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Introduction: Melanoma is the fifth most common cancer in US, and the

incidence is increasing 1.4% annually. The overall survival rate for early-stage

disease is 99.4%. However, melanoma can recur years later (in the same region

of the body or as distant metastasis), and results in a dramatically lower survival

rate. Currently there is no reliable method to predict tumor recurrence and

metastasis on early primary tumor histological images.

Methods: To identify rapid, accurate, and cost-effective predictors of

metastasis and survival, in this work, we applied various interpretable machine

learning approaches to analyze melanoma histopathological H&E images. The

result is a set of image features that can help clinicians identify high-risk-of-

metastasis patients for increased clinical follow-up and precision treatment.

We use simple models (i.e., logarithmic classification and KNN) and “human-

interpretable” measures of cell morphology and tissue architecture (e.g., cell

size, staining intensity, and cell density) to predict the melanoma survival on

public and local Stage I–III cohorts as well as the metastasis risk on a local

cohort.

Results: We use penalized survival regression to limit features available to

downstream classifiers and investigate the utility of convolutional neural

networks in isolating tumor regions to focus morphology extraction on only

the tumor region. This approach allows us to predict survival and metastasis

with a maximum F1 score of 0.72 and 0.73, respectively, and to visualize several

high-risk cell morphologies.

Discussion: This lays the foundation for future work, which will focus on using

our interpretable pipeline to predict metastasis in Stage I & II melanoma.

KEYWORDS

computational pathology, histopathology, biomedical image processing, melanoma,
neoplasm metastasis, survival prognosis, metastatic prognosis
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1. Introduction

Melanoma is the fifth most common cancer, with about
110,000 new cases in the US alone in 2021, and its incidence
is increasing approximately 1.4% each year. Most melanoma
patients are considered cured when their superficial, thin,
primary melanoma (Stage I) is surgically removed, resulting in
a 99.4% 5-years survival rate (1). However, melanoma can recur
as a locoregional disease or distant metastases in 6% of Stage I
patients where cancer is limited to the superficial dermis, and
in 20% of Stage II patients where cancer has invaded the deeper
dermis and subcutis (2). Currently, clinicians still do not have
accurate and cost-effective ways to predict tumor recurrence and
metastasis from the primary tumor histopathological images
of early-stage patients. In addition, current melanoma staging
systems depend primarily on histopathologic features, and
sometimes involve invasive sentinel lymph node biopsies. These
procedures have not been shown to improve prognosis for early-
stage patients (tumor invasion < 1 mm) and therefore expose
patients to unnecessary morbidity (3).

Currently, prognostication of localized melanoma (i.e., no
distant metastases) relies on several histopathological criteria
established by pathologists’ examination of hematoxylin and
eosin (H&E) stained tissue sections. These include Breslow
depth and the presence of ulceration and microsatellitosis.
Moreover, it also depends on the identification of tumor
deposits in sentinel lymph nodes in cases where such procedure
is performed. Tumor ulceration is the loss of full-thickness
epithelium above the growing tumor and is an independent
prognostic factor. Integrating these histopathologic findings
with clinical information like the site of origin for tumors is
important: acral (non-sun-exposed regions) and lentigo maligna
melanomas both could have fusiform cells, but the prognoses
are different, with thickness-matched acral melanoma being
more aggressive (4). Moreover, prognosis varies by histologic
subtype, where nodular and acral have generally worse outcomes
than thickness-matched superficial spreading and desmoplastic
subtypes (5, 6). However, personalized prognostication of early-
stage melanoma (< 0.75 mm) remains suboptimal. Ulceration,
the hallmark of poor prognostic feature, is not a common
finding for early-stage melanoma, and though most literature
suggests that lymphocyte infiltration is an important marker for
better prognoses, this relationship is uncertain for lesions under
0.75 mm depth of invasion (7).

Because histopathologic features remain suboptimal in
predicting melanoma prognosis in early-stage patients, and
early-stage patients make up about 80% of all newly diagnosed
cases of melanoma (8), there is an pressing need for developing
a machine learning based computational pathology pipeline
to stratify patients. Rigorous measurement of cellular/nuclear
morphological features of primary tumor pathological images
may provide consistent performance across the heterogenous
landscape of melanoma. Currently, published machine learning

models using H&E images to study melanoma prognosis are
mostly “black-box” models based on deep neural networks,
specifically Convolutional Neural Networks (CNNs) (9). For
instance, Forchhammer et al. applied CNNs trained on whole
slide images to establish a model that stratified patients by their
10-years survival rates; however, improving risk classification
beyond the existing staging guidelines has proven difficult
for early-stage patients (10). CNN-based approaches have also
been used to predict survival using locoregional/metastatic
biopsies (11), which applies to less than 20% of all melanoma
patients (12). Furthermore, these deep learning-based models
identified abstract features that are neither visible nor directly
associated with human-interpretable cell morphology and tissue
structure, which is a major barrier for clinical adoption and
generation of new hypotheses for research. It is imperative
that pathologists and researchers understand the mechanisms
behind the disease progression. In this paper, we present a
pipeline with more interpretable machine learning methods that
can be used alongside the very accurate, but less interpretable
deep learning techniques.

