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The ocular surface microbiome has implications for ocular surface

inflammation and immunology. Previous shotgun metagenomics analyses

were performed in China, showing results that differed according to

environment and age. Patients with Sjogren’s syndrome were reported to

have altered conjunctival microbiome, but such studies have not been done

in milder dry eye. The aim of this study is to describe the conjunctival

microbiome in people with mild dry eye in Singapore. Samples were

collected from 14 participants with mild dry eye and 10 age-matched

comparison participants recruited from Singapore National Eye Centre

(SNEC) clinics. Shotgun metagenomic sequencing analysis was employed to

evaluate the conjunctival microbiome composition. Proteobacteria formed

the predominant phylum in the conjunctiva. As in a study from a coastal city

in China, Achromobacter spp. was numerically most abundant. Compared

to age-matched controls, the conjunctival microbial composition in mild

dry eye was similar. Several microorganisms, including Streptococcus spp.

increased in representation with age, and the abundance of Staphylococcus

correlated with Schirmer readings. In addition, when cultured corneal

epithelial cells were exposed to three strains of Achromobacter xylosoxidans,

cytokines such as TNF-α and IL-6 were upregulated in the cell lysates

and supernatants. Ourresults suggest that age is an important factor that
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affects composition of the conjunctival microbiome, and relative abundance

of specific microorganism may vary according to the environment of the

human host.
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Introduction

The human ocular surface consists of the conjunctiva,
corneal surfaces, the lid margin, tear secreting glands and
outflow tracts. The ocular surface microbiome is important
for several reasons. First, it has been linked to various human
eye diseases such as dry eye (1–4), Sjogren’s syndrome (5,
6), allergic conjunctivitis (7, 8), trachoma (9) and infectious
keratitis (10, 11). Second, microbial components in the eye
are known to stimulate toll-like receptors on the ocular
surface epithelial cells, thereby activating the ocular surface
immune system (12–15). The conjunctival-associated lymphoid
tissue and lymphatics in the conjunctiva (16–19) may play
an analogous role to the Peyer’s patches in the small
intestine for the regulation of immune tolerance (20–23).
Topical probiotic eyedrops containing Lactobacillus acidophilus
reduces severity of ocular allergies (24) in humans, while
the use of topical eyedrops with Enterococcus faecium and
Saccharomyces boulardii showed improvement in signs of
dry eye in a clinical trial (25), suggesting that modulation
of ocular surface inflammation via microbial strategies is
possible. Furthermore, an oral probiotic formulation has
been shown to reduce severity of experimental dry eye (26–
28). Third, the role of ocular surface microorganisms in
eyelid conditions like blepharitis and eye infections is well
documented (29).

Conventional culture-based studies of the ocular surface
have revealed a predominance of Gram-positive cocci such as
coagulase-negative Staphylococci, Diphtheroids, and anaerobes,
including Propionibacter acnes (30–32). Studies with 16S
rRNA amplicon sequencing have reported a slightly different
community profile, with more Gram-negative bacteria (4,
9, 33–35). Although 16S rRNA amplicon-based microbiome
studies allowed a broad description of bacterial community, this
method has low phylogenetic resolution at the species level (36).
Shotgun metagenomic analysis sequences the whole community
DNA, and allows the community profiling of the bacteria to
species level (37–41). Furthermore, whole genome information
enables analyses of metabolic and functional pathways. One
such study reported that pathways related to transcription,
lipid and amino acid metabolism were abundant in the
healthy ocular surface microbiome (37). Previous studies using
shotgun metagenomic methods showed that environmental
factors impact healthy ocular surface microbiome (38). Since the

previous studies using shotgun metagenomics were from China,
it is necessary to replicate them in a different climate.

As inflammation is the most common cause of ocular
surface disease, understanding how microbiomes relate to
different types of inflammation is necessary for effective
treatment. There are implications for clinical practice in ocular
allergies, eyelid-induced ocular surface inflammation, contact
lens wear, extended corticosteroid use, as well as prophylaxis
against iatrogenic infections related to surgeries (31, 35, 42). It is
known that SS patients have altered ocular surface microbiome,
but this has not been studied in mild dry eye.

This study aimed to describe ocular surface microbiome
in a group of people with mild dry eye and comparison
participants living in Singapore, explore its association with
demographic and parameters related to ocular surface health.
In order to understand effect of the microbes to ocular surface
inflammation, the impact of preponderant microbial species
on cytokine expression by ocular surface epithelial cells was
investigated.

Materials and methods

Participant recruitment

The study was approved by the SingHealth centralized
Institutional Review Board, and complied with the tenets of the
Declaration of Helsinki for human research. Informed written
consent was obtained from all participants. Participants who had
been diagnosed to have dry eye had a spectrum of results on
clinical tests, with presence of dry eye symptoms and one clinical
sign (either Schirmer I test results < 10 mm or NIBUT < 10
s or presence of corneal staining). Supplementary Table 1
showed clinical features of the participants. These dry eye cases
were referred to as mild because all participants were level 1
except one with level 2 in the DEWS 2007 severity criteria
(43). Participants with diabetes were excluded because they
could have altered microbiomes (44, 45). Participants in the
comparison group did not satisfy the above dry eye criteria
and presented to Singapore National Eye Centre (SNEC) for an
unrelated eye condition such as floaters.

