.20 ± 0.01 was reported in the literature (38)
and allowed for a better description of the data (Figure 4A). The
data for the simulation were extracted from the original figure
of Jost et al., providing X0 of 80 251 179 CFU/ml for E. coli and
143 462 884 CFU/ml for A. vinelandii.

The phage therapy was assumed to use coliphage T4; thus,
the life traits were the same as in case 2. The simulation

time-frame was 67 h with ω = 0.15 ml/h. The decision
tree identified two effective therapeutic outcomes: “passive”
and “active.” The Pareto optimal pair of viral load and
administration time for active therapy were identified in
2.9 × 106 PFU/ml and 9.5 h (Figure 4B). The Pareto optimal
pair of viral load and administration time for passive therapy
were identified in 1.6 × 106 PFU/ml and 8.4 h (data not
shown).

Case 4: Candida albicans,
Streptococcus mutans, and
Lactobacillus reuteri

The present case investigated the effect of phage therapy
on mutually synergic microbial species. C. albicans is an
opportunistic fungus that can cause infections in multiple
organs and associated to increased risk of oncogenesis (39, 40).
In particular, the presence of several virulence factors allows
this fungus to invade and thrive in several tissues and it can
develop biofilms that protect it from antibiotic treatments (41).
Being a protist, C. albicans is immune to phagial infection.
However, experimental evidence reported that this pathogen’s
growth rate is increased by booster bacteria, namely S. mutans
(17). Consequently, targeting the booster species will provide,
in theory, a “mediated phage therapy” that could reduce the
pathogen’s virulence. As a proof-of-concept, we defined a
hypothetical microbial consortium composed by C. albicans
as the phage-resistant pathogen, S. mutans as the boosting
species susceptible to phage infection, and L. reuteri as the
commensal bacterium.

The details of the simulation were as follows. Even if not a
bacterium, the growth of C. albicans has been modeled using
logistic models (42). Thus, Eqs. 5–8 were deemed suitable
to model the growth of this fungus. The growth rates of
C. albicans and S. mutans were estimated from the original
figures (17, 18) (Supplementary Figure 5). The density of
S. mutans in the initial phases of growth in the presence of
C. albicans was 8.4 ± 6.2 × 107 CFU/ml; conversely, the
mean density of C. albicans in the presence of S. mutans was
1.9 ± 1.1 × 106 CFU/ml. Thus, the ratio S. mutans/C. albicans
was 44.6. However, these measurements were taken from two
different series of experiments, making it difficult to determine
an accurate value of µo for a single consortium. The growth
rate of S. mutans was computed at 0.23 h−1 when cultivated
alone, and at 0.49 h−1 when cultivated together with C. albicans.
Conversely, the growth rate of C. albicans was computed at
0.24 h−1 when alone and 0.42 h−1 when in presence of
S. mutans. The L. reuteri growth rate was derived from the public
domain: 0.18 h−1 (43) and was considered constant. The model
considered an initial seed of 1× 104 CFU/ml for both S. mutans
and C. albicans, and 1 × 108 CFU/ml for L. reuteri. The model
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FIGURE 5

Model of the competition between Streptococcus mutans,
Candida albicans and Lactobacillus reuteri. Outcome for case 4.
(A) Bacterial competition in absence of phages. Models
generated for a hypothetical consortium of two bacteria
(S. mutans and L. reuteri) and one protist (C. albicans). The
boosting species S. mutans (solid line) and the pathogen
C. albicans increase each other growth rate causing a depletion
in the commensal L. reuteri. (B) Bacterial competition in
presence of phages. The Pareto-derived pair for active therapy
was: 1.0 × 107 PFU/ml and 42.6 h, leading to the extinction of
the boosting bacterium S. mutans and consequently causing a
reduction in the density of the pathogen C. albicans and the
recovery of the commensal L. reuteri.

showed that both S. mutans and C. albicans grew with similar
dynamics and overgrew L. reuteri within 60 h after the beginning
of the simulation (Figure 5A). Specifically, at the end of the
simulation, C. albicans and L. reuteri had densities of 1.2 × 109

and 3.5× 107 CFU/ml, respectively.
The Virus-Host Database reported three phages for

S. mutans: Streptococcus phage ϕAPCM01, M102, and
M102AD. These phages, all belonging to the family Siphoviridae,
were highly genetically related: M102 and M102AD shared
about 91% similarity at the nucleotide level (44), and ϕAPCM01
shared 85% nucleotide identity with them (6). Apart for the
M102AD’s adsorption rate (δ = 1.5 × 10−10 min−1 (44)), no
other life traits were available in the public domain. Hence,
the parameters for the present simulation were derived from
another member of the Siphoviridae family: phage λ (35). Thus,