Kulkarni and Robinson (13) published the only
histopathology-based melanoma metastasis model to date.
They achieved impressive accuracy (88–90%) for high/low
risk stratification based on their deep learning models. Due
to the lack of interpretability of the neural network, ablation
studies were adopted to show that the ratio of lymphocyte
area over tumor cell area was crucial for model accuracy. The
individual contributions of the rest of the morphology feature
set were not readily apparent. When it is difficult to understand
what information the neural networks rely on to make their
prediction, it is more difficult for pathologists, clinicians, and
researchers to investigate further. This is a bottleneck for
effective translational application of these neural networks. In
addition, this work provided very accurate classification for
patients with more advanced disease (skewed toward Stages
II–III). However, Stage I patients comprise the majority of the
general melanoma population, and metastasis is most likely to
be missed in these individuals.

The work we present herein focuses on developing
a machine learning pipeline to identify the reliable and
interpretable H&E histopathology image features to predict 5-
years survival and metastasis using the primary site biopsies
from Stages I, II, and III melanoma patients. We have
demonstrated that simple machine learning models (i.e., logistic
regression, k-Nearest Neighbors, support vector machines, and
random forest classifiers) using extracted interpretable features
of cellular and nuclear morphology can generated accurate,
sensitive, and specific prediction for 5-years survival and
metastasis risks. We first applied deep learning methods (14)
to identify tumor regions with CNN models, and extracted
interpretable morphological features from only the tumor
regions, and understand how this impacts downstream classifier
performance. Because some of the morphological descriptors we
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used can be correlated to each other, we applied LASSO Cox
regression to reduce the number of image features available to
downstream classifiers to reduce the likelihood of overfitting
and improve ease of interpretation by a pathologist.

One of the challenges for our study is that samples
from large cancer databases, such as The Cancer Genome
Atlas (TCGA), Clinical Proteomic Tumor Analysis Consortium
(CPTAC), provide almost only survival information, without
any metastasis information for Stages I and II patients. To
tackle this challenge, we approached our work in two steps: (1)
Training machine learning models for survival prediction with a
merged cohort form the TCGA, CPTAC, and our own curated,
high-quality local IU School of Medicine (IUSM) cohort; and
(2) further refining it to predict melanoma metastasis on
the IUSM cohort.

We demonstrated that our identified H&E image features
can serve as accurate, rapid, and low-cost predictors of
metastasis. Further, this approach can be seamlessly integrated
into clinical workflows, given that digitized biopsies are an
approved diagnostic tool (15) and interpretation of biopsies by
a pathologist is standard of care in melanoma. To summarize,
our work begins to bridge a significant clinical and research gap:
the need for an adoptable and interpretable cell morphology
machine learning pipeline to work alongside deep-learning
approaches in the study of melanoma metastasis.

2. Data and materials and methods

2.1. Data description

To maximize sample size and test the model generalizability,
we applied our pipeline to three melanoma cohorts: The Cancer
Genome Atlas (TCGA) cohort, the Clinical Proteomic Tumor
Analysis Consortium (CPTAC) cohort (16), and the Indiana
University School of Medicine (IUSM) cohort. For all three, we
restrict our analyses to Stages I, II, and III melanoma patients.
Stage IV patients, who already have distant metastases, were
excluded. Further, slides that are misdiagnoses, microsatellite

metastases, and those that cannot be confirmed as primary site
biopsies due to lack of visible intact epidermis were removed.
This rigorous quality control resulted in a sample size of 81
whole slide images (WSI) from 71 patients in the TCGA cohort,
and 45 WSI from 19 patients in the CPTAC cohort. The TCGA
and CPTAC cohorts only contain survival information, with no
metastasis information. The IUSM cohort had 92 WSIs from
70 patients with both metastasis and survival information. This
information is summarized in Table 1.

2.2. Feature extraction pipeline

Predicting metastasis and survival are two distinct but
related tasks. Herein, we use the same feature extraction
pipeline to predict 5-years metastasis for IUSM patients, and
5-years survival in the IUSM, TCGA, and CPTAC datasets
(Figure 1). We modified the morphological feature set described
in (17) by focusing on the morphological features and
introducing two additional features (quantity and density) to
describe lymphocytes and other small, hyperchromatic cells
(e.g., pyknotic nuclei), each with 10 bins and five distribution
statistics. We call this category Small-Hyperchromatic cells.
In total, we have 135 morphological features extracted from
WSIs to quantify the cell size and shape, as well as Small-
Hyperchromatic cell density and counts, as well as statistics
describing the distribution for each of these image features
within each WSI (i.e., mean, standard deviation, skewness,
kurtosis, and entropy).

2.2.1. H&E whole slide image pre-processing
Before image normalization and feature extraction, we first

rescaled WSIs from different cohorts to the same resolution.
The TCGA and the CPTAC images are scanned using different
resolutions, so all image patches were resized to match the
IUSM cohort resolution of 0.25 microns-per-pixel (mpp), which
corresponds to a 400x magnification. For the TCGA and CPTAC
cohorts, we tiled images into squares with dimension of 512px
∗ 0.25/mpp, and then rescaled them into 512 × 512 pixels. To
filter out black and white background patches from the WSI,

TABLE 1 Clinical follow up and slide quality among Stages I–III patients in three patient cohorts.

