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Purpose: We aimed to investigate the performance of a deep learning

model to discriminate early normal-tension glaucoma (NTG) from glaucoma

suspect (GS) eyes using Bruch’s membrane opening (BMO)-based optic disc

photography.

Methods: 501 subjects in total were included in this cross-sectional study,

including 255 GS eyes and 246 eyes of early NTG patients. BMO-based optic

disc photography (BMO overview) was obtained from spectral-domain optical

coherence tomography (OCT). The convolutional neural networks (CNN)

model built from scratch was used to classify between early NTG and GS.

For diagnostic performances of the model, the accuracy and the area under

the curve (AUC) of the receiver operating characteristic curve (ROC) were

evaluated in the test set.

Results: The baseline demographics were age, 48.01 ± 13.03 years in GS,

54.48 ± 11.28 years in NTG (p = 0.000); mean deviation, −0.73 ± 2.10 dB

in GS, −2.80 ± 2.40 dB in NTG (p = 0.000); and intraocular pressure,

14.92 ± 2.62 mmHg in GS, 14.79 ± 2.61 mmHg in NTG (p = 0.624). Our CNN

model showed the mean AUC of 0.94 (0.83–1.00) and the mean accuracy

of 0.91 (0.82–0.98) with 10-fold cross validation for discriminating between

early NTG and GS.

Conclusion: The performance of the CNN model using BMO-based optic

disc photography was considerably good in classifying early NTG from GS.

This new disc photography of BMO overview can aid in the diagnosis

of early glaucoma.
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Introduction

Glaucoma leads to the damage of retinal ganglion cells
(RGC) and their axons, resulting in the deficit of retinal nerve
fiber layer (RNFL) and the neuroretinal rim (NRR), which
ultimately cause visual field (VF) loss (1). In the diagnosis
of early glaucoma, early detection of structural change is
more essential than detection of a functional defect (2, 3)
since detectable structural change may present in advance of
functional VF loss (4–6). As structural damage is minimal in
early glaucoma or glaucoma suspect (GS) eyes, differentiate
early glaucoma from GS is difficult based on traditional fundus
photography alone. As a structural test, optical coherence
tomography (OCT) is extensively used in clinical settings
and is useful in the diagnosis of glaucoma in early stage.
Recently, spectral-domain OCT has been used to provide
a new parameter, Bruch’s membrane opening-minimum rim
width (BMO-MRW) along with conventional peripapillary
RNFL thickness. Moreover, OCT provides BMO-based disc
photography, which is called “BMO Overview” by the software.
It shows the BMO-based disc margin with 12 cuts around the
optic disc demonstrating each BMO and BMO-MRW at each
site (Figures 1C,F).

BMO-MRW is the shortest distance between the inner
opening of the BMO and the internal limiting membrane
(Figures 1B,E). BMO-MRW provides a more precise assessment
of the NRR than pre-existing ophthalmic parameters (7–10).
Latest studies have shown that BMO-MRW demonstrated better
diagnostic performance in glaucoma than preexistent NRR
parameters (11–13). In our previous study, we reported that
BMO-MRW might reveal normal color code classification,
whereas the RNFL showed abnormal color code classification
in cases of large discs and myopia (14). This previous study
of ours suggested the clinical usefulness of BMO-MRW in
early glaucoma or GS, particularly in cases of large disc and
myopia when the diagnosis is difficult because conventional
color code classification of RNFL may display false-positive
results. In another our previous studies using the deep learning
method, we reported that our deep learning model using the
OCT parameters of BMO-MRW, peripapillary RNFL, and color
classification of RNFL provided high diagnostic performance in
distinguishing early normal-tension glaucoma (NTG) from GS
(AUC, 0.966) (15). Interestingly, as a single parameter, BMO-
MRW showed higher diagnostic performance (AUC, 0.959)
than RNFL alone (AUC, 0.914) or even RNFL with its color code
classification (AUC, 0.934) (15). Moreover, BMO-MRW alone
showed diagnostic performance similar to that of all three OCT
parameters combined. These findings suggest that the BMO-
based optic disc assessment may evaluate different aspects of
the optic disc compared to the conventional disc assessments in
the diagnosis of glaucoma. To our knowledge, there has been no
report of a study using BMO Overview in a deep learning model
for the diagnosis of glaucoma.

It is more difficult to differentiate glaucoma of early stage
from GS or normal subjects than the glaucoma of advanced stage
(16–18). As the field of artificial intelligence (AI) is progressing
rapidly these days, the deep learning model may be useful to
aid clinicians in this circumstances. Many previous studies have
used fundus photography in a deep learning model for the
diagnosis of glaucoma (19–25). The diagnostic performance
in these previous studies using fundus photography varied,
with area under the receiver operating characteristic curves
(AUC) of 0.82–0.986 (19–25). Nevertheless, discriminating early
stage of glaucoma from GS or healthy is challenging, even
using deep learning method, and there are very few studies
on early glaucoma. These studies did not include only early-
stage glaucoma, and thus, the AUC could vary according to the
characteristics of the included subjects. Furthermore, it may be
more difficult to discriminate glaucoma of early stage from GS
than from a normal healthy subjects.