The participants were evaluated with a questionnaire
that identified risk factors of dry eye such as contact lens
use, smoking (46). The use of artificial tears and contact
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lens wear are provided in Supplementary Table 2. None
of the dry eye participants had treatment with prescription
eye drops (corticosteroids, cyclosporine or antibiotics). The
control group had no topical treatment including artificial
tears and antibiotics, and no contact lens wear for the past
6 months.

Clinical examination

Keratograph (K) 5M (Oculus Inc., Arlington, WA) was used
to assess the non-invasive tear breakup time (NIBUT). The
machine’s algorithm monitored the tear film to document the
time and site of tear film breakup. This technique analyzed
reflection images of Placido rings at intervals after eye opening,
to measure the smoothness of the tear-air interface. Tear
irregularity presents as disruption of the images of the rings.
A lower value of NIBUT indicates increased tear evaporation or
greater tear instability.

Bulbar conjunctival and peri-limbal eye redness was also
assessed by K5M (47). An image of the ocular surface under
white light was acquired with the K5M and automatically given
a standard grading for conjunctival hyperemia, ranging from
0 (no redness) to 4.0 (maximum redness). This analysis also
provided separate measures of redness of the temporal and
nasal conjunctiva.

Baseline tear secretion was measured by Schirmer’s test
without anesthesia as described previously (48). A lower
Schirmer I value indicates less tear secretion. The corneal
fluorescein staining was performed and graded as previously
described (46, 49).

Specimen collection

A drop of non-preserved tetracaine was firstly instilled
into the conjunctival fornix. After the stinging sensation
had resolved, a sterile cotton swab was used to collect
the microbes from the lower conjunctival fornix using a
gentle rolling action (up to eight strokes). The procedure
was then repeated for the opposite eye. The cotton swabs
from both eyes were combined and then soaked in 650
µl of DNA/RNA Shield (Zymo Research Corp., Irvine, CA)
reagent, immediately homogenized for 30 s, transferred to
ice for 1 min, and further homogenized for another 30 s.
Homogenized samples were stored at 4◦C until further
processing (within 1 week). Total DNA was extracted with
ZR-Duet DNA/RNA MiniPrep (Zymo Research, Irvine, CA).
Empty swabs following the same procedure were used as
control. An empty swab was an unused swab that was opened
under the same room and conditions as the participants
and then homogenized and processed as if it has been used
on a participant.

Metagenomic library preparation and
sequencing

DNA quality and quantity were determined using a 2100
Bioanalyzer and the Invitrogen PicoGreen assay, respectively.
Library preparation was performed according to the Illumina
TruSeq Nano DNA Sample preparation protocol. The samples
were sheared on a Covaris S220 (Covaris, Woburn, MA, USA)
to ∼450 bp, following the manufacturer’s recommendation,
and each uniquely tagged with one of Illumina’s TruSeq LT
DNA barcodes. Sequencing was performed on the Illumina
HiSeq 2500 platform (Illumina, San Diego, CA, USA) resulting
in an average of 56.18 million (49.29–77.79 M) 250 bp
paired-end reads per sample. Sequence data were deposited
in the Sequence Read Archive and are available under the
BioProject PRJNA886972.

Read preprocessing

Illumina adaptors were removed using cutadapt (version
1.10). Low-quality reads were removed using the program
“iu-filter-quality-minoche.” Overall, quality-trimmed
reads represented 83% (81–86%) of DNA reads. Human
reads were then removed from the dataset by aligning
DNA reads to the human genome (h38 from NCBI:
GCF_000001405.36_GRCh38.p10_genomic.fna.gz) using
Bowtie2 (version 2.2.9). Overall, around 0.11 million (0.04–0.27
million) DNA reads were retained after quality filtering and
removal of human reads.

Taxonomic and functional profiling of
the ocular microbiome

Taxonomic composition of DNA reads was characterized
by alignment against the NCBI non-redundant (NR) protein
database (March 2016)1 using DIAMOND (version 0.7.10.59)
with default parameters. The lowest common ancestor approach
implemented in MEGAN6 (version CE_6_5_5, -ms 100 -supp
0 –sup 25 –pr –ps 2) was used to assign reads at the phylum,
genus and species levels. Each aligned read was assigned a KEGG
KO number using KEGG to GI mapping file generated using
KEGG 01/04/2016 repository according to MEGAN manual.

Statistical analysis

Phylum, genus, species and KEGG count tables from
the metagenomic dataset were exported from MEGAN6

1 ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz
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and imported in R using the phyloseq package. Count
tables were filtered to remove taxa/KO accounting for less
than 10 sequences in total and observed in less than two
samples (filter_taxa function). Taxonomic and functional
tables were then rarefied to an even sequencing depth using
the rarefy_even_depth function to allow robust comparison
between samples. Microbial communities were characterized
using alpha-diversity indices (number of observed taxa/K0
and Shannon diversity indices) and beta-diversity (Bray-Curtis
dissimilarity) for taxonomic (phylum, genus and species levels)
as well as functional datasets.