Cohort; # patients (# slides)

Survival Metastasis

TCGA CPTAC IUSM IUSM

Stages I, II, and III patients 129 (145) 63 (117) 70 (92) 70 (92)

Adequate quality slides 71 (81) 19 (45) 70 (92) 70 (92)

Follow up information (patients)

Low risk–no event before 5 years 3 0 43 30

High risk–event before 5 years 7 8 7 26

Non-informative censoring before 5 years 61 11 20 14
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FIGURE 1

Interpretable cell morphology and machine learning pipeline. Whole slide images are tiled into 512 × 512 pixel patches and then rescaled for
differences in resolution between datasets, background patches are removed by manually engineered color features, and tumor/normal regions
are identified using a convolutional neural network that was trained with pathologist annotations. Tiles then normalized for hematoxylin and
eosin (H&E) staining, and cells segmented with StarDist. Cell masks are analyzed with MATLAB to generate measures of cell morphology (e.g.,
area), tissue architecture (i.e., Delaunay distance), and identify small, hyperchromatic cells. 50 processed slides are randomly pooled, and
k-means clustering (k = 10) is used to bin the distribution of each image feature and five distribution statistics are calculated (e.g., skew, kurtosis,
mean). Finally, every cell of every slide is assigned the “bins” to generate a final dataset of N patients × 135 features.

we removed patches where the mean intensity of RGB channels
together was greater than or equal to 230, less or equal to 40,
or with a standard deviation less than 20. This removed both
black and white background patches. IUSM images required
further processing, using the following criteria to remove black
and white patches: red channel mean intensity being 90% or
less than the blue channel mean intensity, red channel mean
intensity being less than 170, and green channel mean intensity
being greater than 210. The results of these criteria were
visually inspected for accuracy and consistency among the three
datasets. We then applied the color normalization algorithm
proposed by Macenko, Neithammer (18) to avoid batch-effects
both within and across datasets. This algorithm is unsupervised
and based on singular value decomposition of opacity density
values. Cells in the WSI from all three cohorts are segmented
using StarDist, which uses all three RGB color channels to
segment cells (19). StarDist was better suited to this task than
hierarchical multilevel thresholding based on our evaluation
(Supplementary Figure 1). We further removed background
patches by filtering out those that had fewer than certain number
of cells segmented by StarDist. For the CPTAC and IUSM
slides, the cutoff is 15 cells, and for the TCGA, the cutoff is
10. The results of this preprocessing were visually verified by
our pathologist.

2.2.2. Identification of tumor regions with
convolutional neural networks

Tumor biopsies contain variable amounts of normal tissue,
therefore using the entire WSI to predict clinical outcomes may
introduce additional bias. To study this, we focused our analysis
on regions of the bulk tumor by using a CNN to triage tumor

vs. normal image patches, and then applied our interpretable
feature extraction pipeline to the CNN-identified tumor patches.
The quality of specimen from the TCGA, CTPAC, and IUSM
cohorts were very different. The IUSM cohort had the best
quality, followed by TCGA and then CPTAC. We trained
three different CNN’s–one for each cohort–to understand how
varying data quality impacted tumor vs. normal image patch
classification on the entire (Figure 2A), we describe training
process and model architecture.

To train and validate these CNNs, our pathologist used
QuPath (20) to manually annotate normal tissue and tumor
regions on WSIs from all three cohorts. Respectively, 20, 19,
and 90 WSIs were annotated for the TCGA, CPTAC, and
IUSM cohorts. We cropped image tiles from all three cohorts,
resized if necessary to match resolutions (described previously),
and assigned tumor/normal labels to image patches using our
pathologist’s QuPath annotations of tissue regions. Finally, we
performed five-fold cross-validation using 1,000 tumor and
1,000 normal image tiles for training and validation (80/20%
split). To ensure fair assessment of accuracy, we designed
random sampling such that validation image tiles were not
pulled from patients that appeared in the training set. It is
important to note that some patients had multiple WSIs;
therefore, naïve random sampling would mean that WSIs from
a single patient could end up in both the testing and validation
datasets. To prevent this, we ensured that the testing and
validations splits were based on patients, not WSIs.

One of the most widely used CNN architectures for image
classification and object detection is the “Inception” module,
which employs convolutional kernels with different sizes, called
scale filters (21). With our simple task and ample training data,
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FIGURE 2

Training and assessment of convolutional neural network. Workflow and assessment of convolutional neural network. (A) Whole slide image
patches are first filtered to remove background patches. This step removes artifacts, demonstrated by the ink from the whole slide images (WSI)
that is not retained in the final set of patches (arrow). (B) Patches confused by the convolutional neural networks (CNN) can show mitotic
figures and dense lymphocytic infiltrate. (C) Despite our filtering steps, there remain some artifact-ridden poor-quality patches. (D) Performance
at epoch 200 for CNNs trained on the IU School of Medicine (IUSM), The Cancer Genome Atlas (TCGA), Clinical Proteomic Tumor Analysis
Consortium (CPTAC), and merged datasets, comparing the Fl scores and sensitivity for tumor/normal classification achieved on validation sets
from the IUSM, TCGA, and CPTAC cohorts.

we adopted the naïve version of “Inception” based model, herein
called GoogLeNet, and modified the final layer of the network
for binary tumor/normal tissue classification. We applied
the ADAM (22) optimizer with learning rate 0.0002. Four
different GoogLeNet models were trained using the CPTAC,
IUSM, TCGA cohorts, and a final “Merged” cohort with 1,000
labeled patches from all three cohorts. Experimental results
demonstrated that the GoogLeNet models achieve reasonable
accuracy on all four validation datasets (> 0.8).