The prevalence of NTG is higher in Asians than in other
ethnicities and NTG is the major type of primary open-
angle glaucoma (mean of 76.3%) in Asians (26). Nevertheless,
previous studies using deep learning methods for distinguishing
glaucoma and normal control rarely included NTG, and studies
investigating entirely NTG are hardly found except for our
previous study (15).

In this retrospective cross-sectional study, we intended to
discriminate early NTG from GS using BMO Overview with
a CNN model built from scratch. We evaluated the diagnostic
performance and the accuracy of our deep learning model
based on convolutional neural networks (CNN or ConvNet).
We aimed to investigate whether the new BMO-based disc
photography could be useful in the diagnosis of early glaucoma
using a deep learning model, which has not been evaluated
before. Moreover, there are many previous studies using CNN
model with conventional optic disc photography or fundus
photography, but none using this new BMO-based optic disc
photography. Furthermore, there is no consensus or diagnostic
standard for interpreting this new BMO-based imaging, and
thus, clinicians cannot examine its diagnostic value, but the deep
learning model may aid in this task.

Materials and methods

Ethics statement

This retrospective cross-sectional, and observational study
was conducted in accordance with the tenets of the Declaration
of Helsinki. The present study was approved by the Institutional
Review Board (IRB) of Gyeongsang National University
Changwon Hospital, Gyeongsang National University School of
Medicine. The acquisition of informed consent was exempted
from the IRB of Gyeongsang National University Changwon
Hospital due to the retrospective nature of this study.

Frontiers in Medicine 02 frontiersin.org

https://doi.org/10.3389/fmed.2022.1037647
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1037647 November 17, 2022 Time: 16:12 # 3

Seo and Cho 10.3389/fmed.2022.1037647

FIGURE 1

Representative cases of GS and early NTG. (A) The optic disc of
a 70-year-old male GS patient with a spherical equivalent of
−1.0 diopter from fundus photography is shown. Note that the
optic disc cup seems big based on the clinical disc margin.
(B) The BMO-MRW map shows normal color code classification
in this GS case. The BMO-MRW is the minimal distance between
the inner opening of the BMO and the internal limiting
membrane. (C) BMO Overview, which is BMO-based disc
photography from spectral-domain OCT. It shows the
BMO-based disc margin (dotted red line) at the center with 12
cuts around the optic disc, demonstrating each BMO and
BMO-MRW at each site. Note that the BMO-based disc margin
includes part of the PPA, showing that the optic disc cup does
not seem as big based on the BMO margin compared to the
clinical disc margin. (D) Optic disc of a 56-year-old male NTG
patient with a spherical equivalent of +1.0 diopter from fundus
photography is shown. Note the thinning of the inferotemporal
neuroretinal rim of the optic disc. (E). BMO-MRW map shows
abnormal color code classification (red) at the inferotemporal
and inferonasal sector in this NTG case. (F) BMO Overview
shows a shorter BMO-MRW (red lines) at the inferior three cuts
compared to the other regions with normal lengths (green
lines). Note that the optic disc cup seems markedly enlarged at
the inferotemporal region based on the BMO-based disc margin
(dotted red line). GS: glaucoma suspect; NTG: normal-tension
glaucoma; BMO-MRW: Bruch’s membrane opening-minimum
rim width; OCT: optical coherence tomography; PPA:
peripapillary atrophy; RNFL: retinal nerve fiber layer.

Subjects

Among a total of 726 patients, 383 patients with normal-
tension glaucoma (NTG) and 343 subjects with GS were
evaluated between the period of February 2016 and March
2021 in a glaucoma clinic at Gyeongsang National University
Changwon Hospital, for a total of 501 eyes (501 subjects)
with either early NTG (246 subjects) or GS (255 subjects)
were included in the study. All subjects underwent standard
ophthalmic examinations, including Spectralis spectral-domain
OCT (Glaucoma Module Premium Edition, Heidelberg
Engineering, Germany) and standard automated perimetry
(HFA model 840; Humphrey Instruments, Inc, San Leandro,
CA, USA). Only those subjects who had reliable BMO-MRW
and BMO Overview test images and those who met the
diagnostic criteria were included. The assessment of early NTG

or GS was made by a single glaucoma specialist (H-k Cho) with
consistent criteria of diagnosis.

NTG was defined when a patient had an IOP of ≤21 mmHg
without treatment presenting findings of glaucomatous damage
in the optic disc and corresponding defect in VF, an open
angle examined by gonioscopy, and no other underlying
cause for optic neuropathy other than glaucoma (27). Early
NTG was defined by a mean deviation (MD) of >−6.0 dB
on reliable VF tests. Pre-perimetric glaucoma patients were
included in the current study to take in the very early stage
of glaucoma. Pre-perimetric glaucoma was determined as cases
presenting apparent localized RNFL defects on red-free fundus
photography with the OCT map of the RNFL confirming the
corresponding RNFL defect, but showing within normal limits
on Humphrey standard automated perimetry.