In order to investigate the correlation between microbial
communities and ocular parameters, distance-based
redundancy analysis models (db-RDA) were conducted between
scaled ocular parameters and taxonomical or functional Bray-
Curtis dissimilarities. The statistical significance was assessed by
999 permutations of the reduced model. Spearman correlations
were conducted between ocular parameters and taxa/KO.
Statistical significance of taxa/KO-group association was tested
using the “signassoc function” from the “indicspecies” package.
Sidak’s correction was applied for multiple testing.

Cell culture and treatment

Achromobacter xylosoxidans strains were obtained from
ATCC (DSMZ, Braunschweig, Germany). Human corneal
epithelial cells (H-CET) were cultured to near confluency in
DMEM/F12 medium containing 5% FBS (Life Technology,
Singapore) media, with passaging and maintenance of culture
conditions as described in previous studies (50). Before
experiments, cells were washed, seeded into serum-free
DMEM/F12 medium and grown overnight.

For treatment experiments, the following conditions were
tested in triplicates: (1) DMEM only: H-CET control; (2)
DMEM + 1µg/ml LPS: H-CET activated with 1µg/ml LPS
(Sigma) for 16 h; (3) Achromobacter xylosoxidans strain 1 or
2 or 3 + 1µg/mL LPS: H-CET activated with 1µg/mL LPS
for 16 h, followed by infection of 1:100 MOI of the strain of
Achromobacter for 2 h. The extracellular bacteria were then
removed by washing three times with PBS and the H-CET
were then incubated in DMEM for another 3 h; (4). The same
conditions as in (3) were investigated, but without the addition
of the LPS.

Cytokine analysis

The cell culture media and cells were collected separately for
analysis. As for the cell culture media supernatant, the liquid
was transferred to a new 1.5 ml Eppendorf tube, centrifuged
at 13,000 g for 3 min. The supernatant was then filtered with
0.2 µm-filter. The cells were washed three times with 200 µL

PBS/well, lysed by addition of 200 µL of ddH2O/well and
scraped from the bottom of the well with a cell scraper. The
cell lysates were transferred to a new 1.5 mL Eppendorf tube,
centrifuged at 13,000 g for 3 min. The supernatant was then
filtered with the 0.2 µ m-filter.

Cell lysate protein concentrations were determined
by the bicinchoninic acid method. The same volume of
supernatant (25µL/well) and same amount of cell lysate proteins
(29.5µg/well) from each sample were used for multiplex bead-
based indirect immunofluorescent assay (Beadlyte; EMD
Millipore, Billerica, MA, USA) as described previously (51).
Each sample was triplicated. Levels of 15 cytokines (IL-1β, IL-2,
IL-4, IL-6, IL-8, IL-10, IL-12, IL-13, IL-17, IFN-γ, TNF-α, IP-10,
MCP, MIP1a, RANTES) were analyzed.

Results

There were no significant differences in age, gender or
ethnicity of participants with dry eye and controls (Table 1). The
dry eye participants recruited in this study were mainly mild in
severity, with presence of dry eye symptoms and one clinical sign
(either reduced Schirmer I test results or NIBUT or presence of
corneal staining). Since the participants had an abnormal result
in only one out of these tests, each test displayed a wide range of
readings across the entire group (Table 1). Among the ocular
surface clinical parameters, the extent of conjunctival redness
was directly correlated to increased age. Age showed a bimodal
distribution with one peak below and another above 40 years of
age (Supplementary Figure 1).

TABLE 1 Clinical and demographic characteristics of participants.

Overall Control Dry eye

Total number 24 10 14

% female 17/24 7/10 10/14

% Chinese 19/24 7/10 12/14

Age (years)
mean± SD

44.2± 15.0 44.1± 14.3 44.3± 16.2

Redness (1–4)
mean± SD

1.0± 0.4 1.1± 0.4 1.0± 0.4

Schirmer (mm)
mean± SD

13.9± 8.7 14.0± 10.9 13.8± 6.2

NIBUT (s)
mean± SD

9.3± 5.8 8.7 ± 5.2 9.9± 6.5

Fluorescein staining in any
corneal zone

8/24 3/10 5/14

Participants are classified under dry eye if they demonstrated dry eye symptoms and
one of the clinical signs (Staining, Schirmer’s test or NIBUT). Since participants in the
dry eye group tend not to have abnormal results in all the tests: staining, Schirmer’s test
and NIBUT, these parameters are individually not lower than the control group, and the
values had a large SD. Non-invasive tear break up times. The staining were mild in
the zones when present, with no cases of above 10 fluorescein spots in any single corneal
zone. Control and dry eye groups were not significantly different in any of the parameters
above (p > 0.05).
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TABLE 2 Sequencing reads.