δ = 4.5 × 10−10 ml/min; τ = 42 min; η = 1.4 h−1; λ = 0.072
PFU/h; β = 115 PFU. The carrying capacity κ was set at 5.0× 109

CFU/ml; ω = 0.15 ml/h−1; the simulation time-frame was 100 h.
The decision tree identified two possible therapeutic

outcomes: “passive” and “active”. The Pareto optimal pair of
viral load and administration time for active therapy was
identified in 6.7× 105 PFU/ml and 41.0 h (Figure 5B). The best
pair of viral load and administration time for passive therapy
was identified in 3.2× 109 PFU/ml and 3.9 h (data not shown).

As for cases 1 and 2, an oscillation in population density
was serendipitously obtained with Vφ = 2.9 × 106 PFU/ml and
Tφ = 3.9 h (Supplementary Figure 3C). The model showed a
first wave of phage expansion followed by bacterial decrease and
a second wave of phage expansion that caused the collapse of the
host population.

Discussion

In the present study, a machine learning approach was
implemented to quickly analyze the possible outcomes of phage-
derived antimicrobial treatments and provide the user with a
pair of viral load and administration time that can result in
effective antibacterial interventions. These values, equivalent to
the parameters Vφ and Tφ introduced by Payne et al. (12),
were extracted from a mathematical space (administration time
vs. viral load) that accounted for different types of treatment
(“active,” “delayed,” “passive,” and “failed”). The boundaries
between these regions were equivalent to the parameters VF

and TF defined by Payne et al. (12). The in silico applications
presented herein (cases 1–4) did not include the immune
response in the model because represented in vitro applications.

Nonetheless, more and more studies are reporting the role
of the immune system in the effectiveness of phage therapy
due to what has been called “immunephage synergy” (45–47).
Notably, immunity was excluded, albeit considered, in the work
by Payne and Jansen (11), Payne et al. (12). Such an assumption
can be accepted considering the treatment fast enough to be
completed before an immune response to both the bacterial
pathogen and the phages could be instantiated. The first clinical
applications of phagotherapy reported bacterial clearance as
extremely rapid (48). For instance, in 1919, three young brothers
were admitted to the Hôpital des Enfants-Malades, Paris, with
acute dysentery. Félix d’Herelle, the first to use phages in clinical
settings administered phages to them children. The children
recovered in 24 h. However, contemporary clinical applications
of phages last for at least 1 week (49, 50); thus, the immune
response becomes a critical aspect of the therapy. Nonetheless,
the immune response to phages varies among treated people.
Antiphage activity of sera (AAS) was observed in about half of
the patients after the tenth day of oral administration of phages
(51). AAS may even be present in patients before phage therapy
is initiated: phage administration resulted in a 37% increase in
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the baseline response in phage-naive patients; 23% of patients
undergoing phagotherapy showed AAS; and it has been reported
that about 80% of healthy people carry anti-phage antibodies
(51, 52).

Because of the current worldwide spread of multi-drug
resistant bacteria, the use of phages to clear bacterial infections
is experiencing a resurgence of interest in Western countries
(53). Nonetheless, to be effective, the application of phages
as antibacterials should consider several factors aside from
the immune response, including the host replication and rate
of phage decay (12). The development of bacteria resistant
to specific viral infection is also a fundamental feature to
consider to obtain an effective phage treatment (54). Several
models account for the bacterial development of resistance
to phagial infection (55, 56). However, in the absence of
experimental data, including this feature would have increased
the model’s complexity without providing any real benefit to
the present study. However, the increasing application of phages
for eco-restoration (57), food safety (58, 59), and sterilization
of surfaces (60–64) implies that phage-derived antibacterial
treatments need to work even in the absence of a complementary
immune response.

The present study aimed to help microbiologists involved in
the medical field choosing the right amount of phages and the
most effective administration time to clear an infection. While
it may be tempting to administer as many phages as possible
as soon as possible, Payne and Jansen’s research highlighted
that doing so does not ensures the treatment’s effectiveness.
Moreover, applying very high amounts of phages would trigger
passive therapy, nullifying the dynamic feature that bacterial
viruses have over antibiotics. The model we have introduced
herein was intended to provide microbiologists involved in
ecological studies with a means to assess the interactions
between bacteria and phages quickly.