GS was determined as those being followed for suspicious
clinical characteristics but not definite for glaucoma, such as
suspicious optic disc or RNFL changes; significant systemic,
ocular, or family risk factors for glaucoma; or suspicious visual
field results and intraocular pressure within the normal limits
(defined as <21 mmHg on applanation tonometry). None of the
GS subjects were receiving treatment for glaucoma by definition
and ocular hypertensive patients under treatment were excluded
from this study (28). Ocular hypertensive patients who were not
receiving treatment were also excluded from this study by the
definitive criteria. If both eyes met the inclusion criteria, only
one eye was randomly selected.

The exclusion criteria are as follows: poor images due to
eye blinking or poor fixation, history of any intraocular surgery
aside from uneventful phacoemulsification, history of optic
neuropathies except for glaucoma or an acute angle-closure
crisis that could affect the thickness of the BMO-MRW or
RNFL (e.g., optic neuritis and acute ischemic optic neuritis),
and retinal disorders accompanying retinal swelling or edema
and consequent BMO-MRW or RNFL swelling. The fellow eyes
of unilateral glaucoma were also excluded from the GS group
because of the possible effect on BMO-MRW or BMO-based
optic disc assessment. Subjects were not excluded from this
study by refractive error, axial length, or optic disc size.

Optical coherence tomography

Imaging of spectral-domain OCT was carried out
with Spectralis OCT, Glaucoma Module Premium Edition
(Heidelberg Engineering, Germany). Radial B-scans of 24 were
acquired for BMO-MRW and BMO Overview. BMO overview
image automatically provides BMO boundary points (the red
colored dotted line around the optic disc) by the software.
Only those images showing well-centered scans and accurate
segmentation of the retina and scan quality scores of >20 were
taken for the study. Acquirement of data and analysis of OCT
scans were conducted employing the individual eye-specific axis

Frontiers in Medicine 03 frontiersin.org

https://doi.org/10.3389/fmed.2022.1037647
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1037647 November 17, 2022 Time: 16:12 # 4

Seo and Cho 10.3389/fmed.2022.1037647

(FoBMO axis), which is the axis between the center of BMO
area and the fovea. Applying this FoBMO axis could result
in more correct analysis of Garway-Heath sectors taking into
consideration of the cyclotorsion of individual eyes and thus,
lead to more precise comparison to normative database than
the traditional means (7). The BMO-fovea angle is the angle
between the center of BMO area and the fovea.

Perimetry

Humphrey Field Analyzer (HFA model 840; Humphrey
Instruments Inc, San Leandro, California, CA, United States)
were used for perimetry applying a program of Swedish
Interactive Threshold Algorithm standard strategy with central
30-2 mode. Reliable VF test were defined with these criteria: a
fixation loss of less than 20%; a false-positive rate of <15%; and
a false-negative rate of <15%.

Data preprocessing and dataset

A total of 501 eyes (501 subjects) with either early NTG
(246 subjects) or GS (255 subjects) were acquired from
501 BMO Overview. The dataset consisted of BMO-based
disc photographs including the disc margin (dotted line,
Figures 1C,F). The BMO-based disc photographs were obtained
by cropping the center images from BMO Overview. The
cropped center regions were generated with sizes of 438 × 436
pixels using Pillow1 in Python 3.7.6, as shown in Figure 2A.
Among the datasets, k-fold cross validation (k = 10) was
performed to compensate for the relatively small number of
data set. For each fold iteration, there are 399 images are in
training set, and 102 BMO-overview images are in test set.
The k-fold cross validation was performed using scikit-learn
(sklearn.model_selection.KFold).

Convolutional neural networks

A deep neural network (DNN) is a well-known supervised
classifier containing multiple layers between the input and
output layers (29). A convolutional neural network called CNN,
which is a type of DNN, is known to have excellent performance
in analyzing images (30). A CNN model for classifying GS and
early NTG was built on the Keras Sequential API,2 written in
Python, and running on TensorFlow3 (31). In the CNN model
for image analysis, tensors of a certain shape were taken as input,
and the shape of the tensors was determined by the height of the
input images, width, and color channels. Our CNN model used

1 https://pillow.readthedocs.io/en/stable/

2 https://keras.io/

3 https://www.tensorflow.org/

input with dimensions of 244 × 244 × 3 and was composed
of 4 convolution blocks. Each convolution block contained a
maximum pool layer. The first and second hidden layers of
the model had 16 and 32 filters with a kernel size of (2, 2),
and a rectified linear unit (ReLU) was applied as an activation
function. The third and fourth hidden layers had 64 filters with
a kernel size of (2, 2), and applied a rectified linear unit (ReLU)
as an activation function. The fully connected dense layer of
the model had 2 units with a softmax activation function. The
batch size was 10, and 100 was taken as the number of epochs
in the model. For compiling the model, Nadam (32) was chosen
as the optimizer and categorical cross-entropy was selected for
the loss function.