2.2.3. Cell-level feature extraction,
aggregation, and investigation

We have previously developed a morphological feature
extraction pipeline for H&E images, as described by Cheng,
Zhang (17), and adopt it here to predict melanoma outcomes.
For each WSI, we first used the regionprops function in
MATLAB version R2022a to calculate area, major and minor
axis length of the cells, major/minor axis ratio, staining
intensities (RGB three color channels), and described the density
of cells in the image by measuring the minimum, maximum, and
mean distance to neighboring cells. Staining intensities were not
use as image features, but were used to engineering a new cell
category, Small-Hyperchromatic cells. This process is described
later. The neighbor relationship was defined using the Delaunay
triangulation method among cell centroids.

Once all WSIs were processed, we randomly sampled
50 images from the three datasets (IUSM, CPTAC, and
TCGA), to perform k-mean clustering with 10 clusters for
every image feature. This is analogous to generating 10
“bins” for a histogram. These 10 bins for each category of
features represent a dataset-wide census of cell morphology and

maintain representations of heterogeneity that simple statistics
such as average cannot. Five statistics on the distribution of
these histograms were calculated: mean, standard deviation,
skewness, kurtosis, and entropy. This gave us a summarized data
structure of 7 features × (10 bins + 5 statistics) = 105 cell features
per patient. If a patient had multiple WSIs, we calculated the
mean of all feature values across the WSIs, providing a single
patient-level vector.

In addition to these 105 features, we engineered cutoffs to
identify a specific category of small cells with hyperchromatic
staining, which we refer to as Small-Hyperchromatic cells. This
category tends to represent necrosis and dense inflammation
by highlighting lymphocytes, and pyknotic nuclei. Small-
Hyperchromatic cells were defined by an area less than 450 pixels
and a ratio of the long and short cell axes less than 2 (favoring
round cells rather than spindle cells). We calculated the quantity
and density (proportion of these cells to all cells in each image
patch) of these small-hyperchromatic cells for an additional 30
features: 10 bins and 5 statistics for the quantity and density of
small hyperchromatic cells each. Adding this to the previously
described 105 features provided a total of 135 features per WSI.

2.3. Univariate feature analysis

To investigate the ability of individual image features to
stratify patients, we took the approach described by Lu, Xu (23),
iterating through 100 cutoffs in the range of values for each
image feature, which generates two strata for which to calculate
Kaplan-Meier estimates and extract FDR-adjusted p-values. The
resulting significant cutoffs are used to generate Kaplan-Meier
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curves for survival and metastasis. This analysis conducted in
R v4.1.0 using packages survival v3.2-13 (24) and survminer
v.0.4.9 (25).

2.4. Multivariate supervised
classification for risk stratification

Despite merging data from three different patient cohorts,
our sample size is still limited due to stringent quality control
and a focus on Stages I through III. In the setting of a
high feature dimension and small sample size, we use Lasso
Cox regression from the glmnet v4.1-1 package in R (26) to
reduce collinearity in the downstream supervised classification
task (Supplementary Figure 2). The trained Lasso Cox model
provides two feature sets based on the accuracy metric of
concordance: “1se” feature set for a model whose variance is
heavily regularized, where cross-validation accuracy is within
one standard error of the maximum accuracy; and the “min”
feature set corresponds to the model with the absolute highest
cross-fold validation accuracy, which therefore usually provides
more features than “1se.”

To ensure model robustness and maximize the size of our
training set, we used a modified five-fold cross-validation. We
randomly shuffled and split all samples from all three cohorts
into five equal-sized groups. For survival, we labeled “high risk”
patients as those who suffered death/metastasis within 5 years,
and “low risk” patients as those who had at least 5 years of
uneventful follow-up. For metastasis, “high risk” patients were
defined as those who suffered a metastasis at any time point, and
“low risk” patients were metastasis-free for 5 years (for censored
data) or beyond. Patients who were lost to follow-up (censored)
before 5 years were not labeled as either high risk or low risk and
removed for prognostic model training.

Traditionally in five-fold cross-validation, the feature
weights (i.e., coefficients) generated by separate models are
aggregated to provide a final model. This process is called
“bagging.” Here, instead, we used four of five groups to train
a model which was then used to predict risk labels on the
fifth hold-out group as validation. By repeating the process five
times, all patients were used to train and test models, but there
was no overlapping of patient data during each training and
testing. Patients were resampled so that there was an equal
proportion of high and low risk labels, with the total number
of labels for each class being equal to the larger class prior to
resampling. The performance metrics (F1 score sensitivity and
specificity) were calculated by concatenating the results for the
test set of each fold into a single matrix. We implemented this
cross-validation process for random forests (RF), support-vector
machines (SVM), k-Nearest Neighbors (KNN), and logarithmic
classification. In certain instances, two models yielded similar
accuracy, but they do not have the same level of interpretability;
for example, logarithmic classification is more interpretable

than SVM and KNN. The coefficients from logistic regression
for each CNN-derived dataset and LASSO-derived feature set
are visualized to investigate whether image features receive
consistent coefficients in multivariate survival stratification task
(Supplementary Figures 4, 5). This is further discussed in the
Results section.