Case 1 was based on the aforementioned work by Payne
et al. (12). The authors described (a) a failed therapy with the
combination Vφ = 108 PFU/ml, Tφ = 2.5 h, and (b) an effective
passive therapy with Vφ = 1.0 × 109 PFU/ml, Tφ = 2.5 h. The
results obtained herein confirmed that, within a time frame of
20 h, only passive therapy could effectively clear the infection,
and the obtained margins included the values used by Payne and
Jansen to achieve effective passive therapy.

In case 2, all types of therapeutic outcome were possible. The
present paper focused on active therapies, and even in this case
the target bacterium (E. coli) was eradicated from the simulation
within the allotted time. Nonetheless, the heath maps described
a zone at low dispensation time (below 15 h) and intermediate
viral load (around 107 PFU/ml) where the treatment produced a
failed outcome (Figure 1). Such a result highlighted the need to
assess the outcomes of the treatment to improve its effectiveness.

Case 3 confirmed that the outcome of phage therapy
is dependent on the peculiar condition of the microbial
consortium. In this case, only active and passive therapy were

possible. The target bacterium (E. coli) was removed from the
in silico environment allowing the recovery of A. vinelandii as
required. The analysis of this consortium was unambiguous.
However, the lack of empirical data precluded the selection of
the most fitting model for the growth of the bacteria. While we
chose, for simplicity, the logistic growth model (Eqs. 5–8) to
describe the replication of naïve bacteria, the shape of the data
extracted from published experiments (36) suggested that other
functions providing more sigmoid profiles, such as Holling type
IV, might be viable alternatives. The precise definition of the
underlying growth function was deemed of little value in the
absence of experimental data.

Case 4 introduced the concept of “indirect phage therapy,”
that is the targeting of a booster bacterium to decrease
the pathogenesis of a phage-resistant microbe, in this case
C. albicans. Given the morbidity and mortality associated
with this fungus, driven primarily by its capacity to generate
biofilms that can be colonized by a variety of microbes that
facilitate horizontal gene transfer (65), methods to eradicate this
opportunistic pathogen would be clinically beneficial. Since the
growth rate of the microbes in the simulation was not constant
but was related to the density of the partner species, we defined a
dynamic growth rate for the interacting species. In the literature,
there is a paucity of cases of mutually interactive microbes and
their growth models. We retrieved a growth rate as a function of
bacterial density in the theoretical description of cross feeding
(66). Such a model required a term cx to avoid the problem of
infinity when the selected species’s density was equal to zero.

Ẋ = X
(

µ+ bxy
Y

X + cx

) (
1−

X + Y
κ

)
(13)

In Eq. 13, bxy indicates the benefit of the species Y over
the growth of X, but cx does not represent a biological capacity.
The function we introduced to adjust the growth rate according
to the bacterial densities (Eq. 12) avoided division by zero by
adapting the Hill function aXn(Xn + Yn)−1, with a = 1 and n = 1,
to the microbial densities, dispensing the need for a cx term.
Even in case 4, as in cases 1 and 2, there was a zone a failure
at low administration times and intermediate viral loads.

Within the present framework, as in Payne et al.’s study
(12), the effectiveness of the therapy was based on the complete
removal of the target bacterium and assumed the absence of
an immune response. While such an assumption is feasible for
in silico systems like those included in the present study, recent
models indicated that actual phage therapy, in combination
or not with antibiotics, would fail without a complementary
immune response (20, 67). Thus, in vivo, the complete removal
of the target species is probably not essential to achieve
remission from infection. Effective therapy will consist of
phage-driven reductions in the density of the host below
a threshold where the immune system can wipe out the
target. Recent research has shown that phage administration
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activates the innate immune response and reduces harmful pro-
inflammatory pathways (10, 68), but their role in the treatment
outcome is still unknown. To date, the role of immunity in phage
therapy remains under active investigation.

It has been shown in vitro that microbial competition can act
synergistically with phages to reduce the density of E. coli (69).
The P. aeruginosa PAO1 density decreased significantly more
upon phage administration in the presence of additional species
(Staphylococcus aureus and S. macrophilia, either independently
or in combination) than in the absence of competitors (70).
As a result, there may be a parallel between the role of the
immune response in vivo and microbial competition in vitro.
In both cases, phagial infection may not be enough to eliminate
a specific bacterium from the environment. However, the
increased selective pressure imposed by viral infection may
cause a shift in microbial competition against the targeted
bacterium. The role of competition in phage therapy could have
significant implications for treatments that do not involve the
immune response, such as in environmental applications. These
data suggest a scenario where phages alone are not sufficient
to eradicate a targeted bacterial host from a given micro-
environment. Conversely, the simultaneous action of phages
and other features (immune response, microbial competition, or
antibiotics) assure the elimination of the targeted bacteria.