Explainable artificial intelligence and
Local Interpretable Model-agnostic
Explanations

AI with Black-box models produce excellent accuracy and
diagnostic performances, but it is hard to figure out why
they made such a decision (33). Explainable AI (XAI) is
artificial intelligence that can be explainable and understandable
the predictions or decisions that made by the AI. The XAI
algorithm aims for three things: transparency, interpretability,
and explanation (34). The Local Interpretable Model-agnostic
Explanations (LIME) algorithm is a well-known technique of
XAI explaining the predictions of black-box machine-learning
models in an interpretable way. It visualizes sections of the
image that the CNN model is using to produce its final
prediction. The LIME method was originally proposed by
Ribeiro et al. (35). The idea of the LIME is that it is easier
to interpret for a black-box model to approximate locally by
a simpler glass-box. A new dataset containing permuted data
and the associated predictions was created, and was used to
train the new model, which was weighted by the proximity
of the features in the input image to the feature of interest.
As the weights were continuously updated, the fully trained
new model was used to interpret and predict. Through LIME,
the explanations of the predictions of black-box CNN models
can be displayed directly on the image samples. The green-
colored region indicates that this part of the image increased
the probability for the label, and the red color region indicates
a decrease in the probability for the label.

Statistical analysis

Wilcoxon-signed rank test was used to compare the baseline
characteristics of the demographic data between the two early
NTG and GS and groups for continuous and categorical
variables. p-values of less than 0.05 were considered to be
statistically significant.
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FIGURE 2

Diagnostic workflow based on the CNN. (A) Data preprocessing. BMO-based disc photographs including disc margin (dotted line) were
extracted from BMO Overview with a size of 438 × 436 pixels using the Pillow library in Python. (B) Dataset. The dataset contains a total of 2
classes with 501 eyes (501 subjects), either early NTG (246 subjects) or GS (255 subjects). 10-fold cross validation was performed to compensate
for the relatively small number of dataset. For each iteration, there are 399 images in training set, and 102 BMO-overview images are in test set.
(C) CNN. A convolutional neural network structure was built from scratch on the Keras Sequential API (https://keras.io/) for the diagnosis of
early NTG. The model input was taken as a tensor with dimensions of (244, 244, 3). The first and second hidden layers of the model had 16 and
32 filters, respectively, with a kernel size of (2, 2), and a ReLU was taken as the activation function. The third and fourth hidden layers had 64
filters with a kernel size of (2, 2) and ReLUs. The model contained a fully connected dense layer with 2 units and softmax was taken as its
activation function. The batch size was 10, and the number of epochs was 100 in the model. For compiling the model, Nadam (32) and
categorical cross-entropy were taken as the optimizer and loss function, respectively. (D) Diagnosis. The AI model diagnosed the input images
from the test set as either early NTG or GS. (E) Explainable AI. Explainable AI (XAI) is artificial intelligence that can be explainable and
understandable the predictions or decisions that made by the AI. LIME was applied to understand the decisions of deep learning black-box
models. By comparing with the diagnostic criteria of the clinician, the reliability in the diagnosis of the deep learning model can be given.

Results

Baseline characteristics of the datasets

A total of 501 eyes (501 subjects) out of 726 eyes (726
subjects) were included in the final analysis. The GS group
included 255 eyes (255 subjects) out of 343 eyes (343 subjects)
and the early NTG group included 246 eyes (246 subjects) out
of 383 patients (383 subjects). The mean age of the GS subjects
was 48.01 ± 13.03 years, which was significantly younger
than that of the early NTG subjects at 54.48 ± 11.28 years
(p < 0.001). The baseline intraocular pressure (IOP) was not
significantly different between GS and early NTG, which was
14.92 ± 2.62 mmHg and 14.79 ± 2.61 mmHg, respectively. The
mean deviation (MD) of the GS subjects, −0.73 ± 2.10 dB,
was significantly higher than that of the early NTG subjects at
−2.80 ± 2.40 dB (p < 0.001). The pattern standard deviation
(PSD) was significantly lower, and the visual field index (VFI)
was significantly higher in the GS subjects than in the early
NTG subjects (all p < 0.001). The central corneal thickness

(CCT) was thicker in the GS subjects than in the early NTG
subjects (p = 0.046). However, the spherical equivalents (SE)
were not significantly different between the GS and NTG
subjects (p = 0.372). The mean SE was −1.93 ± 2.92 D in GS
subjects and it was −1.80 ± 2.84 D in early NTG subjects. In GS
group, mild myopia (0 to −2.0 D) consisted of 42.7% (109/255),
moderate myopia (−2.0 to −6.0 D) comprised 24.3% (62/255),
and high myopia (<−6.0 D) comprised 11.0% (28/255). In
NTG group, mild myopia (0 to −2.0 D) consisted of 38.6%
(95/246), moderate myopia (−2.0 D to −6.0 D) comprised
24.8% (61/246), and high myopia (<−6.0 D) comprised 11.0%
(27/246). Approximately 35% of included subjects had more
than moderate myopia (<−2.0 D) in both GS and NTG
groups. The details of baseline characteristics are demonstrated
in Table 1. Forty-three subjects (17.48%) with pre-perimetric
glaucoma were included in the early NTG group.

Table 2 demonstrates the BMO-MRW values of the subjects
with early NTG and GS. BMO-MRW values of global region
were significantly thicker in the GS group than in the early NTG
group (262.58 ± 41.32 and 207.42 ± 44.86 um, respectively,
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TABLE 1 Baseline characteristics of glaucoma suspect and early
normal-tension glaucoma subjects.