2.5. Image feature visualization for
interpretability

To visualize the features used for risk stratification,
we generated “heatmaps” using the ggplot2 (27) and
ggnewscale (28). The heatmaps are placed side-by-side with the
Hematoxylin and Eosin-stained WSI for inspection and direct
interpretation by the pathologist.

2.6. Ethics statements

This study involves human subjects. The TCGA and CPTAC
consortia provide their data to the public, and the data (follow
up and histopathological images) is not linked to PHI. For
the IUSM cohort of patients, secondary use of identifiable
information and biospecimen is covered under our own broad
institutional IRB.

3. Results

3.1. Assessment of GoogLeNet
performance on tumor region
identification

As described in the Methods section of this manuscript,
four GoogLeNet CNNs were trained to recognize tumor
tissue image patches. These four models were created using
the CPTAC, TCGA, IUSM, as well as a balanced random
selection of image patches from all three cohorts (“Merge”).
All models perform well as indicated by the consistent high
sensitivity and F1 scores across datasets (Figure 2D). For the
few misclassified patches, visual inspection by our pathologist
revealed that normal tissue predicted as tumor tended to
contain mitotic figures, dense inflammation, and poor-quality
image patches that remained despite our filtering process
(Figures 2B, C).

3.2. Results of univariate analysis

3.2.1. Univariate Kaplan-Meier survival analysis
Using the univariate Kaplan-Meier log-rank test, we

identified several features that can significantly stratify patients
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FIGURE 3

Univariate survival and metastasis analysis. After scanning through 100 cutoffs through the range in values for each feature, the cutoff providing
the most significant p-values from log-rank tests of survival (A–C) and metastasis (D–F) times are used to generate Kaplan-Meier curves.

FIGURE 4

Feature visualization, Maximum Delaunay distance bin 4. At high power, (A) specimen TCGA-FR-A20 S, melanoma cells of dense/intermediate
packing. (B) Specimen TCGA-ER-A19S, melanoma cells of very dense proliferation, going through stages of necrosis, and immune infiltration.

on their survival outcomes. The three most statistically
significant ones are shown in Figures 3A–C, which are
Major axis length distribution entropy, Major axis length
distribution standard deviation, and Major axis length
bin 4.

We further interpreted each of the identified features: As
shown in Figure 3A, Major axis length distribution entropy
significantly stratifies patient survival (log-rank p < 0.0001).
Entropy is a measure of distribution uniformity, where high
entropy represents a large variation in cell sizes, therefore,
distributions with high entropy tend to have a high standard
deviation. In Figure 3A, high entropy of the Major axis

length distribution correlates with a better prognosis. This
aligns with Figure 3B, which shows that a high standard
deviation in the Major axis length also correlates with a
good prognosis. Together, both features suggest that a high
heterogeneity in cell sizes in a histopathological specimen
(inflammatory, tumor, stromal, and otherwise) portend a better
prognosis.

Major axis length bin 4 appears as a significant feature
for both survival and metastasis (Figures 3C–E), with the
same direction of effect, where a high proportion of this
feature contends poor prognosis. The interpretation of
this feature is summarized in Section “3.4 Morphological
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FIGURE 5

Visualization of small, hyperchromatic nuclei. (A) Demonstrates high kurtosis of Small-Hyperchromatic cells. These slides have uniformly low
densities of immune infiltration. (B) Low kurtosis of Small-Hyperchromatic cells shows slides with a high variability of immune infiltration and
necrosis across the entire specimen. Kurtosis of this feature is inversely correlated with standard deviation, and slides with high kurtosis have
lower densities of Small-Hyperchromatic cells. In (C), binl0 represents the highest density of Small-Hyperchromatic cells. Like the slides with
low kurtosis in panel (B), these high-density regions harbor necrosis of tissue with dense lymphocytic and neutrophilic infiltrate. Slides with low
kurtosis have a higher standard deviation and higher density of Small-Hyperchromatic cells. The convolutional neural networks (CNN) used to
filter out background patches in this visualization was trained on the clinical proteomic tumor analysis consortium (CPTAC) dataset.

features associated with 5-years survival/metastasis
prediction.”

3.2.2. Univariate Kaplan-Meier metastasis
analysis

Using the same approach as above, we identified four
features that are significantly associated with the prediction of 5-
years metastasis (Figures 3D–F): Maximum Delaunay distance
bin 4, Major axis length bin 4, and Small-Hyperchromatic cell
density distribution kurtosis. Maximum Delaunay distance bin
4 represents cells of intermediate packing density. High values
of this feature were associated with a higher likelihood of

metastasis in the univariate analysis. This feature is correlated
with the Minimum Delaunay distance bin 4 and Mean
Delaunay distance bin 4, both of which are high risk for
survival prediction: Spearman correlation coefficient (SCC) with
Maximum Delaunay distance bin 4 across all three datasets 0.55
and 0.899, respectively. We found that this density, defined by
nuclei centroids, was seen in very different histomorphologies:
In Figure 4, we show two regions with the similar density,
but one is composed of small cells with intermediate packing
Figure 4A, and the other is composed of distended rhabdoid
cells (nuclei pushed to side of cell by cytoplasm) in a setting of
very dense proliferation and immune infiltration Figure 4B.
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FIGURE 6

Image feature coefficients in 5-years survival logarithmic classifier based on Merge convolutional neural networks (CNN) and 1se LASSO feature
set. Model weights for five logarithmic classification sub-models trained in the five-fold cross validation.

