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Background: Nodular thyroid disease is by far the most common thyroid

disease and is closely associated with the development of thyroid cancer.

Coal miners with chronic coal dust exposure are at higher risk of developing

nodular thyroid disease. There are few studies that use machine learning

models to predict the occurrence of nodular thyroid disease in coal miners.

The aim of this study was to predict the high risk of nodular thyroid disease in

coal miners based on five different Machine learning (ML) models.

Methods: This is a retrospective clinical study in which 1,708 coal miners

who were examined at the Huaihe Energy Occupational Disease Control

Hospital in Anhui Province in April 2021 were selected and their clinical

physical examination data, including general information, laboratory tests and

imaging findings, were collected. A synthetic minority oversampling technique

(SMOTE) was used for sample balancing, and the data set was randomly

split into a training and Test dataset in a ratio of 8:2. Lasso regression and

correlation heat map were used to screen the predictors of the models, and

five ML models, including Extreme Gradient Augmentation (XGBoost), Logistic

Classification (LR), Gaussian Parsimonious Bayesian Classification (GNB),

Neural Network Classification (MLP), and Complementary Parsimonious

Bayesian Classification (CNB) for their predictive efficacy, and the model

with the highest AUC was selected as the optimal model for predicting the

occurrence of nodular thyroid disease in coal miners.

Result: Lasso regression analysis showed Age, H-DLC, HCT, MCH, PLT, and

GGT as predictor variables for the ML models; in addition, heat maps showed

no significant correlation between the six variables. In the prediction of

nodular thyroid disease, the AUC results of the five ML models, XGBoost

(0.892), LR (0.577), GNB (0.603), MLP (0.601), and CNB (0.543), with the
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XGBoost model having the largest AUC, the model can be applied in

clinical practice.

Conclusion: In this research, all five ML models were found to predict the

risk of nodular thyroid disease in coal miners, with the XGBoost model

having the best overall predictive performance. The model can assist clinicians

in quickly and accurately predicting the occurrence of nodular thyroid

disease in coal miners, and in adopting individualized clinical prevention and

treatment strategies.

KEYWORDS

underground environment, coal miners, nodular thyroid disease, machine learning,
predictive models

Introduction

Coal is one of the world’s most important energy resources
and coal mining and processing is a dust-producing process, and
coal power is still the main electricity supply structure in China
(1, 2). Coal dust is one of the main sources of health hazards
for coal miners (3). Ramis et al. (4) found that mine workers
with exposure to underground coal were significantly more
likely to develop thyroid cancer than workers in other work
environments. Nodular thyroid disease is strongly associated
with an increased risk of thyroid cancer, and nodular thyroid
disease has become one of the leading causes of death and
disease burden in people worldwide due to thyroid cancer (5–
8). Coal miners who are exposed to coal dust in long-term
underground operations are at high risk of developing nodular
thyroid disease. Early and effective recognition of risk factors for
nodular thyroid disease and effective screening is an important
step in improving the occupational health of coal miners.

Currently, there is a lack of extensive diagnostic resources
for nodular thyroid disease, which is mainly detected by thyroid
ultrasound. However, the shortage of thyroid ultrasonographers
and the regional imbalance in the level of medical technology
are the main current issues in the implementation of mass
screening with thyroid ultrasound. The application of Artificial
Intelligence (AI) machine learning technology to the screening
of coal miners for nodular thyroid disease could therefore help
to alleviate the current problem of thyroid ultrasound. The
aim of this study is to develop and validate a simple and high
performance artificial intelligence machine learning model to
assist clinicians in early, rapid and accurate prediction of the risk
of developing nodular thyroid disease in coal miners exposed to
high risk environments for long-term exposure to the disease,
leading to a personalized clinical prediction strategy.

Machine learning is a component of AI and is described as
the process by which a computer learns from experience and
performs a predetermined task without prior knowledge (9).

Machine learning as a new AI technique has been widely used
in the diagnosis and prediction of diseases (10–12). In some
cases, the robustness and predictive power of ML algorithms
outperform traditional statistical modeling, so it may be possible
to predict the risk of nodular thyroid disease in coal miners
more efficiently using ML models. For the time being, no
researcher has used machine learning models to predict the
risk of developing nodular thyroid disease in coal miners. In a
previous related study, Zhou et al. (13) used machine learning
to predict the malignancy of nodular thyroid disease based on
ultrasound images, but the clinical application of this research
still needs to rely on ultrasound images for prediction, while
at the same time, the machine learning model of this study is
universally applicable. The ML models constructed in this study
based on clinical and imaging data of coal miners are specific to
coal miners who are exposed to high risks for a long period of
time, and the final ML models were selected with high accuracy
and predictive power.