Mean ± SD Min Max

Raw 56, 181, 504± 5, 958, 525 49,290,548 77,791,732

Passing QC 54, 721, 178± 5, 692, 465 47,637,514 76,179,154

Non-human reads 315, 589± 98, 432 181,418 545,159

Final matches 1, 246, 495± 395, 038 508,348 2,014,630

Queries aligned 56, 512± 17, 717 23,209 91,073

Class taxonomy 1, 375± 5, 855 101 28,864

Class KEGG 2, 363± 511 260 2,772

Total reads (%) 31.4± 9.8 12.9 50.6

Characterization of the microbiome

Sequencing reads were obtained in each of the 24 samples,
as summarized in Table 2. Of 56,181,504 raw reads, most of
the reads were human in origin and 1,246,495 were matched
to identified microbial phyla. The top major phyla identified in
these participants are shown in Supplementary Figure 2. The
phylum Proteobacteria represents the most abundant phylum,
followed by Bacteroidetes. The most common fungus phylum
was Basidiomycota (which includes free living organisms and

Cryptococcus). The bacterial phylum Firmicutes (which includes
the Clostridia, Streptococcus, Staphylococcus and Lactobacillus)
was significantly over-represented among the older (>40 years
of age), compared to younger (<40 years of age) participants
(Supplementary Figure 3). Bacterial reads outnumbered fungal
and viral reads (data not shown).

The most abundant genus was Achromobacter, with
the most common species identified as Achromobacter
xylosoxidans (Supplementary Figure 4). There were no
significant differences in abundance of any microbial genus, or
species between dry eye and control participants, among the top
10 genera and species. The most abundant phylum and genus
from the empty swabs control are showed in Supplementary
Figure 5. Achromobacter was not among the top 10 genera in
empty swab control samples.

Two clusters of participants were identified using
principal component analysis (Figure 1), one large cluster
(16 participants) and a small but more dispersed cluster of eight
participants (MBD016LE, MBD036LE, MBC044LE, MBD037,
MBD030LE, MBC022L, MBC023LE, MBD032LE). There were
no significant differences in the dry eye parameters between
participants of the two clusters, although participants of the
smaller cluster (n = 7) were of an older age (p = 0.028). The ages

FIGURE 1

Principal component analysis of the human conjunctival microbiome composition. This scatter diagram shows each participant (symbol) along
the first two principal components of the microbial gene analysis at the genus level. The age of the participant is displayed as either orange
(younger) or blue (older), and richness is displayed as differing sizes of the symbols. Certain bacterial genera contribute significantly to loading
scores in the first principal component (horizontal axis) illustrated in the scatter diagram.
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in the two clusters were 39.6± 13.6 years and 53.5± 13.7 years,
respectively. The smaller cluster (Figure 2 left) had an increased
representation of Achromobacter spp. and a reduced proportion
of a number of microbial species (e.g., Acidovorax temperans,
Phenylobacterium zucineum, and Noviherbaspirillum spp.)
compared to the larger cluster (Figure 2 right). Supplementary
Table 3 listed all the bacteria that are under-represented in the
smaller cluster.

It is interesting to examine the bacteria under-represented
in the smaller cluster in greater detail, as the age effect on

this bacterial community may have physiological relevance,
even though individual microbes may not play a significant
role. On closer examination, this group of 23 bacterial species
contain mainly bacteria from the phylum Proteobacteria,
with the exception of four species. These exceptions were
Deinococcus misasensis, Rubellimicrobium mesophilum and
Candidatus Blastococcus massiliensis; a fourth species,
Micavibrio aeruginosavorus which, is a known epibiotic obligate
bacterial predator that feeds on potential disease-causing
bacteria such as Pseudomonoas aeruginosa. A reduction in

FIGURE 2

Heat maps showing hierarchical clustering of abundance of microbial species in the human conjunctival microbiome. This shows two distinct
clusters (cluster 1: eight patients, and cluster 2: 16 patients). The identity of the species is indicated on the vertical axis and each column
represents one participant. Horizontal axis annotation (top) shows the age of the participants and the dry eye category.
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abundance of M. aerugonosavorus may have health effects, since
the protective functions of M. aeruginosavorus may be reduced
as its relative numerical composition is decreased.

Association with clinical parameters

In univariate analyses, we found significant correlations
between abundance of certain microbial genera and clinical
parameters (Figure 3). For example, older age was correlated
with a higher abundance of Streptococcus spp. (p < 0.01),
and a lower abundance of Staphylococcus was correlated with
a reduced Schirmer’s test reading (p < 0.01, First 2 rows
Figure 3A), which indicates the presence of aqueous tear
deficient dry eye.

Although Staphylococcus was not significantly correlated to
age (second row Figure 3A), however, in older participants a few
cases of Firmicutes (which included Staphylococcus) exceeded
10% relative abundance (Supplementary Figure 3). There is
still a possibility that age may confound the relationship of
Staphylococcus with Schirmer results, since it is well known that
older age is weakly associated with reduced Schirmer readings
(48, 52).

The fungal genus Malassezia also showed a similar, though
less marked association with the Schirmer’s test result (p < 0.05,
Figure 3A). Interestingly, when the same data were stratified by
dry eye status, certain correlations remained in the dry eye group
but not in the control group (Figure 3B). For example, the genus
Streptococcus was highly correlated to age (p < 0.01), only in
the dry eye group but not in the control group. On the other
hand, the genus Microbacterium was increased in participants
with more severe conjunctival redness (p < 0.01), but only in
the control group, not for the dry eye participants.

At the species level, significant correlations were also
observed (Figure 4) between the increased proportion of some
species with older age and reduced proportion of other species
with increased conjunctival redness (Figure 4A). When the
results were stratified by dry eye status, some differential
findings were observed between the control and dry eye groups
(Figure 4B).