The Small-Hyperchromatic cell distribution kurtosis is a
significant predictor in the Kaplan-Meier univariate analysis
of metastasis (log-rank P = 0.017). Kurtosis measures the
tailedness of a distribution. Further examination of slides
with high kurtosis reveal specimen with a low density
of inflammatory cell infiltration (mainly lymphocytes in
this setting, Panel 5A). There is also a noted negative
correlation between Small-Hyperchromatic cell density
kurtosis and standard deviation, and we identify that slides
with a high density of Small-Hyperchromatic cells tend to
have distributions with low kurtosis and high standard
deviation (Figures 5A, B). Aligning with kurtosis being
a high-risk feature, Small-Hyperchromatic cell distribution
standard deviation is a low-risk image feature in the
multivariate survival models (Figure 6). Weak infiltration
of tumors by lymphocytes is a well-established independent
poor prognostic factor that pathologists assess (29), and
for this reason, an image analysis pipeline for accurate
quantification of tumor infiltrating lymphocytes has been
studied (30).

To better understand what this Small-Hyperchromatic
cell feature represents, we visualized the upper extreme
of the density distribution (bin 10), demonstrating areas
of necrosis and dense immune infiltration and ulceration
on the peripheries of a nodular melanoma (Figure 5C).
Ulceration occurs when tumors outgrow their blood supply
and is an accepted marker for aggressive tumor biology
and used for staging (31). As for the slides with low
kurtosis (Figure 5B), they are associated with a high
variability in the density of immune infiltration: In the same
histologic specimen, there are regions with dense immune

infiltration and necrosis, and other regions with sparse immune
infiltration.

3.3. Multivariate risk stratification for
5-years survival and metastasis

As a baseline, stratifying patients based on their AJCC stage
provided poor predictive values, with the F1 scores for survival
and metastases being 0.44 and 0.51, respectively (Table 2).
We experimented with several classification models using
our image features, and several provided reasonable accuracy
(Supplementary Table 1, Supplementary Figure 3). For 5-years
survival prediction, the logistic classifier using the CNN trained
on merged cohort for tumor region and Lasso-min feature set
provided an F1 score of 0.72. For metastasis prediction, the KNN
using the entire WSI and Lasso-1se feature set generated an F1
score of 0.73, while a comparable F1 score of 0.72 was achieved
for the RF trained using the CNN trained on the IUSM cohort
and Lasso-1se feature set (Table 3, Supplementary Table 1).

3.4. Morphological features associated
with 5-years survival/metastasis
prediction

3.4.1. Image features associated with 5-years
survival

With the successful predictions on 5-years survival and
metastasis, we further examined the image features. Logistic
regression has the best interpretability, because the coefficients
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learned for each image feature can be visualized (Figure 6).
There are several features with very high or low risks. The
highest risk morphology for the Merge CNN-derived logistic
regression survival model using the 1se feature set was the
Small-Hyperchromatic cell density bin 10, while the lowest risk
phenotypes were the Maximum Delaunay distance bin 1, Major
axis length bin 7, and Major axis length distribution entropy.

Because both WSI and CNN-derived tumor-region-only
survival models achieved high accuracy, we visualized and
examined the coefficients assigned to all image features
among all survival models, with most features show consistent
direction of effect for the decreased or increased risk hazard
(Supplementary Figure 4). We also visualized coefficient
weights stratified by tumor-region-only (CNN) vs. WSI-
derived models to check whether any features were weighted
oppositely if background stroma was included. We did not
find this to be the case, and tumor-region-only and WSI
coefficients were consistent in direction of hazard coefficients
(Supplementary Figure 5).

3.4.2. Image features associated with
metastasis

The peak performance for metastasis is achieved by the
KNN classifier using the entire the WSI and 1se LASSO feature
set. This feature set contains: Major axis length bin 4, Major axis
length bin 7, Major minor ratio bin 1, Mean Delaunay distance
bin 4, Max Delaunay distance bin 1, Small-Hyperchromatic cell
count bin 2, Major axis length distribution skewness, and Major
axis length distribution entropy.

3.4.3. Visualization and interpretation of
identified image features

Major axis length bin 4, mentioned previously, is a
significant image feature for the univariate analysis of both
survival and metastasis, with the same direction of effect: large
values of this feature were associated with poor prognosis. This
feature was maximized in specimen with small to intermediate
sized melanocytes (Figure 7). Small cell melanoma has been
associated with a poor prognosis previously in case series and
case reports (32, 33), and our feature of Major axis length bin 4
is consistent with this finding. Small cell melanoma, however is
exceedingly rare, and though some IHC staining patterns of this
variant have been described in patients with metastatic disease
but of unknown primary lesions, it has not been systematically
studied (34).

