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Osteoarthritis (OA) is characterized by the degeneration of articular cartilage.

Decreased autophagy is tightly associated with chondrocyte death, which

contributes to the progression of OA. Thus, pharmacological activation of

autophagy may be a promising therapeutic approach for OA. Here, we

discovered that clioquinol, an antibiotic, significantly induces autophagy in

OA chondrocytes from human tissue and rabbit model. Meanwhile, clioquinol

can also augment the expression of extracellular matrix (ECM) components

and suppress inflammatory mediators to improve OA microenvironment.

Intra-articular injection of clioquinol can greatly prevent or slow down

the development of this disease in a trauma-induced rabbit model of

osteoarthritis. Such protective effect induced by clioquinol was at least in part

explained by decreasing chondrocyte apoptosis and increasing autophagy.

This study reveals the therapeutic potential of clioquinol in OA treatment.
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Introduction

Osteoarthritis (OA) is the most common degenerative disease worldwide
characterized by the loss of chondrocytes, degradation of articular matrix, and synovial
inflammation (1). The etiology of OA is multifactorial and complex, with a variety
of risk factors contributing to the progression, such as mechanical stress, aging,
obesity, inflammation, and genetic susceptibility (2). Articular cartilage is composed
of the extracellular matrix (ECM), mainly containing collagen type II and the cell
type—chondrocytes. Cartilage architecture and biochemical composition are regulated
by chondrocytes in response to the alterations from the surroundings of cartilage matrix
(1). The ability of adult articular chondrocytes to maintain the normal cartilage matrix
architecture is limited and declines with age (3). Therefore, keeping the chondrocytes
in a healthy state may be an important way for maintaining the integrity of the
entire cartilage.
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Autophagy is a highly conserved physiological process that
degrades long-lived or impaired organelles and proteins via
the lysosomal system (4). Increasing evidence has shown that
autophagy plays an important role in cell survival, aging, and
homeostasis (5). In addition, it has been revealed that autophagy
is associated with the pathogenesis of OA (6). During the
development of OA, autophagy may function as an adaptive
response to exert protective effect against various environmental
changes, while the failure of the adaptation may lead to the
progression in cartilage degradation (7). Previous studies found
that the intra-articular injection of rapamycin, an autophagy
inducer, facilitates the postponement of cartilage degeneration
in the OA mouse model (8). Thus, it can be concluded that
pharmacological activation of autophagy may be a promising
therapeutic strategy for OA.

Herein, we attempt to explore new autophagy-inducing
pharmacophores. Previous research revealed that some
antibiotics can be utilized to induce autophagy (9, 10).
Clioquinol (5-chloro-7-iodo-8-quinolinol), an antimicrobial
agent against common pathogenic microbes, functions as a
novel autophagy activator in multiple cells (11–13). Clioquinol
can trigger pro-death autophagy via interrupting mTOR
signaling pathway in leukemia and myeloma cells, which
not only inhibits enzymatic activity of mTOR (a critical
modulator of autophagy) as rapamycin, but also suppresses the
expression of mTOR (12). Clioquinol also induces autophagy
in a zinc-dependent manner and contributes to the clearance
of aggregated proteins in astrocytes and neurons (11). The
protective effects of clioquinol have been reported in various
neurodegenerative diseases, such as Alzheimer’s disease (14),
Parkinson’s disease (15), and Huntington’s disease (16), but
not yet in OA. Therefore, exploring the potential of clioquinol
as autophagy inducer in OA treatment may be helpful
for the therapy.

In this study, we investigated the effects of clioquinol
on autophagy process in chondrocytes. Furthermore, we also
evaluated the therapeutic potential of clioquinol in the rabbit
OA model of anterior cruciate ligament transection with
partial medial meniscectomy (ACLT + PMM) and explored the
underlying mechanism.