This study compared the performance of five machine
learning models, Extreme Gradient Augmentation (XGBoost),
Logistic Classification (LR), Gaussian Parsimonious Bayesian
Classification (GNB), Neural Network Classification (MLP), and
Complementary Parsimonious Bayesian Classification (CNB)
models, in predicting different parameters for the occurrence of
nodular thyroid disease in coal miners, and selected the best ML
models among them, which can be applied in clinical practice
activities in the next step and guide clinicians to take more
targeted predictive treatment measures.

Materials and methods

Ethical approval

This clinical study was a retrospective clinical study,
conducted in accordance with the ethical standards of the World
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Medical Association Declaration of Helsinki, and all personally
identifiable information was encrypted by the investigators so as
not to disclose personal privacy. The study was applied for and
ethically approved by the ethical review committee of the First
People’s Hospital of Anhui University of Technology (Huainan
First People’s Hospital) (approval number: 2022-YJ-020-01),
and all study subjects had an exemption from informed consent.

Study population

This study collected clinical examination data from 1,708
coal miners from 31 different coal mining companies in
Huainan, Anhui Province, China, who were examined in
April 2021 at the Occupational Disease Prevention and
Control Institute in Huainan, Anhui Province, China. All
coal miners were retrospectively analyzed for clinical baseline
characteristics and factors influencing the occurrence of nodular
thyroid disease.

Inclusion and exclusion criteria

Entry criteria: (1) Age ≥18 years old. (2) Male coal miners
with ≥3 years of service. (3) No previous serious organic
lesions. (4) In addition to the usual physical examination
items, the physical examination should also include color
Doppler ultrasound examination of the thyroid gland. (5)
The medical examination is complete and free of missing
information. Exclusion criteria: (1) Persons with serious
cardiovascular, cerebrovascular, hepatic, renal or other serious
primary malignant diseases. (2) Those with severe mental
disorders or other reasons that prevent them from cooperating
with the medical examination. (3) Those who have a history of
surgery or radiotherapy or chemotherapy for malignant tumors.
(4) Those with serious infectious diseases of the systemic system.
(5) Those without diagnostic thyroid ultrasound results or with
incomplete information on the physical examination. Finally,
1,708 coal miners who met the study requirements and were
included in the observation had their physical examination data
collected, including general clinical information, laboratory test
indicators and imaging findings.

Diagnostic criteria

The diagnosis of nodular thyroid disease in this study
was made by two or more ultrasonographers with more than
10 years of diagnostic experience, and was based on the Thyroid
Imaging Reporting and Data System (TI-RADS) classification
developed by the American College of Radiology (14, 15).
The nodules are scored on the basis of their composition,
internal echogenicity, morphology and margins12: (1) 0 points

for no internal echogenicity, 1 point for isoechoic or strong
echogenicity, 2 points for hypoechogenicity and 3 points for
very low echogenicity; (2) 0 points for cystic or predominantly
cystic echogenicity, 1 point for mixed echogenicity and 2 points
for solidity; (3) 0 points for non-erect growth of nodules, 3
points for (3) 0 points for a non-erect nodule, 3 points for an
upright nodule; (4) 0 points for a nodule with smooth margins,
2 points for an irregular or lobulated margin, and 3 points
for a nodule invading the outer thyroid gland; (5) 0 points
for no focal strong echogenicity or a "large comet tail" sign,
1 point for a nodule with a coarse calcified foci, 2 points for
a peripheral calcified foci, and 3 points for a punctate strong
echogenicity. 3 points. The nodule scores were summed to
determine the classification criteria: 0 for TI-RADS category
1, with a probability of malignancy of ≤2%; 2 for TI-RADS
category 2, with a probability of malignancy of ≤2%; 3 for TI-
RADS category 3, with a probability of malignancy of ≤5%; 4–6
for TI-RADS category 4, with a probability of malignancy of
5–20%; and ≥7 for TI-RADS category 5, with a probability of
malignancy of ≥20%.

Data collection

General information on coal miners includes age and
gender. Laboratory indicators included liver function indicators
(total protein, glutathione, albumin, globulin, albumin globule
ratio, total bilirubin, direct bilirubin, indirect bilirubin,
ghrelin, ghrelin/glutathione ratio, alkaline phosphatase, and
glutamyl transferase); renal function indicators (creatinine,
urea, and blood uric acid); lipid indicators (LDL cholesterol,
triglycerides, HDL cholesterol, and total cholesterol), tumor
markers (alpha-fetoprotein, carcinoembryonic antigen, total
prostate-specific antigen, and cytokeratin 19 fragment); white
blood cell count and its classification count (leucocytes,
monocytes, basophils, eosinophils, absolute values of immature
granulocytes, and neutrophils); red blood cell count (red
blood cells, red blood cell distribution width CV, red
blood cell distribution width SD, Erythrocyte pressure, mean
erythrocyte volume, mean erythrocyte hemoglobin volume,
and mean erythrocyte hemoglobin concentration); hemoglobin
count indicators (hemoglobin, mean hemoglobin content, and
mean hemoglobin concentration); platelet count indicators
(platelets, large platelet ratio, platelet distribution width,
mean platelet volume, and platelet pressure); other indicators
(myeloperoxidase, lipoprotein related phospholipase A2, fasting
blood glucose, and Antibodies to Helicobacter pylori).