Additionally, Major axis length bin 4 negatively correlated
with Major axis length standard deviation (SCC-0.45). Not
surprisingly, Major axis length standard deviation was also
significant in the univariate analysis, where histologic specimen
with low standard deviation was associated with poor prognosis,
which also indicates the less variable melanocyte morphology on
the H&E slides. Major axis length distribution standard deviation
has a 0.892 SCC with Major axis length distribution entropy,

which is a good prognostic feature used by the multivariate
metastasis model. Therefore, the direction of effect of these
features is consistent, and slides with many intermediate sized
cells are associated with less variation in cell sizes across the
entire specimen, which may indicate a poor prognosis for both
survival and metastasis.

Major axis length bin 7 is correlated with a good prognosis
in multivariate survival models (Figure 6). There is research
to suggest that large nuclei are correlated with poor prognoses
(35), which is slightly different from our features, because we
segmented the entire cell rather than just the nucleus. As stated
previously, small melanoma cells have also been associated with
a poor prognosis. Enlargement of nuclei is typical in cancer
histology. One hypothesis could be that cell enlargement to
an extreme degree may represent a cell which replicates its
DNA and cytoplasmic contents but cannot enter S phase and
divide properly. Extremely large cells would therefore be a
better prognostic factor. Macrophages, with their small nuclear
to cytoplasmic ratio, could also contribute to this large-cell
category. Our pipeline makes measuring small but systematic
differences possible.

The Small-Hyperchromatic cell distribution kurtosis is also a
significant predictor for univariate metastasis analysis and poor
survival in multivariate survival analysis, which was already
discussed in above univariate analysis section.

4. Discussion

The motivation behind this study is to develop an
interpretable cell morphology pipeline and construct
machine learning models for sensitive and specific 5-years
survival (SN:86%, SP:78%) and metastasis (SN:72%, SP:71%)
prognostics. We were able to generate several models that are
highly sensitive and specific for both 5-years metastasis and
survival risk prediction. Our work demonstrated that image
features as the sole variables are powerful prognostic tools for
prediction tasks, and the methodology is low cost, fast, and
easy to implement.

We showed that the CNN-based approach used to isolate
tumor regions improved predictive performance and reduced
variability among classifiers in some instances. Moreover, no
features extracted from only CNN-identified tumor regions
had an opposite effect as the ones extracted from the whole

TABLE 2 Accuracy of American Joint Committee on Cancer (AJCC) to
predict 5-years survival and metastasis, where stratification is by
Stages I and II vs. Stage III.

Stages I and II
vs. III

Sensitivity Specificity F1 score

Survival 0.455 0.735 0.444

Metastasis 0.414 0.778 0.511
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TABLE 3 The best models for survival and metastasis prognosis, among convolutional neural networks (CNN)-trained tumor region-only and
whole slide images (WSI), LASSO-derived feature sets, and classifiers.

Prognosis Best model Sensitivity Specificity F1 score

5-years survival CNN on merged cohort, Lasso-min, logistic regression 0.86 0.78 0.72

5-years metastasis CNN on IUSM cohort, Lasso-1se, random forest 0.78 0.57 0.72

WSI, Lasso-1se, KNN 0.72 0.71 0.73

FIGURE 7

Feature visualization, Major Axis Length bin 4. (A) Major Axis bin 4 heatmap shown adjacent to the original (B) specimen. When inspected on
high power, these cells are intermediate-to-small sized. (C) Melanoma in-situ with similarly sized spinosa cells. (D) Similarly sized endothelia.
Tumor region identification by clinical proteomic tumor analysis consortium (CPTAC) convolutional neural networks (CNN).

slide images (Supplementary Figure 5). This demonstrated
that the identified morphological descriptors are very robust
to highly heterogenous cell quantities and morphologies in
the histopathology slides. Given the enormous variety of
melanoma histology and very small feature sets, we consider
the sensitivity and specificity of this metastasis pipeline as
promising for future development and adoption. Although
the advantage of adopting the tumor selection step may
not be obvious, we aim to test this same pipeline for
our future cohort study: It will mostly contain patients
with Stages I and II melanoma, and therefore, whose
biopsies contain much more non-tumor tissue and very
limited tumor region.

In this work, we discovered that the high density of
Small-Hyperchromatic cells coincided with tumors that have
more necrosis, ulceration, and pockets of dense inflammatory
cell infiltration (Figure 5), and that cells with less immune
infiltration overall, and the few that are present have a uniform
distribution across the histological specimen. In specimen
with greater degrees of immune infiltration, there is a large
standard distribution of densities, characterized by pockets of

dense inflammation and sparsely infiltrated areas. The density,
kurtosis, and standard deviation of Small-Hyperchromatic
cell density were all significant features for the prediction
of metastasis and survival, and the direction of effect was
consistent.