Materials and methods

Isolation and culture of chondrocytes

Human cartilage tissue was obtained from the knees of
OA patients who had undergone Total Knee Arthroplasty
(TKA). This study was approved by the human research ethics
committee. All patients’ OA satisfy the American College of
Rheumatology’s criteria for OA (17), and the patients’ consent
was obtained. The Clinical characteristics of OA patients are in

Table 1. The isolation and culture of chondrocytes were applied
according to the previous study (10). A non-weightbearing area
of cartilage without any macroscopically visible abnormalities
was harvested and washed in sterilized saline. Next, the tissue
was cut into smaller sections of 1 mm3 and digested by trypsin
(2.5 mg/ml) (Sigma Co., St. Louis, MO, USA) at 37◦C for
40 min, and then treated for 8 h with Type II collagenase
(2 mg/ml) (Sigma Co., St. Louis, MO, USA) in a DMEM/F12
medium (Thermo Scientific, Waltham, MA, USA). The isolated
chondrocytes were placed in DMEM/F12 with 10% FBS and
100 units/ml of penicillin and 0.1 mg/ml of streptomycin,
incubated at 37◦C. Following the above procedure, we applied
the second-passage chondrocytes for further studies.

Cell viability assay

The cell viability of chondrocytes was detected by the CCK-
8 Reagent (Thermo Scientific, Waltham, MA, USA) according
to the manufacturer’s protocol. Chondrocytes were treated
with clioquinol for 24 and 48 h, respectively. The cells were
washed with PBS, and then added CCK-8 solution. The 450 nm
absorbance was detected by micro-plate reader. All experiments
were repeated at least five times.

Establishment of osteoarthritis model
and intra-articular injection of
clioquinol

Male white New Zealand rabbits (2.5–2.8 kg, 3-month-old)
were used with the approval from the institutional animal care
and use committee. Anterior cruciate ligament transection with
partial medial meniscectomy (ACLT + PMM) were performed
on rabbits as described previously (18). Briefly, under general
anesthesia, the anterior horn of the medial meniscus was
dissected and the anterior cruciate ligament of the right knee was
transected. In the control group, a sham operation was carried
out on the contralateral knee with no meniscus dissection
and no ligament transection and then treated by the vehicle
only. Eighteen rabbits were randomly assigned to three groups
(n = 6/group): the sham group (sham operation plus the
vehicle treatment as control), ACLT + PMM plus the vehicle
treatment group, ACLT + PMM plus the clioquinol (5 mg kg−1)
treatment group (10). Rabbits were given clioquinol (100 µl)
were intra-articular injected into rabbits once a week following
surgery for 8 weeks. All rabbits were kept in individual cages
at 22 ± 3◦C with 55 ± 20% humidity and a 12-h light-
dark cycle. After 8 weeks of surgery, the tibial plateaus of the
rabbits’ hind legs were harvested. Animal studies were based on
ARRIVE guidelines.
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Autophagosome formation detection

Chondrocyte autophagosome formation was detected by
Cyto-IDTM autophagy detection kit (Enzo Life Sciences,
Farmingdale, NY, USA), following the manufacturer’s
recommendations. Articular cartilage cells of humans with
OA were treated with or without 5 µM clioquinol for 48 h and
then stained with a dual detection reagent for 30 min in the

dark at 37◦C. The green dot fluorescence (autophagosome) was
observed under microscope.

RNA extraction and RT-qPCR analysis

Total RNA was isolated using the TRIzol reagent
(Invitrogen, Carlsbad, CA, USA). Real-time RT-qPCR was

TABLE 1 Clinical characteristics of osteoarthritis (OA) patients.

Sample Sex Age (year) Disease duration (year) CRP (µg/ml) ESR (IU/ml) RF (IU/ml) Sample-obtained time

OA1 Male 65 16 7.31 18 10.44 February 2021

OA2 Male 72 13 5.23 24 16.32 February 2021

OA3 Male 71 17 2.45 19 4.75 March 2021

OA4 Male 63 18 5.78 7 9.87 March 2021

OA5 Male 69 13 2.12 16 15.27 March 2021

OA6 Female 64 20 7.98 27 17.21 March 2021

OA7 Female 55 9 9.12 25 13.56 April 2021

OA8 Female 63 15 11.13 28 12.98 April 2021

OA9 Male 64 7 7.63 15 9.45 May 2021

OA10 Male 72 10 2.78 14 5.32 May 2021

CRP, C-reactive protein; ESR, erythrocyte sedimentation; RF, rtheumatoid factor.

TABLE 2 Details of the primers used in RT-qPCR.