Data analysis

R software version 3.6.3 and python software version 3.7
were used for statistical analysis of the data and machine
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learning classification modeling. Count data were expressed
as frequencies and percentages (%), and the χ2 test was used
for comparison between groups; measurement data conforming
to normal distribution were expressed as (−x ± s), and
measurement data not conforming to normal distribution were
expressed as M (P25, P75), and the Mann–Whitney U test was
used for comparison between groups. p < 0.05 was considered a
statistically significant difference.

In this study, we randomly divided the dataset into two
groups, the Training dataset for ML model development (80%)
and the Test dataset for performance evaluation (20%). A five
times resampling method was used for the analysis of different

ML models. Five different ML models were used to analyze
the data: XGBoost, LR, GNB, MLP, and CNB models. During
the ML model training process, to better compare multiple
models, we used a 5-fold resampling method the consistency
of the training samples when different models were trained.
The prediction performance of the five different ML models
was assessed by comparing the accuracy, sensitivity, specificity,
positive predictive value, negative predictive value, F1 score and
area under the receiver operating characteristic curve (AUC)
of each ML classification model in the Test dataset. The ML
data analysis in this study was based on python "xgboost 1.2.1,"
"lightgbm 3.2.1," "sklearn 0.22.1," "imblearn," and the R "logreg

FIGURE 1

Enrollment of coal miners and data processing flow chart.
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6.2.0," "statsmodels 0.11.1," packages are complete. The flow of
data collection and work processing for coal miners is shown in
Figure 1.

Results

Baseline features

A total of 1,708 eligible coal miners with a mean age of
41.39 ± 8.28 years (18–60 years) were included in this study.
Of these, 578 cases (33.84%) were in the nodular thyroid disease
group and 1,130 cases (66.16%) were in the no nodular thyroid
disease group. The data were balanced using the synthetic
minority oversampling technique (SMOTE) method, resulting
in a positive to negative sample ratio of 2:1. The final matched
results were 1130 cases in the nodular thyroid disease group
and 2260 cases in the no-nodular thyroid disease group. The
differences in AGE, RBC, RDW-SD, MCV, MCH, and GGT
between the two groups of nodular thyroid disease were
statistically significant at p < 0.05 (Table 1).

Of the 578 miners with nodular thyroid disease, 296
(51.21%) were in TR-RADS category 2, 265 (45.85%) in TR-
RADS category 3 and 17 (2.94%) in TR-RADS category 4.
The analysis showed that age, MCH, MCV and RDW-SD were
associated with the development of nodular thyroid disease
in coal miners, all at p < 0.05, with statistically significant
differences between groups (Table 2).

Lasso regression screening of machine
learning model predictor variables

Lasso regression was used to screen the predictor variables
for the ML model, and the cross-validated Lasso fit Mean-
Squared Error (MSE) plot (Figure 2A) and the Lasso fit
coefficient trajectory plot (Figure 2B) were used. The value
corresponding to when the loss function achieves a minimum is
determined to be the optimal λ value based on the lowest point
in Figure 2A, and the variables intersecting the optimal λ value
are combined with Figure 2B to yield the final inclusion in the
model variables. Therefore, when the minimum mean square
error of λ is 0.017, the corresponding model predictor variables
are selected as Age, HDLC, HCT, MCH, PLT, and GGT.

Spearman correlation was used to test the relationship
between the above variables and the correlation heat map
showed no significant correlation between the variables,
indicating that the variables were independent of each other
(Figure 3). The importance of each variable in the ML
algorithm varied, and we used an extreme gradient boosting tree
(XGBOOST) to conduct a variable importance analysis of all
the variables, screening out the variables with high correlation
and ranking in the top six, and the results showed that the six

variables with the highest importance (from highest to lowest)
were Age, HCT, GGT, MCH, PLT, and HDL-C (Figure 4).
Interestingly, the top six most important variables screened in
the XGBoost model were consistent with the predictor variables
screened by Lasso regression, and these variables will be used in
the next step for machine learning classification modeling.

Comparison of the predictive
performance of five machine learning
models

The evaluation metrics: accuracy, sensitivity, specificity,
positive predictive value, negative predictive value, F1 score, and
AUC (Table 3) of the five machine learning models XGBoost,
LR, GNB, MLP, and CNB were compared in the training and
Test dataset to evaluate the model prediction performance for
the occurrence of nodular thyroid disease in coal miners. The
results showed that the highest F1 value was for the XGBoost
model, followed in order by the LR model, GNB model, MLP
model and the smallest for the CNB model.