Characteristics Values

Diagnosis Glaucoma
suspect

Early NTG P-value

Number of subjects 255 eyes (255
subjects)

246 eyes (246
subjects)

Mean Age (year) 48.01 ± 13.03 54.48 ± 11.28 <0.001

Female gender (%) 138 (54.11%) 118 (47.96%) 0.147

Family history of glaucoma (%) 16 (6.27%) 27 (10.97%) 0.071

Spherical equivalent (D) −1.93 ± 2.92 −1.80 ± 2.84 0.372

CCT (um) 546.40 ± 39.18 537.34 ± 60.06 0.046

Baseline IOP (mmHg) 14.92 ± 2.62 14.79 ± 2.61 0.624

VFI (%) 98.56 ± 3.94 93.32 ± 6.58 <0.001

MD (dB) −0.73 ± 2.10 −2.80 ± 2.40 <0.001

PSD (dB) 2.13 ± 1.33 4.66 ± 2.98 <0.001

NTG, normal tension glaucoma; OCT, optical coherence tomography; D, diopters; CCT,
central corneal thickness; IOP, intraocular pressure; VFI, visual field index; MD, mean
deviation; PSD, pattern standard deviation. Results comparison with GS and early
NTG are done with Wilcoxon signed-rank test. Bold font indicates significant p-values
(p < 0.05).

TABLE 2 Brunch membrane opening minimum rim width of
glaucoma suspect and early normal-tension glaucoma subjects.

Characteristics Glaucoma suspect
(n = 255)

Early NTG
(n = 246)

P-value

BMO-fovea angle◦
−5.61 ± 3.22 −6.04 ± 3.27 0.033

BMO area (mm2) 2.45 ± 0.52 2.32 ± 0.59 0.005

BMO-MRW G (um) 262.58 ± 41.32 207.42 ± 44.86 <0.001

BMO-MRW T 191.42 ± 40.59 162.84 ± 40.18 <0.001

BMO-MRW TS 267.62 ± 42.73 207.98 ± 61.80 <0.001

BMO-MRW TI 294.68 ± 52.15 192.62 ± 67.87 <0.001

BMO-MRW N 275.61 ± 55.89 228.27 ± 58.47 <0.001

BMO-MRW NS 291.54 ± 56.98 237.10 ± 63.57 <0.001

BMO-MRW NI 320.79 ± 54.85 234.96 ± 64.90 <0.001

Values represent mean ± mean deviation. NTG, normal-tension glaucoma. BMO-
MRW, bruch’s membrane opening-minimum rim width. G, global. T, temporal. TS,
superotemporal. NS, superonasal. N, nasal. NI, inferonasal. TI, inferotemporal. Statistical
analysis between glaucoma suspect and early NTG for BMO-MRW was done by
Wilcoxon signed-rank test. Bold font indicates significant p values (p < 0.05).

p = 0.005). The BMO-MRW values from all six Garway-
Heath sectors (temporal, superotemporal, inferotemporal, nasal,
superonasal, and inferonasal) were also significantly thicker in
the GS group than in the early NTG group (all p < 0.001).
The BMO area in the GS group (2.45 ± 0.52 mm2) was
significantly larger than that of the early NTG group (p = 0.005).
Interestingly, the BMO-fovea angle was significantly different
between the early NTG and GS groups (p = 0.033). The mean
BMO-fovea angle was −5.61 ± 3.22◦ in the GS group and
−6.04 ± 3.27◦ in the early NTG group. This finding indicates
that the optic disc was located further away from the fovea in

the early NTG group than in the GS group since the BMO-
fovea angle is the angle between the BMO center and the fovea.
Representative fundus photography of early NTG and GS are
demonstrated in Figures 1A,D, respectively.

Overview of convolutional neural
networks model for classifying
glaucoma suspect and early
normal-tension glaucoma

A CNN model for the diagnosis of early NTG with a
convolutional neural network structure on the Keras Sequential
API (see text footnote 2) was implemented, as shown in
Figure 2.

BMO-based disc photographs including the disc margin
(dotted line) from 501 eyes (501 subjects) with either early
NTG (246 subjects) or GS (255 subjects) were collected in a
glaucoma clinic at Gyeongsang National University Changwon
Hospital. The BMO-based disc photographs of 246 early NTG
and 255 GS were obtained by cropping the center images from
BMO Overview, as shown in Figure 2A. The dataset contained
a total of 501 eyes (Figure 2B). 10-fold cross validation was
performed to compensate for the relatively small number of data
set. For each iteration, there are 399 images are in training set,
and 102 BMO-overview images are in test set. The architecture
of the CNN built from scratch is demonstrated in Figure 2C.
A convolutional neural network structure was built from scratch
on the Keras Sequential API (see text footnote 2) for the
diagnosis of early NTG. The model input was taken as a tensor
with dimensions of (244, 244, 3). The first and second hidden
layers of the model had 16 and 32 filters, respectively, with a
kernel size of (2, 2), and a ReLU was taken as the activation
function. The third and fourth hidden layers had 64 filters with
a kernel size of (2, 2) and ReLUs. The model contained a fully
connected dense layer with 2 units and softmax was taken as its
activation function. The batch size was 10, and the number of
epochs was 100 in the model. To compile the model for each
CNN, Nadam (32) and categorical cross-entropy were chosen
as the respective optimizer and loss function. The AI model
diagnosed the images and output as either GS or early NTG, as
shown in Figure 2D.