Gene name Sense (5′–3′) Antisense (5′–3′)

Col2a1 GGCAATAGCAGGTTCACGTACA CGATAACAGTCTTGCCCCACTT

Acan TCGAGGACAGCGAGGCC TCGAGGGTGTAGCGTGTAGAGA

MMP-1 GGGGCTTTGATGTACCCTAGC TGTCACACGCTTTTGGGGTTT

MMP-13 ACTGAGAGGCTCCGAGAAATG GAACCCCGCATCTTGGCTT

IL-6 CCACTCACCTCTTCAGAACGAAT GGCAAGTCTCCTCATTGAATCCA

IL-1ß AACAGGCTGCTCTGGGATTC GGTCGGAGATTCGTAGCTGG

LC3 CCACACCCAAAGTCCTCACT CACTGCTGCTTTCCGTAACA

Beclin1 AAATGCTGCTTGGGGTCAGA CGGAATCCACCAGACCCATA

ATG5 AAGCAACTCTGGATGGGATT GCAGCCACAGGACGA AAC

ATG7 CAGTCCGTTGAA GTCCTC TCAGTGTCCTAGCCACATTAC

GAPDH AGGTCGGTG TGAACGGATTTG GGGGTCGTTGATGGC AACA

DRAM1 TCAAATATCACCATTGATTTCTGT GCCACATACGGATGGTCATCTCTG

FIGURE 1

Effects of clioquinol on the cell cytotoxicity in vitro. The cytotoxic effects of clioquinol on chondrocytes were determined with increasing
concentrations (0, 0.5, 2.5, 5, and 10 µM) for 24 and 48 h using a CCK8 assay (A,B). All experiments were repeated five times. All data are shown
as the mean ± SD. ∗p < 0.05.
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FIGURE 2

Clioquinol induces autophagy in human osteoarthritis (OA) chondrocytes. The expression of LC3, p62, and β-actin were detected with Western
blotting (A–C). Human OA chondrocytes were treated or not treated with 5 µM of clioquinol for 48 h, and autophagosome formation (green
dots) was detected using an autophagy detection kit (D) and transmission electron microscopy (E). All data are shown as the mean ± SD.
∗p < 0.05.
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performed with the Applied Biosystems StepOnePlus Real-
Time PCR System. Information on the primer sequences was
provided in Table 2. All samples were performed in triplicate.

Western blot

The treated cells were collected and lysed for protein
sample preparation. We loaded 30 mg of lane protein into
the well of SDS page gel and electrophoretically transferred
the protein to NC membranes (Millipore, Billerica, MA, USA).
The membranes were blocked for 1 h and incubated in
primary antibodies against microtubule associated protein 1
LC3 (1:1,000, Sigma Co., St. Louis, MO, USA), p62 (1:8,000,
Abcam, Cambridge, UK), and β-actin (1:1,000, Bioss, Beijing,
China). The membranes were then washed and incubated with
secondary antibodies (1:10,000, Bioss, Beijing, China) for 2 h.
Afterward, the membrane was then washed and exposed with
an electrochemiluminescence system. Relative densitometric
analysis (a semi-quantitative analysis) was performed following
densitometric scanning.

Immunohistochemistry

After the tissues were dewaxed, 3% H2O2 was applied to
suppress the levels of endogenous peroxide on the histologic
slices, after which microwave heating was used to retrieve
antigen. The slices were blocked for 0.5 h with goat serum
(Beyotime Institute of Biotechnology, Shanghai, China). The
slices were then incubated in the solution of MMP-13
primary antibodies (1:100, Abcam, Cambridge, UK), Col-
2a1 antibodies (1:100, Abcam, Cambridge, UK), Cleaved-
caspase3 antibody (1:200, Abcam, Cambridge, UK). After
the incubation, a horseradish peroxidase-conjugated secondary
antibody (Abcam) was used for 0.5 h, and cells were
stained with 3,3′- diaminobenzidine (Beyotime Institute of

Biotechnology) and mounted. The microscope was used for
detecting the percentage of MMP-13, Cleaved-caspase3 positive
cells (brown cells).

Transmission electron microscopy

Chondrocytes or cartilage tissue were fixed in ice-cold
2% glutaraldehyde/0.1 M PBS and post-fixed in 1% osmium
tetroxide. After being washed and dehydrated with a series
of graded ethanol (30–100%), the samples were embedded in
propylene oxide or embedding resin (1:1). Resin blocks were
cut into thin sections, and the sections were placed on copper
grids and stained with uranyl acetate and lead citrate. An H-
7650 transmission electron microscope was used for detecting
the autophagic vesicles (double membrane-enclosed vesicles
containing engulfed organelles or other cell components).