In comparing the performance of ML models, the closer the
AUC is to 1, the better the performance of the classification
model. The AUC of the five machine learning models in the
Test dataset are shown in Figure 5, and the comparison results
show that: XGBoost model > GNB model > MLP model > LR
model > CNB model. The AUC of XGBoost model > 0.75
indicates that the model has good prediction performance. Both
evaluation methods show that the XGBoost model has the best
prediction performance and the CNB model has the worst
prediction performance.

Discussion

Nodular thyroid disease has become one of the most
common thyroid disorders and is very prevalent worldwide (16,
17). Environmental factors are determinants of the development
of nodular thyroid disease in people. In order to reduce
the risk of nodular thyroid disease in people in specific
environments, it is necessary to understand the relationship
between environmental factors and thyroid dysfunction (18).
Studies (19, 20) have found that environmental factors can
activate the innate immune response leading to the development
of thyroid disease. Not only that, but thyroid nodules (TNS) are
one of the very common thyroid disorders, with nodular thyroid
disease reported to be found in 3–7% of adults worldwide (21,
22). Currently, thyroid ultrasound is the test of choice for the
diagnosis of nodular thyroid disease (23). Thyroid ultrasound
is used to assess the malignancy grade of thyroid nodules by
scoring all indicators of thyroid nodules together and finally
according to the overall score. The diagnosis of nodular thyroid
disease, the dependent variable indicator in this study, is clearly
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TABLE 1 Baseline clinical characteristics of the two groups of coal miners.

Variables Non-nodular thyroid
disease (n = 1,130)

Nodular thyroid
disease (n = 578)

Total data (n = 1,708) Statistic P-value

Age, year, M (P25 ,P75) 40 (34,48) 43 (36,50) 41 (34,49) −4.739 <0.001

LDL-C, mmol/L, M (P25 ,P75) 2.8 (2.39,3.28) 2.83 (2.4,3.32) 2.81 (2.39,3.29) −0.740 0.459

TG, mmol/L, M (P25 ,P75) 1.32 (0.9,2.03) 1.36 (0.94,2.17) 1.33 (0.91,2.07) −1.595 0.111

HDL-C, mmol/L,M (P25 ,P75) 1.16 (1.02,1.34) 1.16 (1.02,1.35) 1.16 (1.02,1.34) −0.101 0.919

TC, mmol/L, M (P25 ,P75) 4.92 (4.38,5.58) 5.01 (4.37,5.61) 4.95 (4.37,5.6) −1.069 0.285

Cr, mmol/L, M (P25 ,P75) 69.9 (63.7,76.3) 71 (64.4,76) 70.2 (63.9,76.1) −1.276 0.202

BU, mmol/L, M (P25 ,P75) 5.26 (4.57,6.2) 5.18 (4.45,6.1) 5.22 (4.5,6.16) 1.553 0.121

AFP, µg/L, M (P25 ,P75) 3.46 (2.24,4.57) 3.59 (2.45,4.83) 3.5 (2.3,4.69) −1.881 0.06

CEA, µg/L, M (P25 ,P75) 1.95 (1.43,2.64) 1.98 (1.41,2.68) 1.96 (1.43,2.65) −0.071 0.943

WBC, 109/L, M (P25 ,P75) 6.47 (5.62,7.59) 6.52 (5.67,7.74) 6.5 (5.62,7.64) −1.052 0.293

P-LCR, %, M (P25 ,P75) 32.53 (32.19,32.96) 32.5 (32.17,32.93) 32.52 (32.19,32.95) 0.335 0.737

MONO, %, M (P25 ,P75) 0.39 (0.33,0.47) 0.39 (0.32,0.48) 0.39 (0.32,0.48) −0.518 0.604

RBC,1012/L, M (P25 ,P75) 4.96 (4.74,5.21) 4.91 (4.7,5.17) 4.95 (4.72,5.2) 2.395 0.017

RDW-CV, %, M (P25 ,P75) 12.6 (12.3,12.9) 12.6 (12.3,12.9) 12.6 (12.3,12.9) −0.163 0.871

RDW-SD, fL, M (P25 ,P75) 43.6 (42.32,44.9) 43.9 (42.5,45.3) 43.7 (42.4,45) −2.804 0.005

HCT, %, M (P25 ,P75) 45.9 (44.1,47.6) 45.7 (44,47.4) 45.8 (44,47.6) 1.017 0.309

LYMPH, 109/L, M (P25 ,P75) 2.14 (1.78,2.6) 2.16 (1.78,2.64) 2.15 (1.78,2.61) −0.563 0.574

MCV, fL, M (P25 ,P75) 92.3 (90.1,94.8) 92.7 (90.5,95.3) 92.5 (90.2,95) −2.321 0.02

MCH, pg, M (P25 ,P75) 31.6 (30.72,32.5) 31.8 (30.9,32.7) 31.6 (30.8,32.55) −2.724 0.006