Next, we analyzed the abundance of functional genes not
aligned with human genomes. The assessment of composition
and abundance of functional genes can elucidate potential
differences in microbial function. Such functional rather than
taxonomic gene description can more accurately describe
microbial community composition in specific host cohorts
(53, 54). Our analysis revealed that in each of the samples,
more than half the classified reads encode for genes related to
metabolism, and of the remainder, about two thirds encoded
for environmental/processing genes, while one third of the
genes was associated with processing of genetic information.
Approximately 20–30% of the assigned reads encoded for
membrane transport, with 25% of these for ABC transporters

(data not shown). Our analysis did not identify significant
differences in the relative proportion of functional genes
between the dry eye and control participants (data not shown).

Correlating the functional classifications with clinical
parameters revealed that glutathione S-transferase [EC:2.5.1.18]
was higher in the controls than in dry eye individuals (p = 0.01).
The preprotein translocase subunit SecA (K03070) was
positively correlated to the Schirmer’s test result (p < 0.001,
Figure 5A and Supplementary Table 4), while the 3-oxoacyl-
[acyl-carrier-protein] synthase III protein [EC:2.3.1.180]
(K00648) was positively correlated to age (p < 0.001, Figure 5A).
The DNA-directed RNA polymerase subunit beta [EC:2.7.7.6]
(K03043) was positively correlated to conjunctival redness
(p < 0.01, Figure 5B and Supplementary Table 5) in control
participants without dry eye.

Achromobacter effects the cytokine
levels of human cornea epithelial cells

As Achromobacter species are the predominant
microorganisms, the potential functional significance of
Achromobacter in human ocular surface physiology was
examined. To achieve this, human corneal epithelial cells
(HCE-T) were cultured with three strains of A. xylosoxidans,
the most abundant species.

Addition of any of the three strains of A. xylosoxidans to
the culture medium of HCE-T cells induced the upregulation
of inflammatory cytokines, including IL-6, IL-8, MCP-1,
RANTES, TNF-α, and MIP-1α (Figures 6A–F). Two strains
of A. xylosoxidans upregulated IFN-γ (Figure 6G), while only
one strain upregulated IP-10 (Figure 6H). When LPS was
added to simulate ocular surface stress and the simultaneous
presence of other gram-negative bacteria, all three strains of
A xylosoxidans further upregulated IL-6, IL-8, MCP-1 and
RANTES (Figures 6A–D). Only strain 1 further upregulated
TNF-α and IP-10 (Figure 6).

The three strains of A. xylosoxidans, when added to the
medium of HCE-T cells induced upregulation of MCP-1,
RANTES and TNF-α intracellularly (Figures 7A–C). Strains 1
and 2 of A. xylosoxidans upregulated intracellular IL-6 and IL-
8 (Figures 7D,E). Strains 1 and 3 upregulated IP-10 whereas
only strain 1 upregulated IFN-γ (Figures 7F,G). When LPS was
added concurrently, all the strains of A. xylosoxidans further
upregulated MCP-1 and IL-8 (Figures 7A,E). Strains 1 and 3
further upregulated TNF-α (Figure 7C), whereas strain 1 further
upregulated RANTES, IP-10 and IFN-γ (Figures 7B,F,G).

Hence, addition of A. xyloxidans to corneal epithelial cells
led to increased inflammatory cytokine production. In LPS-
stimulated cells, cytokine production further increased when
bacteria were present. An interesting finding was observed
for the regulation of IP-10 and TNF-α by strain 2 and
3 of A. xylosoxidans (Figures 6, 7). Addition of LPS and
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FIGURE 3

Correlation between microbial genera and demographic/clinical parameters. Each horizontal row indicates a unique microbial genus, and the
horizontal axis indicates the correlation analysis with age, and three other clinical parameters. NIBUT: Non-invasive tear break up times (in
seconds), redness: average temporal bulbar redness quantified automatically by Oculus Keratograph K5M; Schirmer: Schirmer I test results (mm
over 5 min). The value of the Spearman correlation coefficient, which measures the strength and direction of association between two ranked
variables, is color coded. Strong red color indicates positive correlation and strong blue color indicates negative or inverse correlation. Weak or
faint color indicates weak or no correlation. (A) All participants included in analysis, and (B) Correlation stratified according to dry eye status
(with or without dry eye). ∗p < 0.05; ∗∗p < 0.01.
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FIGURE 4

Correlation between microbial species and demographic/clinical parameters. Each horizontal row indicates a unique microbial species, and the
horizontal axis indicates the correlation analysis with age, and three other clinical parameters. NIBUT: Non-invasive tear break up times (in
seconds), Redness: Average temporal bulbar redness quantified automatically by Oculus Keratograph K5M; Schirmer: Schirmer I test results
(mm over 5 min). The value of the Spearman correlation coefficient, which measures the strength and direction of association between two
ranked variables, is color coded. Strong red color indicates positive correlation and strong blue color indicates negative or inverse correlation.
Weak or faint color indicates weak or no correlation. (A) All participants included in analysis, and (B) Correlation stratified according to dry eye
status (with or without dry eye). ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.
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FIGURE 5