Diagnostic performances of the
artificial intelligence model for
discriminating glaucoma suspect and
early normal-tension glaucoma

To evaluate the diagnostic performance of the AI model for
discriminating early NTG and GS, accuracy, loss, and AUC of
the receiver operating characteristic curve over the test set per
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FIGURE 3

Accuracy and loss per fold and areas under the curve (AUC) for the receiver operating characteristic curves (ROC) achieved by the AI model for
classifying GS and early NTG. (A) Accuracy and loss per each fold were evaluated. The average loss was 0.3073 (0.1153–0.7100), and average
accuracy was 91.02% (82.00–98.00%). (B) The area under the curve (AUC) for the receiver operating characteristic curve (ROC) were calculated
for the CNN model with 10-fold cross validation. The mean AUC value was 0.94 ± 0.05 (0.83–1.00). GS: glaucoma suspect; NTG:
normal-tension glaucoma.

fold were calculated, as shown in Figure 3. In Figure 3A showed
the losses and accuracies for the CNN model with each fold
from 1 to 10. In each fold, the number of epochs was 100. The
range of loss was from 0.1153 to 0.7100, and the mean loss of
the model was 0.3073. The accuracy for the model ranged from
0.82 to 0.98, and the mean average accuracy was 0.9102. The area
under the curve (AUC) for the receiver operating characteristic
curve (ROC) were calculated for the CNN model with 10-fold
cross validation. The CNN model achieved the average AUC of
0.94 ± 0.05 for classifying early NTG and GS in the test set with
10-fold cross validation, as shown in Figure 3B. The highest
AUC was 1.00 and the lowest AUC was 0.83.

Inferotemporal regions were important
in classifying glaucoma suspect and
early normal-tension glaucoma

The black-box deep learning models are generally hard to
explain why those made such predictions although they produce
great performances and accuracies. The Local Interpretable
Model-agnostic Explanations (LIME), a well-known technique
of XAI, was used to understand the predicting its final diagnostic
classification (i.e., GS or early NTG) of the CNN model in an
interpretable way. The LIME algorithm reveals the area of the
images that the CNN model used to extract spatial and temporal
features. Inferotemporal regions of the cupping or NRR in the
optic disc were considered to be predominantly influential in
classifying the final diagnosis (Figure 4). Representative cases of
GS and early NTG are shown in Figure 4. It shows the extraction
of the top 1 and top 3 features, which are the grounds for CNN

models to classify GS or early NTG. The green-colored region
indicates that this part of the image increased the probability
for the label, and the red-colored region indicates a decrease
in the probability for the label. In the case of GS, it was mainly
determined by the area around the inferotemporal region of the
neuroretinal rim (see Figure 4A, green). In the case of early
NTG, it was classified as early NTG by the inferotemporal region
of the cupping and neuroretinal rim, as shown in Figure 4B
(green).

Discussion

To our knowledge, the current study was the very initial to
use BMO-based optic disc photography to discriminate early
NTG from GS in a single ethnic group of Asians, where NTG
is more prevalent. We found that the diagnostic performance
of our CNN model built from scratch was excellent, with the
mean AUC of 0.94 (0.83 – 1.00) and the mean accuracy of 0.91
(0.82 – 0.98) in discriminating early NTG from GS. Considering
that it is more difficult to classify glaucoma of early stage from
GS than glaucoma of advanced stage from normal controls,
the results of our study are quite remarkable. Moreover, since
there is no consensus or diagnostic standard for interpreting
this new BMO-based optic disc photography, clinicians cannot
investigate its diagnostic value in the field of glaucoma. Our
CNN model has performed this task instead, which will be useful
for future research and application in clinical settings.

A previous review article by Sengupta et al. (36) reported
glaucoma detection results using deep learning methods with
fundus images. The AUC indicating diagnostic performance
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FIGURE 4

Explainable artificial intelligence and Local Interpretable Model-agnostic Explanations. The LIME algorithm, a well-known technique of
explainable AI explaining the predictions of black-box machine-learning models, was used to reveal the area of the image that our CNN model
used to extract spatial and temporal features and predict its final classification of the diagnosis (i.e., GS or early NTG). The inferotemporal region
of the cupping or neuroretinal rim in the optic disc was considered to be predominantly influential in classifying the final diagnosis.
Representative cases are shown for GS and NTG. (A) For GS, our CNN model identified the inferotemporal region of the neuroretinal rim
(green). (B) For early NTG, the inferotemporal region of the cupping and neuroretinal rim were identified for classification (green). Note that the
region recognized by LIME (green) includes the BMO points (the red colored dotted line around the disc) in each region for classification of
either early NTG or GS. AI: artificial intelligence; LIME: local interpretable model-agnostic explanations; GS: glaucoma suspect; NTG:
normal-tension glaucoma.