MCHC, g/L, M (P25 ,P75) 342 (339,345) 342 (339,346) 342 (339,345) −1.927 0.054

BASO, 109/L, M (P25 ,P75) 0.03 (0.02,0.04) 0.03 (0.02,0.04) 0.03 (0.02,0.04) 0.780 0.436

EOS, 109/L, M (P25 ,P75) 0.13 (0.08,0.21) 0.14 (0.08,0.23) 0.13 (0.08,0.22) −0.577 0.564

IG, 109/L, M (P25 ,P75) 0.02 (0.01,0.03) 0.02 (0.01,0.04) 0.02 (0.01,0.03) −1.509 0.131

HGB, g/L, M (P25 ,P75) 157 (150,163) 157 (150,163) 157 (150,163) 0.549 0.583

PLT, 109/L, M (P25 ,P75) 218 (188,252) 220 (188,252) 219 (188,252) −0.548 0.583

PDW, fL, M (P25 ,P75) 16.2 (16,16.4) 16.2 (16,16.4) 16.2 (16,16.4) 1.018 0.309

MPV, fL, M (P25 ,P75) 10.4 (9.6,11.2) 10.2 (9.6,11.1) 10.3 (9.6,11.2) 1.649 0.099

PCT, %, M (P25 ,P75) 0.22 (0.2,0.26) 0.23 (0.2,0.26) 0.22 (0.2,0.26) −0.086 0.932

NEUT, 109/L, M (P25 ,P75) 3.67 (3.03,4.44) 3.68 (3.03,4.55) 3.67 (3.03,4.48) −0.728 0.467

TP, g/L, M (P25 ,P75) 32.6 (6.9,71.28) 40.15 (7.3,73.55) 34.6 (7.07,72.15) −0.960 0.337

PSA, ng/mL, M (P25 ,P75) 0.76 (0.54,1.09) 0.76 (0.53,1.03) 0.76 (0.54,1.07) 0.787 0.432

AST, U/L, M (P25 ,P75) 21.5 (18.5,25.9) 22 (18.6,26) 21.7 (18.5,25.9) −1.043 0.297

ALB, g/L, M (P25 ,P75) 46.75 (45.28,48.26) 46.69 (44.9,48.09) 46.71 (45.15,48.2) 1.616 0.106

A/G, M (P25 ,P75) 1.61 (1.46,1.75) 1.6 (1.43,1.73) 1.6 (1.45,1.74) 1.588 0.112

GGT, U/L, M (P25 ,P75) 28.45 (20.7,44.73) 30.8 (21.7,48.7) 28.9 (20.9,45.8) −2.254 0.024

ALT, U/L, M (P25 ,P75) 21.45 (15.47,30.8) 21.6 (15.3,30.8) 21.5 (15.4,30.8) −0.414 0.679

AST/ALT, M (P25 ,P75) 1.00 (0.78,1.29) 0.99 (0.77,1.31) 1.00 (0.78,1.3) 0.254 0.799

IBIL,umol/L,M (P25 ,P75) 9.8 (7.4,12.8) 9.8 (8.1,12.9) 9.8 (7.6,12.8) −1.144 0.253

ALP, U/L, M (P25 ,P75) 73.7 (62.6,86.82) 74.6 (63.5,85.6) 74 (62.9,86.2) −0.850 0.395

Glo,g/L,M (P25 ,P75) 29.01 (27.07,31.46) 29.48 (27.1,31.81) 29.11 (27.1,31.56) −1.341 0.18

DBil, µmol/L, M (P25 ,P75) 3.9 (2.9,5.1) 3.9 (3.1,5.2) 3.9 (3,5.1) −0.678 0.498

TBil, µmol/L, M (P25 ,P75) 13.8 (10.5,17.9) 13.8 (11.3,17.9) 13.8 (10.7,17.9) −1.076 0.282

TP, g/L, M (P25 ,P75) 75.7 (73.31,78.62) 75.89 (73.2,78.51) 75.8 (73.3,78.58) −0.155 0.877

FBG, mmol/L, M (P25 ,P75) 5.99 (5.67,6.43) 6.01 (5.66,6.53) 5.99 (5.67,6.47) −0.958 0.338

BUA, µmol/L, M (P25,P75) 328.65 (278.28,381.92) 327.3 (280.5,381.3) 328.4 (279.1,381.6) −0.345 0.73

CYFRA21-1, ng/ml, M (P25 ,P75) 2.25 (2,2.57) 2.24 (2.01,2.57) 2.25 (2.01,2.57) 0.123 0.902