Results of functional gene analysis. (A) Correlation between KEGG functional classes and age, non-invasive tear break-up times (NIBUT) and
Schirmer test for all participants. (B) Relationship between functional genes and age, NIBUT, conjunctival redness and Schirmer test, stratified by
dry eye and control participants. The value of the Spearman correlation coefficient, which measures the strength and direction of association
between two ranked variables, is color-coded. Red indicates positive correlation and blue indicates negative or inverse correlation. ∗p < 0.05;
∗∗p < 0.01; ∗∗∗p < 0.001. Supplementary Tables 4, 5 listed the full names of KEGG functional classes.
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FIGURE 6

Achromobacter induced cytokine production in human corneal epithelial cells (serum free culture supernatant). (A) IL-6; (B) IL-8; (C) MCP-1;
(D) RANTES; (E) TNF-α; (F) MIP-1α; (G) IFN-γ; (H) IP-10. IL, interleukin; TNF-α, tumor necrosis factor alpha; MIP, macrophage inhibitory protein;
MCP, monocyte chemotactic protein; IFN, interferon; IP, interferon gamma-induced protein; RANTES, regulated on activation normal T cell
expressed and secreted. The height of bars indicates the mean of three biological replicates. The error bars indicate one standard deviation
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

A. xylosoxidans did not upregulate these cytokines to the same
extent as adding only A. xylosoxidans. This suggests that LPS and
these two strains of A. xylosoxidans may compete for the same
cellular receptor in these epithelial cells.

Discussion

Here we describe a comprehensive study of ocular surface
microbiome in participants with mild type of dry eye
using shotgun metagenomics. Studies based on 16S rRNA
sequencing have indicated that dry eye participants may have
a distinct ocular surface microbial community (Supplementary
Table 6). This study characterized conjunctival microbiomes
with Achromobacter being the numerically dominant bacterial
genus. A. xylosoxidans may regulate production of cytokines
in corneal epithelial cells. Age has a significant influence
on the ocular surface microbiome, with older participants
showing an increase in the proportion of bacterial genera
such as Achromobacter and Streptococcus, but a reduced
proportion of up to 23 bacterial species, mostly from the

phylum Proteobacteria. Although there was no significant
difference in the composition of conjunctival microbiomes
in mild dry eye and control participants, the proportion of
certain microbial genera was correlated to tear function, for
example, a reduced abundance of Staphylococcus was correlated
to decreased Schirmer’s test scores.

During the past 5 years, there was a dramatic increase in
studies describing microbial communities with metagenomic
analysis. We compared our work with similar studies by
conducting literature research in the Medline database using
“ocular surface microbiome” as keywords. Only studies
performing either 16S rRNA or shotgun metagenomics on
human subjects were included. Studies profiling microbial
compositions of healthy ocular surfaces are summarized in
Table 3. These studies revealed a more diverse microbial
community on human ocular surfaces than traditional culture
methods. Similar to other mucosal surfaces, the ocular surface
microbiota comprises Gram-positive and Gram-negative
bacteria, virus and fungi.

Our finding that age is the primary factor affecting the
conjunctival microbiome is in agreement with previous studies.
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FIGURE 7

Achromobacter induced cytokine production in human corneal epithelial cells (cell lysates). (A) MCP-1; (B) RANTES; (C) TNF-upalpha; (D) IL-6;
(E) IL-8; (F) IP-10; (G) IFN-γ. IL, interleukin; TNF, tumor necrosis factor; MIP, macrophage inhibitory protein; MCP, monocyte chemotactic
protein; IFN, interferon; IP, interferon gamma-induced protein; RANTES, regulated on activation normal T cell expressed and secreted. The
height of bars indicates the mean of three biological replicates. The error bars indicate one standard deviation ∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001.

In a study investigating ocular surface microbiome of healthy
individuals, old and young participants were clearly separated in
PCA analysis. Compared to the younger group, the older cohort
had significantly greater abundance of several Streptococcus
species, and also altered carbohydrate, lipid, nucleotide and
amino metabolic pathways (41). Children above 6 months
old had a higher abundance of Proteobacteria and reduced
Firmicutes than toddlers (<6 months old) (55). Compared to
adults, there was an increase of Streptococcus and Staphylococcus
OTUs in children below 8 years old (56).

Recently, a study compared conjunctival microbiome
compositions of healthy subjects from the three cities Beijing,
Wenzhou and Guangzhou, which have distinct climates and
diets (38). Shotgun metagenomic sequencing revealed that
the conjunctival microbiome of Beijing participants showed
distinct characteristics compared to Guangzhou and Wenzhou
microbiomes, while there was no significant difference
between Guangzhou and Wenzhou participants, suggesting
that the environment shapes their conjunctival microbiota.
Furthermore, for the participants who have traveled to a
different city for at least 15 days, the conjunctival microbiome

was markedly changed (38). These findings strongly supported
an environmental impact on the composition of conjunctival
microbiome. In our study, Achromobacter was the most
abundant genus of the conjunctival microbiomes of all subjects.
This finding was different from the outcome of the study by
Deng et al. (38) possibly due to the different climate and diet
in Singapore. In another study conducted in a coastal city from
China, Achromobacter was one of the nine abundant genera in
all patients tested (57).