varied among studies from 0.82 to 0.94, and the highest one
was 0.986 (36). Most of these studies used the same CNN
model as that in the present study. Some studies showed
much lower AUCs than in our study such as 0.82 (24),
0.831 (19), and 0.838 (23). Most of the studies showed AUCs
such as 0.923 (25) and 0.926 (37), lower than that in our
study, not using CNN, but using Autoencoderut and the
feedforward neural network, respectively, and 0.945 (20) using
the CNN. Only one study showed a higher AUC than the
current study at 0.986 (21) using the CNN. However, these
studies did not evaluate only the early stage of glaucoma,
which is more difficult to diagnose than advanced stages
of glaucoma (16–18). Furthermore, it is more difficult to
discriminate glaucoma of early stage from GS than from
normal subjects. Considering that our study included only early
glaucoma in the discrimination from GS, the AUC results of our
CNN model showed fine diagnostic performance. Furthermore,
none of these studies included solely NTG for glaucoma
nor classified the subtypes of glaucoma as NTG. Thus, the
present study has a unique meaning that could add to the
existing literature.

Since there is no consensus or diagnostic standard for
interpreting this new BMO-based overview imaging yet,

clinicians cannot evaluate its diagnostic ability and its value
in the field of glaucoma diagnosis. Our newly developed
CNN model was able to perform this task and showed
that the diagnostic performance of this new BMO-based
disc photography was relatively comparable or superior to
conventional fundus photography used in most previous studies
for the detection of glaucoma. The present study has another
significant meaning in this aspect.

BMO-MRW and its BMO overview from spectral-domain
OCT have become widely available to clinicians and offer merits
rather than conventional optic disc analysis measurements
(11–13). BMO-MRW presents a geometrically more precise
evaluation of the NRR than preexistent examinations (7–10).
BMO-MRW has been reported to be advantageous in correctly
reflecting the amount of NRR tissue in the optic disc (38). All of
the baseline BMO parameters including the BMO-fovea angle
and BMO area showed significant differences between the GS
and early NTG groups in our study. The BMO-fovea angle was
significantly larger in the early NTG group (−6.04 ± 3.27◦)
than in the GS group (−5.61 ± 3.22◦) (P = 0.033). It is a
somewhat interesting finding because it means that the center
of the optic disc defined as the BMO-based disc margin showed
a greater angle from the macula in the early NTG group than
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in the GS group. Acquirement of data and analysis of OCT
were carried out in accordance of the individual eye-specific axis
(FoBMO axis), which is the axis between the center of BMO
area and the fovea. Using the FoBMO axis could result in a
more precise analysis of Garway-Heath sectors regarding the
cyclotorsion of individual eyes and more correct comparison
with normative dataset than the traditional manner (7). The
BMO-fovea angle is the angle between the center of BMO area
and the fovea. There has been no previous report regarding
the relationship between the BMO-fovea angle and glaucoma,
especially in the early stage of glaucoma. The relative location
of the optic disc from the fovea is different in each individual
and it may possibly affect the development of glaucoma. Retinal
nerve fibers or RGC axons could be more stretched and cause
more tension in optic discs with a greater angle from the fovea
than those with a lesser angle from the fovea. Thus, there could
be more conformational change in the optic disc at the lamina
cribrosa level in those with a greater BMO-fovea angle than in
those with a lesser BMO-fovea angle. However, the spherical
equivalents were similar between the GS (−1.93 ± 2.92 D) and
the early NTG (−1.80 ± 2.84 D) groups (P = 0.372), and patients
with relatively mild myopia were included in both groups.
Thus, the difference in the BMO-fovea angle between the two
groups was not thought to be due to the differences in myopia
patients in each group. The association between the BMO-fovea
angle and its effect on glaucoma needs to be confirmed in
further studies.

The BMO area was significantly larger in the GS group
(2.45 ± 0.52 mm2) than in the early NTG group (2.32 ± 0.59
mm2) (P = 0.005). This may be because a large optic disc with a
large cup is frequently considered GS (39–42). The BMO-MRW
from the global region and all 6 Garway-Heath sectors according
to the FoBMO axis were significantly different between the GS
and the early NTG group (all P < 0.05). The BMO-MRW was
significantly thinner in the early NTG group than in the GS
group, which indicates glaucomatous changes in the early NTG
group and was also reflected in all BMO-MRW regions. The
significant difference in all BMO-based parameters including
the BMO-fovea angle, BMO area, and BMO-MRWs between the
GS and early NTG groups may partly suggest the usefulness of
BMO-based assessment in the diagnosis of early glaucoma.