MPO, U/ml, M (P25 ,P75) 74.13 (58.98,99.54) 75.41 (60.48,98.89) 74.89 (59.2,99.41) −0.767 0.443

Lp-PLA2, µg/L, M (P25 ,P75) 324.2 (241.74,416.88) 327.16 (248.7,406.25) 325.69 (243.64,413.9) −0.382 0.703

LDL-C, low-density lipoprotein cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; TC, total cholesterol; Cr, creatinine; BU, blood urea; AFP, alpha-fetoprotein;
CEA, carcinoembryonic antigen; WBC, leukocytes; P-LCR, large platelet ratio; MONO, mononuclear cells; RBC, red blood cells; RDW-CV, red blood cell distribution width CV; RDW-SD,
red blood cell distribution width; HCT, erythrocyte pressure volume; LYMPH, lymphocytes; MCV, mean red blood cell volume; MCH, average red blood cell hemoglobin volume; MCHC,
mean red blood cell hemoglobin concentration; BASO, basophils; EOS, eosinophils; IG, absolute value of immature granulocytes; HGB, hemoglobin; PLT, blood platelets; PDW, platelet
distribution width; MPV, mean platelet volume; PCT, platelet pressure; NEUT, neutrophils; TP, total protein; PSA, total prostate-specific antigen; AST, glutathione transaminase; ALB,
serum albumin; A/G, albumin/globulin; GGT, glutamyl transpeptidase; ALT, glutathione aminotransferase; AST/ALT, glutathione/glutathione transaminase; IBIL, indirect bilirubin; ALP,
alkaline phosphatase; Glo, globulin; DBil, direct bilirubin; TBil, total bilirubin; TP, total protein; FBG, plasma fibrinogen; BUA, blood uric acid; CYFRA21-1, cytokeratin 19 fragment;
MPO, myeloperoxidase; Lp-PLA2, lipoprotein-associated phospholipase A2.
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TABLE 2 Baseline characteristics of coal miners with nodular thyroid disease classification.

Variables TR-RADS 1
(n = 1,130)

TR-RADS 2
(n = 296)

TR-RADS 3
(n = 265)

TR-RADS 4
(n = 17)

P-value

AGE, year, M (P25,P75) 40.00 (34.00,48.00) 41.00 (34.00,50.00) 46.00 (38.00,51.00) 42.00 (33.00,48.00) <0.001***

ALP, U/L, M (P25,P75) 319.00 (156.00,491.00) 369.00 (189.00,490.00) 282.00 (112.00,463.00) 437.00 (225.00,477.00) 0.052

GGT, U/L, M (P25,P75) 326.00 (148.00,488.00) 292.00 (136.00,453.00) 378.00 (176.00,517.00) 306.00 (218.00,489.00) 0.028

PLT, 109/L, M (P25,P75) 218.00 (188.00,252.00) 223.00 (192.00,261.00) 218.00 (188.00,243.00) 224.00 (188.00,233.00) 0.426

MCH, median (IQR) 31.60 (30.70,32.50) 31.80 (30.90,32.50) 31.80 (30.90,32.80) 32.10 (31.40,33.10) 0.024*

MCV, fL, M (P25,P75) 92.30 (90.10,94.80) 92.60 (90.40,95.00) 92.90 (90.50,95.50) 94.20 (90.90,95.60) 0.096

HCT, %, M (P25,P75) 45.90 (44.10,47.60) 45.60 (43.70,47.20) 45.80 (44.10,47.80) 46.50 (45.00,47.30) 0.128

RDW-SD, fL, M (P25,P75) 43.60 (42.30,44.90) 43.90 (42.50,45.20) 44.00 (42.40,45.40) 44.70 (42.90,45.10) 0.045*

RDW-CV,%, M (P25,P75) 12.60 (12.30,12.90) 12.60 (12.40,12.90) 12.60 (12.30,12.90) 12.60 (12.40,12.80) 0.911

RBC, 1,012/L, M (P25,P75) 4.96 (4.74,5.21) 4.90 (4.69,5.15) 4.92 (4.71,5.18) 4.92 (4.76,5.21) 0.071

HDL-C, mmol/L, M (P25,P75) 69.00 (25.00,103.00) 69.00 (28.00,105.00) 62.00 (26.00,99.00) 72.00 (51.00,99.00) 0.544

TG, mmol/L, M (P25,P75) 198.00 (115.00,294.00) 194.00 (103.00,283.00) 210.00 (121.00,295.00) 117.00 (73.00,273.00) 0.354

LDL-C, mmol/L, M (P25,P75) 152.00 (66.00,237.00) 140.00 (72.00,219.00) 173.00 (78.00,249.00) 140.00 (74.00,243.00) 0.203

*p < 0.05, ***p < 0.001.