Moreover, the development of host-side resistance to
infection has significant implications for the phage-derived
antibacterial treatment. Phage-resistant mutants will counteract
the phage treatment, allowing the targeted species to survive
in the micro-environment (55, 71). In the present work, as in
the mentioned study of Payne and Jansen, mutation was not
accounted for. More refined modeling will require to include
such a feature. In the absence of experimental data, the inclusion
of mutation would have increased the complexity of the model
without any real gain.

Consequently, the adaptation of in silico models to in vivo
contexts is not trivial due to the still poorly understood
additional factors involved in phage therapy. Thus, a successful
in silico treatment does not assure the success of in vitro
or in vivo implementations (72). Nonetheless, modeling is
an essential part of the experimental investigation because
models allow to predict results, provide explanation of empirical
data, and streamline wet lab experiments (73). The method
presented in the present study was devised toward microbial
modeling to improve the efficacy of phage therapy by making
it simple to determine the phage load and administration
time ranges to be tested in the experimental settings. Our
model should be regarded as a preliminary framework that
can be expanded to include additional features to improve its
ability to fit experimental data. For example, the current model
considered the “sur-mesure” approach to phage treatment (50).
In other words, a single specific phage is administered after
careful characterization of a chosen pathogen. In many real-
world applications, however, the most common phage therapy

approach is the so-called “pret-a-porter,” where a cocktail of
different phages is administered simultaneously. To account for
such a phagial variability, the model would have to increase
the number of phage instances to accommodate multiple life-
history traits, as previously proposed (71, 74, 75). The resulting
model would be much more complex than the one presented
herein but, in the absence of experimental data, it would not
provide any additional benefit. Similarly, the model did not
consider the presence of integrated lysogenic phages in the hosts
that might become activated upon infection with lytic phages to
avoid unneeded complexity.

We observed indications for oscillations in population
density. The peaks in host density preceded that of the phages,
in accordance with the Lotka-Volterra model, namely a peak
in prey density occurring before the decline in host density
(76). Recent data highlighted that, in some instances of phage
therapy, an invading bacterium can coexist with the resident
flora, resulting in a new equilibrium (77). It is known that
bacteria and phages can establish an equilibrium in the presence
of specific life traits and densities (56). It has been shown that
oscillatory conditions between phages and bacteria might occur
when the infection rate η is within a range whose lower end (ηc)
is defined as:

ηc =
ω (δK + ω)

δK (β− 1)− ω
(14)

where K = κ(1 – ωµ−1) (56). The value for ηc could be
calculated in 0.036, 0.001, and 0.001 h−1 for cases 2, 3, and
4, respectively. These critical thresholds were indeed below
the values of 2.6 and 1.4 h−1 used in the models for cases
2–4, respectively. There is, therefore, a real risk that non-
optimal viral loads might determine not the eradication of
the targeted bacterium but the establishment of an unforeseen
new microbial environment. The equilibrium between the
target bacterium (namely a pathogen) and the dispensed lytic
phage might stabilize a harmful species at low density, which
might subsequently expand when the right conditions present
themselves. While, in vivo, such species can be considered a
“pathobiont” (78), at the environmental level they can still cause
damage, for instance spoiling milk during cheese production.
The present work will help toward the avoidance of such
occurrences and increase the effectiveness of phage therapy.

The present study had some limitations. The results
presented herein were only theoretical and will require empirical
validation. In particular, the precision of Eq. 12 could not be
determined. In the absence of experimental data, such an effort
would be of very little gain; thus, the present study must be
considered a proof-of-concept for further analysis. Similarly, the
role of the immune response in the outcome of the treatment
could not be implemented. It can be expected that expanding
models modeling the interaction between bacteria and phage
to include the immune response will be challenging because
AAS varies depending on administration method, formulation
(monotherapy vs. phage cocktails), and recipient immune
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status. Another major limitation of the present study was the
paucity of growth rates and life-history traits. In particular, the
literature on the experimental use of phages to eradicate bacteria
rarely reports the exact growth rates and life-history traits of the
microbes used in the experiments. The current study had to rely
on a variety of information sources, which could have resulted
in a distortions in the computation. Because the current model
is an in silico approach, it is critical to empirically improve the
description of bacterial and viral interactions to provide more
and more accurate parameters that can increase the model’s
accuracy. The increasing use of phages as antibacterial agents
will necessitate a greater availability of the pool of life-history
traits available to researchers and practitioners, a goal that can
only be achieved through a multi-center effort. There were also
relevant computational limitations. The use of a decision tree
algorithm provided a tool to compute ranges for each therapy.
One trade-off was that the decision tree has to approximate
the domains for each therapy by rectangles. If these domains
are curved the algorithm provides multiple smaller ranges to
approximate the behavior around the curves. Other machine
learning tools such as state vector machines are more suitable
in such scenarios, but their output does not provide ranges
but more complicated representations. Another computational
limitation was that for the ensemble simulation the ODE system
needs to be solved for many different therapy pairs. This made
it challenging to configure the ODE solver optimal, since too
higher tolerances lead to instability issues and but solving for all
therapy pairs with low tolerances leads to very time consuming
computations. Depending on the model such instability issues
can cause a major problem.