A discrepancy between the clinical disc margin based on
fundus photography and the BMO-based disc margin was noted
in our study. It has been described in several previous studies,
and initially by Chauhan et al. (7, 11, 14). The discrepancy was
also noted in our previous study, “Characteristics of Patients
Showing Discrepancy Between Bruch’s Membrane Opening-
Minimum Rim Width and Peripapillary Retinal Nerve Fiber
Layer Thickness” (14). In this previous study, we found that
the BMO-MRW may show normal color code classification,
while the RNFL is abnormal in GS subjects, especially in
patients with large discs and myopia. The discrepancy between
the clinical and BMO-based disc margin, in turn, gave rise

to discrepancies in the color code classification between the
BMO-MRW and the RNFL. BMO-based disc margin takes
peripapillary atrophy (PPA) into account. Changes in the optic
disc and PPA in myopic eyes were recently described by
Sung et al. (43). They found that the morphologic features
of the optic nerve head were different based on the β-PPA
microstructure in highly myopic eyes (43). Optic nerve head
morphology varies among individuals, as does β-PPA. Some
patients with β-PPA have basement membrane and some do
not. BMO-based disc margin usually includes PPA without
BM within the BMO area, which is the BMO-based optic
disc area (Figure 1C, GS). This difference in the assessment
of the optic disc margin actually affects the assessment of
neuroretinal tissue or the neuroretinal rim, which is important
in glaucoma diagnosis. The neuroretinal rim seems thinner in
fundus photography based on a clinical disc margin without
PPA (Figure 1A, GS) than the neuroretinal rim from BMO-
based disc photography based on a BMO-based disc margin
(Figure 1C, GS), especially in the inferotemporal region with
a large PPA in the representative case of GS. Since the
variability of optic nerve head morphology and PPA among
individuals is partly considered in BMO-based disc photography
or BMO-based disc assessment, we assume that the diagnostic
performance may be better than conventional assessment in
our studies series (14, 15), including this one. Although
BMO overview is a black-and white image and does not
directly provide values of NRR width (BMO-MRW), it shows
BMO-based disc margin considering PPA. Therefore NRR in
accordance with BMO-based disc margin can be estimated just
like conventional disc photography. Moreover, BMO overview,
in fact, provides both clinical and BMO-based disc margin for
diagnostic information, which may be more beneficial than
conventional disc photography.

Considering the relatively high prevalence of myopia
in Asians (26), certain proportion of myopic subjects were
included in the present study. Approximately 35% of included
subjects had more than moderate myopia (<−2.0D) in both
GS and NTG groups in this study. Although we did not
exclude any subjects by refractive error or axial length, those
high myopic patients whose images were too bad for accurate
identification of BMO, and thus, cannot provide accurate
BMO-based disc margin were excluded. Several recent studies
reported better diagnostic performance of BMO-MRW than
conventional peripapillary RNFL thickness in myopic glaucoma
patients (44–46). In this regard, our study results suggest that
our CNN model using BMO overview may be useful not
only in general population, but also in population including
considerable proportion of moderate myopia.

We used the LIME algorithm to evaluate the location
our CNN model used to classify either GS or early NTG.
We confirmed that our CNN model identified the proper
region of the optic disc to discriminate between GS or
early NTG. Our CNN model identified the inferotemporal
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region of the optic disc with early NTG with thinning of
the inferotemporal neuroretinal rim in the representative case
(green area, Figure 4). This may indicate the validity and
reliability of the present study since early glaucomatous changes
are considered to be initiated in the inferotemporal region of the
optic disc (47).

The present study had several limitations. First of all,
the retrospective nature of the present study has its potential
limitation. Only those who underwent BMO-MRW and BMO
overview imaging and had reliable quality in both test images
were included in the current study. The influence of such
selection of subjects on our results is unknown. Another one
is that it was a hospital-based study conducted at a referral
national university hospital of the province, and thus, not a
population-based design study. Those subjects included in the
present study might not represent the whole population. In
addition, the current study included only Korean subjects. Our
study results regarding NTG, may not apply to other ethnic
populations or other glaucoma types. One of the limitations
is the relatively small size of sample in the current study that
should be considered. Nevertheless, more than 500 subjects
with early NTG and GS out of more than 720 subjects were
included in the present study and this number was considered
to be sufficient to train and test diagnostic performance to
distinguish a single disease from single-device data. In order
to compensate for the relatively small number of data set,
we performed k-fold cross validation (k = 10). Through
this cross-validation process, all observations (n = 501) were
used for both training and test, and each observation was
used for test exactly once. Therefore, this may be enough
to compensate for the limitation of the small dataset, and
the results were also considered to be quite good (the mean
AUC = 0.94 ± 0.05).

Moreover, the diagnosis discrimination between early NTG
and GS included in the dataset was made by one glaucoma
specialist (H-k Cho) for more solid and consistent diagnostic
standards. Different ophthalmologists may not always draw the
same glaucoma diagnosis decision and not all studies were
evaluated solely by glaucoma specialists. Baseline characteristics
including the VF global indices and all BMO parameters, which
are not available in very large datasets of more than thousands
of subjects, were also inspected in the present study. Therefore,
our data may provide more reliable and consistent results than
other deep learning studies with larger numbers of subjects.

In conclusion, the performance of our CNN model using
BMO-based optic disc photography from OCT was considerably
great in classifying early NTG from GS. This new disc
photography of BMO overview can aid in the diagnosis of
glaucoma other than conventional disc photography. Our CNN
model may be useful in clinical setting for the diagnosis of
early glaucoma, which is more difficult than that of advanced
glaucoma. A further multi-center study with larger patient
numbers is needed to reach ultimate conclusions.
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