FIGURE 2

Lasso regression screening of ML model predictor variables. Panel (A) shows the process of screening for the most appropriate λ in the lasso
model; panel (B) shows the lasso coefficient curves for the 48 variables.

diagnosed by thyroid ultrasound. However, in the real world,
nodular thyroid disease is often overlooked because it may
occur early without any clinical symptoms. The underground
environment in which coal miners work is complex, and many
complex environmental factors (such as enclosed dust, ionizing
radiation, exposure to harmful heavy metals, etc.) can cause
disturbances in the body metabolism of miners, leading to the
development of nodular thyroid disease. However, there are no
studies by scholars that have used machine learning models to
predict the occurrence of nodular thyroid disease in coal miners.

We screened six easily available parameters, Age, HCT, GGT,
MCH, PLT, and HDLC, based on physical and clinical data
of coal miners from 31 different coal mining companies in
Huainan, Anhui Province, China, and applied these parameters
to five different machine learning XGBoost, LR, GNB, MLP,
and CNB models. This study developed and validated an ML
algorithm model that can accurately predict the occurrence
of thyroid disease in coal miners, which can provide effective
prediction for accurate clinical treatment. The AUCs of all
five models were greater than 0.5, indicating that coal miners
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FIGURE 3

Correlation heat map analysis.

FIGURE 4

Importance analysis of XGBoost model variables.

with underground operations have a higher risk of developing
nodular thyroid disease than the general population, with the
XGBoost model being the optimal prediction model.

Logistics classification is a machine learning classification
algorithm used to determine the risk probability of a disease
and its results can be binomial or polynomial, LR is used for the
creation of statistical models of binary data (24). In medicine, LR
is often the most commonly used method for binomial outcome
prediction models (25). Bayesian is an emerging technique in
medical research, and it is widely used in public health research
(26). Bayesian is a machine learning method for inductive
inference and Bayesian algorithms play a crucial role in data
observation studies, where the complementary plain Bayesian
CNB allows a more even use of the amount of training data
per category and more objectivity in the estimation results,
which can reduce bias in the estimation (26–28). We obtained
more stable weight estimates and higher classification accuracy.

In contrast, MLP is a machine learning computational model
inspired by biological neural networks, which is most commonly
used in artificial intelligence models for risk prediction and
assessment (25, 29). GBoost is a scalable tree-advancing machine
learning algorithm based on decision trees (30). The XGBoost
model is now widely used for regression and classification
in a variety of data mining fields, and is widely used by
data scientists to solve many advanced problems due to its
high flexibility and excellent performance as a state-of-the-
art gradient augmentation (GB) system (30, 31). Tomoo et al.
(32) compared three machine learning algorithms, XGBoost,
logistic regression and decision trees, to predict neurological
recovery in patients with cervical spinal cord injury, and found
that XGBoost achieved satisfactory accuracy compared to the
other two traditional machine learning models, which had good
predictions on the ROC curve.

Compared to the other four machine learning models, the
XGBoost model has the following advantages: it has no explicit
linearity requirement for the data distribution and automatically
detects non-linear relationships and interaction effects using the
relevant factors; it can make full use of missing data without
filling in the data and can more realistically reflect the original
results expressed by the data; the XGBoost model has the
advantage of handling large samples of data (33), learning
and remembering as it analyses and processes the data and
improving its predictive power; the model trained with a large
amount of data is more reliable than a machine learning model
fitted to a small sample of individual tests (34). The XGBoost
model has the advantage of being able to learn and remember as
the data is analyzed and processed, and to improve its predictive
power (35); a model trained on a large amount of data is
more reliable than a machine learning model fitted to a small
sample of individual tests, and has a high clinical application
in predicting classification outcomes (36). In this study, five
machine learning models were attempted for the prediction of
nodular thyroid disease in coal miners, and the results showed
that the XGBoost model achieved good prediction results.

This study evaluated the predictive performance of different
models by combining various metrics such as accuracy,
sensitivity, specificity, positive predictive value, negative
predictive value, F1 score, and AUC, which to a certain extent
reduces the study bias caused by a single model or a single
evaluation metric. the ROC curve is used to summarize the
performance of a model by evaluating the value between the
false positive rate (1-specificity) and the true positive rate
(sensitivity). The AUC is a measure of the performance of
the ROC curve; the higher the AUC, the better the predictive
ability of the model. The results of the study showed that in the
Test dataset, the five machine learning models had accuracy
(55.7–81.8%), sensitivity (56.9–75.1%), specificity (46.0–96.4%),
positive predictive value (70.4–97.8%), negative predictive value
(39.0–64.4%), F1 score (0.62–0.85) and AUC values (0.54–0.89).
Among them, the XGBoost model had 81.8% accuracy, 75.1%
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TABLE 3 Efficacy results for the five ML models.