In conclusion, the present study applied machine learning,
in the form of a decision tree algorithm, to determine ranges
for the phagial dose and administration times needed to
achieve passive, active, or delayed antibacterial treatment.
A multi-criteria optimization problem provided Pareto optimal
treatment parameters. The procedure used herein simplified the
workflow to achieve effective phage therapy. The present study
also introduced the concept of mediated phage therapy, where
targeting a booster bacteria might decrease the virulence of a
pathogen immune to phagial infection.

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Author contributions

SP and LM conceived the ideas, designed methodology, and
analyzed the data. LM collected the data and led the writing

of the manuscript. SV supervised the project and granted the
funds. All authors contributed critically to the drafts and gave
final approval for publication.

Funding

SP was funded by the Vienna Science and Technology
Fund (WWTF), grant VRG17-014. This study received funding
from PASCOE pharmazeutische Praeparate GmbH. The funder
was not involved in the study design, collection, analysis,
interpretation of data, the writing of this article or the decision
to submit it for publication. All authors declare no other
competing interests.

Acknowledgments

We would like to thank Szymon P. Szafranski (Hannover
Medical School), Claudia Igler (Swiss Federal Institute of
Technology), Wolfgang Beyer (Department of Livestock
Infectiology, University of Hohenheim), and Stephen Abedon
(Ohio State University), for their insights on phagial biology.
We are also grateful to Christian Leischner, University of
Hohenheim, for critical reading of the manuscript. We further
acknowledge support by Open Access Publishing Fund of
University of Tübingen.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
fmed.2022.1040457/full#supplementary-material

Frontiers in Medicine 12 frontiersin.org

https://doi.org/10.3389/fmed.2022.1040457
https://www.frontiersin.org/articles/10.3389/fmed.2022.1040457/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmed.2022.1040457/full#supplementary-material
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1040457 October 21, 2022 Time: 15:46 # 13

Plunder et al. 10.3389/fmed.2022.1040457

References

1. Hatfull GF. Actinobacteriophages: genomics, dynamics, and applications.
Annu Rev Virol. (2020) 7:37–61. doi: 10.1146/annurev-virology-122019-070009

2. Hatfull GF, Dedrick RM, Schooley RT. Phage therapy for antibiotic-resistant
bacterial infections. Annu Rev Med. (2022) 73:197–211. doi: 10.1146/annurev-
med-080219-122208

3. Brives C, Pourraz J. Phage therapy as a potential solution in the fight against
AMR: obstacles and possible futures. Palgr Commun. (2020) 6:100. doi: 10.1057/
s41599-020-0478-4

4. Aslam S, Lampley E, Wooten D, Karris M, Benson C, Strathdee S, et al. Lessons
learned from the first 10 consecutive cases of intravenous bacteriophage therapy to
treat multidrug-resistant bacterial infections at a single center in the United States.
Open Forum Infect Dis. (2020) 7:ofaa389. doi: 10.1093/ofid/ofaa389

5. Terwilliger A, Clark J, Karris M, Hernandez-Santos H, Green S, Aslam S,
et al. Phage therapy related microbial succession associated with successful clinical
outcome for a recurrent urinary tract infection. Viruses. (2021) 13:2049. doi: 10.
3390/v13102049

6. Dalmasso M, de Haas E, Neve H, Strain R, Cousin FJ, Stockdale SR, et al.
Isolation of a novel phage with activity against Streptococcus mutans biofilms. PLoS
One. (2015) 10:e0138651. doi: 10.1371/journal.pone.0138651

7. Khalifa L, Brosh Y, Gelman D, Coppenhagen-Glazer S, Beyth S, Poradosu-
Cohen R, et al. Targeting Enterococcus faecalis biofilms with phage therapy. Appl
Environ Microbiol. (2015) 81:2696–705. doi: 10.1128/AEM.00096-15

8. Harada LK, Silva EC, Campos WF, Del Fiol FS, Vila M, Dąbrowska K, et al.
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51. Żaczek M, Łusiak-Szelachowska M, Jończyk-Matysiak E, Weber-Dąbrowska
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