We found that slides with the densest regions of Small-
Hyperchromatic cells coincide with large amounts of necrosis,
especially ulceration, which is necrosis at the surface of
the tumor (Figure 6C). Tumor ulceration is known as a
poor prognostic factor for metastasis and survival, and what
differentiates Stages IIa and IIb melanoma, and one of
two criteria which differentiates Stages Ia/Ib. The interaction
between the quantity and variability of immune infiltration and
necrosis was not readily decipherable, and we hope to focus on
this specifically in future research, by classifying cell types in the
tumor and microenvironment, to quantify the colocalization of
distinct inflammatory, stromal, and tumor cells directly.

Our model revealed that Major Axis Length bin 4 was a
significant feature used to predict both survival and metastasis.
This feature corresponded to melanoma cells of intermediate
to small size. Smaller melanoma cells have been reported to
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have a more aggressive clinical course (34). Larger cells (Major
Axis Length bin 7) were associated with a better prognosis in
our survival models. The relationship between cell size and
prognosis in melanoma will be rigorously studied in a large
cohort of patients in our future work.

Despite the successful development of machine learning
models using interpretable features from primary biopsy
histopathology for prognosis of melanoma, there are still
limitations in our study: First, we had a limited cohort of Stage
I/II patients, for whom a tool such as this would have the greatest
impact. This is a problem common to melanoma metastasis
research, more generally. Expanding our analysis to include
clinicopathologic variables in a large cohort of Stage I/II is
being carried out in our ongoing project. Additionally, though
a good portion of the identified features for metastasis are
interpretable or recapitulate those features known for survival
prediction, for those that are still not discernable to human
eyes, we believe that a large sample size will allow us to
further validate and understand those features. For example, our
pathologist was not able to identify a consistent pattern among
cell morphologies among WSIs that maximized the Minimum
Delaunay distance skewness feature, which may demonstrate that
computer-quantified features are not always distinguishable to
human eyes and may be superior to human in terms of refined
feature extraction.

Third, the information captured by some features is
correlated, and therefore may be redundant. For example, it
is difficult to tell the difference between Minimum Delaunay
distance bin 10 and Maximum Delaunay distance bin 1.
Rather than having three different distributions for maximum,
minimum, and mean Delaunay distances among nuclei
centroids, we can use a single distribution to describe cell
density. Also, taken together, area and major/minor axis ratio
together provide information about how large and ellipsoid a
cell is, and the features Major Axis and Minor Axis Length
may be redundant.

Finally, we did not explicitly model the interactions
between specific cell types within the tissue. Existing research
has quantified the architecture of the melanoma tumor and
microenvironment by building “topological tumor graphs”
that consist of a web of connected lymphocytes, fibroblasts,
and cancer cells (36). Tumors with increased stroma and
fibrous barriers separating lymphocytes from tumor were
associated with a worse prognosis. Our work employs statistics
(i.e., kurtosis, entropy, standard deviation) to describe the
cell heterogeneity within a single histological specimen. We
do not however, explicitly measure cell-cell interactions and
spatial arrangements. Identifying cell types and establishing
a metrics for their interactions is part of our ongoing
work. In our future work, we plan to incorporate similar
metrics into models to improve prognostic accuracy with
a larger cohort.

This research has important implications for the future. Our
research team has applied this interpretable cell morphology
machine learning pipeline to several cancer types with success
(17, 37). We have made improvements on the framework
to improve model stability by reducing collinear variables
and investigating the role of CNNs in focusing the analysis
to tumor regions. The next step for our research is to
assemble a large retrospective cohort of approximately Stages
I and II patients with at least 5 years of clinical follow
up. Being able to accurately predict 5-years metastasis risk
in a large cohort of early-stage melanoma patients would
transform melanoma clinical care. Currently, there is a
shortage of dermatologists, and melanoma is a common,
potentially aggressive cancer. This prognostic tool could help
diagnose future melanoma metastasis at an earlier stage, which
could potentially improve a patient’s chance of survival, as
response to treatment in advanced melanoma is inversely
correlated with tumor burden (38). Triaging early-stage patients
would also provide researchers with a means to identify a
patient population for studying the biology of metastasis and
tumor dormancy.

Our pipeline could also be applied to the study of
immunotherapy response. The current clinical gold standard is
PD-L1 staining of tumor tissue, but it is poorly predictive
of patients who will respond to immunotherapy, nor
those who will have adverse events due to the immune
checkpoint inhibition (39). AI approaches to predict these
by analyzing histopathology and radiological images have
been published, but most employ DL learning approaches
and interpretability/explainability is still a key issue (40). As
in our discussion of melanoma prognosis, we believe that
deep-learning and more interpretable approaches are both
needed for effective clinical translation.

5. Conclusion

In this study, we were able to develop two models, which
use a set of interpretable morphological features, to predict
melanoma 5-years survival and metastasis with maximum F1
scores of 0.72 and 0.73 respectively. The maximum sensitivity
of our metastasis model is 0.72, and although this level of
sensitivity is not superior to the published deep learning-
based methods, our models are transparent on the features
identified and are much more interpretable than deep-learning
approaches. We demonstrated the interpretability of image
features and models by recapitulating several known prognostic
features. We believe that the accuracy of our metastasis model
will improve with a larger cohort of patients. Overall, our
methods proved quite interpretable and accurate, laying the
foundation for a robust, clinically relevant, accurate, low-cost,
and rapid metastasis prediction tool for early-stage melanoma
that can complement deep-learning techniques.
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