Evaluation
indicators

Training dataset (80%) Test dataset (20%)

LR GNB CNB MLP XGBoost LR GNB CNB MLP XGBoost

Accuracy (%) 65.0 63.3 53.9 61.6 91.6 62.5 61.8 55.7 61.3 81.8

Sensitivity (%) 79.4 68.1 55.3 67.7 90.2 70.7 66.2 56.9 65.6 75.1

Specificity (%) 36.6 53.7 51.2 49.5 94.5 46.0 53.4 53.2 53.1 96.4

Positive predictive
value (%)

71.3 74.6 69.5 72.9 97.0 73.1 74.2 70.4 74.2 97.8

Negative predictive
value (%)

47.3 45.9 36.3 44.3 83.1 43.6 43.7 39.0 44.0 64.4

F1 score 0.75 0.71 0.62 0.70 0.94 0.72 0.70 0.62 0.69 0.85

AUC(95%CI) 0.58
(0.56–0.60)

0.62
(0.60–0.65)

0.53
(0.51–0.55)

0.61
(0.58–0.63)

0.98
(0.97–0.98)

0.58
(0.53–0.63)

0.60
(0.56–0.65)

0.54
(0.50–0.59)

0.60
(0.56–0.65)

0.89
(0.87–0.92)

LR, Logistics Classification; GNB, Gaussian Parsimonious Bayesian Classification; CNB, Complementary Parsimonious Bayesian Classification; MLP, Neural Network Classification;
XGBoost, Extreme Gradient Boosting Tree; AUC, area under the ROC curve.

FIGURE 5

AUC for the five ML models. Panel (A) represents the training dataset ROC curve and panel (B) represents the test dataset ROC curve.

sensitivity, 96.4% specificity, 97.8% positive predictive value,
64.4% negative predictive value, F1 score of 0.8549 and AUC
value of 0.89. On comprehensive analysis, it can be found that
the indicators of the XGBoost model were significantly greater
than those of the other four ML models, indicating that the
XGboost model showed the strongest predictive effect in the
Test dataset, further inferring that the XGboost model had the
strongest overall strength and was the best model for predicting
the risk of nodular thyroid disease in coal miners.

In the research, five different machine learning models were
developed and validated to predict the occurrence of nodular
thyroid disease in coal miners based on their clinical and
imaging indicators, and the best ML model was selected. The
clinical application of this ML model can, to a certain extent,

alleviate the shortage of ultrasonographers and effectively
reduce the misdiagnosis or underdiagnosis of nodular thyroid
disease due to human factors, thus greatly improving the
efficiency and accuracy of clinical diagnosis.

However, there are some limitations that need to be taken
into account when interpreting the results of this study. Firstly,
the data collection of coal miners lacked behavioral data
on the living and working conditions of coal miners and
some blood biochemical indicators such as history of alcohol
consumption, smoking, family history, body mass index, length
of service, number of night shift days, thyroid hormones, blood
sedimentation, and other relevant data, which may lead to
some confounding effects. Second, the fixed nature of the items
in each coal mining company’s medical examination package
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prevented us from obtaining histopathological examinations of
thyroid disease, and this study also lacked image-based machine
learning data, resulting in a less comprehensive analysis. Third,
this study used the synthetic minority class oversampling
technique (SMOTE) to balance the proportion of positive and
negative samples. The basic idea of SMOTE is to analyze
minority class samples and manually synthesize new samples
to add to the dataset based on minority class samples, so the
analyzed model results may be prone to overfitting, and the next
step in our study will be to further increase the positive and
negative sample size to bring the model closer to the true The
next step of our study will be to further increase the positive
and negative sample sizes to bring the model closer to the true
predictions. Fourth, although the main aim of this study was to
explore the feasibility of different machine learning models to
predict thyroid disease in coal miners, other machine learning
models, such as random forest, support vector machine and
decision tree, can be added in future studies to further explore
and compare the performance of different machine learning
models and advance the application of machine learning in
predicting the occurrence of thyroid disease in coal miners.
Fifth, most of the coal miner data in this study came from Anhui
Province, China, and coal miner data from other geographical
regions in China were not included, and the model results may
be subject to geographical bias. In addition, this study did not
use an external dataset for model validation; all validations used
a 5-fold resampling technique to split this dataset into a test and
Test dataset at a ratio of 8:2. The inclusion of an external Test
dataset could be an avenue for future research.

Summary and conclusion

In this study, for the first time, different machine learning
models were used to predict the risk of nodular thyroid disease
in coal miners, and among the five ML models, the XGBoost
model had the highest predictive performance for nodular
thyroid disease in coal miners. This ML model can be used by
clinicians to assess the high risk of nodular thyroid disease in
coal miners at an early stage in the practice of medicine, and to
adopt targeted clinical treatment strategies.
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