In closed eye tears, the microbial ecology (determined by 16S
sequencing) of tear samples from normal participants and from
patients with mild dry eye showed no significant difference,
but clear differences were observed between participants with
mild and moderate dry eye (2). Therefore, that study supported
our findings that our mild dry eye participants showed no
alteration of microbiome from normal participants. If the mild
dry eye cases don’t have a different microbiome from controls,
it suggests that until more severe dry eye is reached, the
level of immunoregulation on the ocular surface may not be
drastically perturbed.
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TABLE 3 Studies of healthy ocular surface microbiome.

Author, year Location Sample Sequencing
method

Species/Genus/Phylum of commensal

Kang et al. (37) Wenzhou,
China

Conjunctival
swab

Shotgun
metagenomic

Two phyla, 70 genera, and 140 species high relative abundances and positivity
rates: Streptococcus pyogenes, Staphylococcus epidermidis, Propionibacterium
acnes, Corynebacterium accolens, and Enhydrobacter aerosaccus.

Deng et al. (38) Three cities,
China

Conjunctival
swab

Shotgun
metagenomic

Predominant species: Propionibacterium acnes and Staphylococcus, Epidermidis,
opportunistic pathogen Micrococcus luteus and Staphylococcus haemolyticus also
found
Phylum level: Actinobacteria, Bacteroidetes, Chlamydiae, Chorobi,
Deinococcus-thermus, Firmicutes, Fusobacteria, Proteobacteria, Spirochetes and
Tenericutes

Wen et al. (41) Guangzhou,
China

Conjunctival
swab

Shotgun
metagenomic

The most predominant species: Propionibacterium acnes, Staphylococcus
epidermidis, Escherichia coli, Micrococcus luteus, Ochrobactrum anthropic,
Acidovorax sp., Acidovorax ebreus, Acinetobacter baumannii, Pseudomonas
aeruginosa, Staphylococcus haemolyticus

Dong et al. (34) US Conjunctival
swab

16S rRNA Core microbiota at genera level: Pseudomonas, Propionibacterium,
Bradyrhizobium, Corynebacterium, Acinetobacter, Brevundimonas, Staphylococci,
Aquabacterium, Sphingomonas, Streptococcus, Streptophyta, and
Methylobacterium

Huang et al. (64) Qingdao, China Conjunctival
swab

16S rRNA The most predominant 10 phyla: Proteobacteria, Actinobacteria, Firmicutes,
Bacteroidetes, Deinococcuse-Thermus, Fusobacteria, Cyanobacteria/Chloroplast,
Acidobacteria, Candidatus Saccharibacteria and Spirochetes.
The most predominant 10 genera: Corynebacterium, Pseudomonas,
Staphylococcus, Acinetobacter, Streptococcus, Millisia, Anaerococcus, Finegoldia,
Simonsiella and Veillonella

Doan et al. (65) Seattle, USA Conjunctival,
buccal, cheek
swabs

16S rRNA Most predominant 4 genera: Corynebacteria, Propionibacteria, Staphylococcus,
and Streptococcus

Ozkan et al. (66) Australia Conjunctival
swabs, baseline,
1 and 3 months

16s rRNA By culture, most predominant phyla: Firmicutes, Actinobacteria and
Proteobacteria; most frequent genera: Staphylococcus, Proprionibacterium,
Micrococcus and Corynebacterium By16s rRNA, most predominant phyla:
Proteobacteria, Firmicutes and Actinobacteria; most frequent genera:
Corynebacterium, Acinetobacteria, Pseudomonas, Sphingomonas, Streptococcus,
Massilia, and Rothia

Ozkan et al. (67) Australia Conjunctival
swabs (from
pterygium
surgery)

16S rRNA Pseudomonas dominated the fornix and limbus. Corynebacterium, Streptococcus,
and Serratia dominated in surface samples and low in the fornix and limbus
samples. Acinetobacter and Thermoanerobacterium similar among groups

Cavuoto et al. (56) USA Conjunctival, lid
margin swabs

16S rRNA Phylum level: Proteobacteria Firmicutes, Bacteroidetes and Actinobacteria
abundant in both children and adult; Proteobacteria, Fusobacteria, Firmicutes,
and Bacteroidetes depleted in adults, while Actinobacteria increased.
Genus level: Streptococcus, Staphylococcus, and Brachybacterium reduced, while
Corynebacterium, Paracoccus, and Propionibacterium increased.

Cavuoto et al. (55) USA Conjunctival
nasal, throat
swabs

16S rRNA Most abundant phyla: Firmicutes, Proteobacteria, Actinobacteria, Cyanobacteria,
and Bacteroidetes.
Most abundant family: Staphylococcaceae, Streptococcaceae, Corynebacteriaceae,
Moraxellaceae, Enterobacteriaceae, Oceanospirillaceae, and Bacillaceae.
Staphylococcus species predominant

Cavuoto et al. (68) US Conjunctival
swab, eyelid
margin,
periocular skin

16S rRNA Proteobacteria, Bacteroidetes dominated eyelid margin, whereas Firmicutes
dominated periocular skin.

Fan et al. (57) Qingdao, China Conjunctival
swab

16S rRNA Corynebacterium, Pseudomonas, Staphylococcus, Acinetobacter and Streptococcus
dominated before treatment. After treatment with 5.0% PVI, Pseudomonas,
Corynebacterium and Acinetobacter predominant

Suzuki et al. (69) Japan Eyelid, meibum,
conjunctival sac,
lower-eyelid skin

16s rRNA P. acnes or Pseudomonas sp. dominated meibum; P. acnes for conjunctival sac.
Corynebacterium sp. or the Neisseriaceae dominant in elderly.

(Continued)
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TABLE 3 (Continued)

Author, year Location Sample Sequencing
method

Species/Genus/Phylum of commensal

Matysiak et al. (62) Poland cornea tissues;
conjunctival
swab

RNA-seq,
traditional
culture and PCR

By conventional and molecular methods, most dominant phylum in ocular
samples: Proteobacteria, Firmicutes and Actinobateria.

Ozkan et al. (70) Australia Eyelid margin
tissues; fornix
and limbus
conjunctival
tissues,
conjunctival,
facial skin swabs

16S rRNA Corynebacterium, Staphylococcus resident on skin and lid margin;
Corynebacterium, Staphylococcus mainly on ocular surface; Pseudomonas mainly
on conjunctival and lid margin.

A. xylosoxidans is a Gram-negative aerobic, oxidase- and
catalase-positive, motile bacterium with peritrichous flagella
found in unsanitary conditions, soil and water. While the exact
function of Achromobacter spp. in the normal eye is not known,
they are likely commensals. In dry eye disease, it was one of
the more variable genera (2). In fungal keratitis, it was also one
of the most abundant genera detected (11). We found several
proinflammatory cytokines to be upregulated when cultured
human corneal epithelial cells were exposed to the three strains
of this bacterium tested here, with the morphology of the cells
remaining normal. Some of these dysregulated cytokines have
been reported to be elevated in the tear fluid of people with
dry eye (58). The TLR ligand LPS is the most abundant cell
wall component of Gram-negative bacteria, including those of
Achromobacter. LPS from different bacteria may compete for the
same cellular receptors, so partially inhibitory relationships may
exist between different Gram-negative bacteria.

Our hypothesis is that with increasing age, there is an altered
immunoregulatory influence due to the change in composition
of the microbiome. There is an increase in Achromobacter spp.,
and reduction in several other species of bacteria and fungi.
Because of the change in the microbial ecosystem, there is
reduced tolerance and increased prevalence of inflammatory
conditions, such as dry eye. In fact, the increase in CD4+ T
lymphocytes in the conjunctiva of older healthy people (59)
is consistent with this concept. Some of the bacteria found to
be reduced in the elderly, such as Micavibrio aeruginosavorus,
normally feeds on pathogenic Pseudomonas aeruginosa (60).
Hence, this finding may explain the increased susceptibility to
ocular surface inflammation and infection in old age. A few
redundant members of the bacterial microbiome can serve to
maintain functionality of the community (61). Reduction of
some of the 23 species listed in Supplementary Table 3 may
not impact on conjunctival mucosal defense. Supplementary
Tables 6, 7 summarize the studies of conjunctival microbiomes
in dry eye and other ocular surface diseases, respectively.

Our study employed shotgun whole genome sequencing
metagenomic analysis for characterizing the ocular microbiome.
All participants for the eye microbiome investigation were
subjected to standard characterization, including objective

measurements of tear break up times. One of the limitations
of the study is that we only examined superficial conjunctival
fornix, and the results may not be applicable to microbiomes
of the cornea or the bulbar conjunctiva. A study has shown
that cornea and conjunctival microbiota are different (62). In
addition, our experiments with Achromobacter were entirely
in vitro, and it would be beneficial to evaluate the response
induced by Achromobacter spp. inoculation on the ocular
surface in animal disease models. We only tested the effect
of Achromobacter spp. on human corneal epithelial cells as it
was difficult to get conjunctival epithelial cells. We did not
investigate whether the above effects on the cultured cells are
specific to Achromobacter. Since the microbiome composition
may be influenced by environmental and occupational factors,
it may not be possible to extrapolate the results to participants
from a different setting. It is not possible to delineate whether
it is the external climate or the indoor conditions that shape
this microbiome, though the China study that evaluated three
cities suggest inter-center variability more than intra-center
findings. Our sample size was small, it is possible that statistically
significant differences may be revealed by larger sample sizes,
but in the literature, similar sample sizes were able to detect
changes in severe MGD (33, 63). Tetracaine was applied before
sample collection. However, the possibility of tetracaine to
introduce contaminant DNA is very low, since it was instilled
from sterile unit dose (single use) vials which were discarded
after application by each participant. Tetracaine was used for
both the dry eye and comparison participants groups. Tetracaine
may reduce diversity, but we believe the effect of tetracaine to
diversity is limited.

Conclusion

In conclusion, we report the results derived from a
comprehensive characterization of the ocular surface
microbiome in participants with mild dry eye and control
individuals. In the normal ocular microbiome, the phylum
Proteobacteria dominates, with presence of Achromobacter spp.
which increases in abundance with age. We also demonstrated
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that strains of A. xylosoxidans induced cytokine expression
in basal and stressed epithelial cells. The alteration of the
ocular surface microbial ecosystem with age may influence its
susceptibility to inflammation.
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