Histological assessment

The tibial plateaus of hind legs from rabbits were fixed
in 4% paraformaldehyde and decalcified for 2 months with
10% EDTA. The tissues were then dehydrated, infiltrated with
paraffin, and embedded in paraffin wax. The paraffin blocks
were sectioned into 5 µm slices along the sagittal plane
using a microtome. Safranin O-fast green and alcian blue
staining was performed. Select three slices from each medial
tibial plateau, and two observers who were blinded to animal
study, respectively, utilized a semi-quantitative scoring system
(OARSI’s histopathology grading system of cartilage OA) to
assess articular cartilage degeneration.

Statistical analysis

All the data are presented as mean ± SD. Differences
between two groups were analyzed by the unpaired t-test

FIGURE 3

The expression of osteoarthritic markers in human osteoarthritis (OA) chondrocytes after incubating with clioquinol (5 µM) (A), or IL-1ß
(10 ng/ml), IL-1ß (10 ng/ml) + clioquinol (5 µM) (B), determined by PCR. All data are shown as the mean ± SD. ∗p < 0.05.
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or the Mann-Whitney U test. Differences between different
groups were analyzed by ANOVA. P-values less than 0.05 were
statistically significant.

Results

Clioquinol induces autophagy in
human osteoarthritis chondrocytes

First, we investigated the cytotoxic effect of clioquinol
on human OA chondrocytes. The cells were incubated with

clioquinol at different concentrations (0, 2.5, 5, and 10 µM)
for 24 and 48 h. Finally, CCK-8 analysis showed that no
apparent cytotoxic effects on chondrocytes were observed at
low concentrations of clioquinol (0–5 µM) (Figures 1A,B).
However, at 10 µM, clioquinol induced a modest level of cell
death. Based on this result, we chose 5 µM as the concentration
for following studies. To determine whether clioquinol could
induce autophagy, western blot was performed to detect the
marker of autophagy, LC3 and P62. The clioquinol-treated
chondrocytes show an increased level of LC3-I/II, and a
decreased P62 level, in a concentration-dependent manner
(Figures 2A–C), indicating the augment of autophagy. Other

FIGURE 4

Clioquinol ameliorates osteoarthritis (OA) development in rabbit model. (A,B) Representative Safranin O-Fast green and Alcian Blue staining of
cartilage in three groups (n = 6) at the 8th weeks post-surgery. (C) Representative IHC staining showing the expression and distribution of
Col-2a1 in cartilage after treatment. (D) Cartilage degeneration evaluated by OARSI scoring system. All data are shown as the mean ± SD.
∗p < 0.05.
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autophagy-associated genes, DRAM1, ATG5, and ATG7,
were also dose-dependently increased (Supplementary
Figure 1). Furthermore, we also used immunofluorescence
staining (Figure 2D) and transmission electron microscopy
(Figure 2E) to visualize the autophagosome formation.
In consistent with the results of western blot, autophagosome
formation was enhanced in the clioquinol-treated chondrocytes,
compared to the control. Together, these results indicated that
clioquinol exposure could facilitate autophagy in human OA
chondrocytes.

Clioquinol enhances chondrogenic
markers and reduces inflammatory
markers in human osteoarthritis
chondrocytes

We next sought to characterize the osteoarthritic
microenvironment after clioquinol treatment. RT-qPCR
results showed that the mRNA levels of chondrogenic marker
Col-2a1 and Acan were significantly elevated after the exposure
to clioquinol (Figure 3A). Meanwhile, clioquinol treatment
can also reduce the levels of inflammatory marker MMP-1,
MMP-13, IL-1ß, and IL-6 (Figure 3A). Additionally, clioquinol
can also exert preventive effects on the function of IL-1ß, an
important inflammatory factor. Although clioquinol failed

to rescue the IL-1ß-induced inhibitory effects on Col-2a1
and Acan, it correspondingly repressed the IL-1ß-mediated
upregulated expression of MMP-1, MMP-13, IL-1ß, and IL-6
(Figure 3B).

Clioquinol ameliorates osteoarthritis
development in a rabbit model

We further investigated the therapeutic efficacy of clioquinol
on ACLT + PMM-induced OA in vivo. Clioquinol was
administered by intra-articular injection once a week for 8 weeks
beginning the day after surgery. Histological analysis by Safranin
O and Alcian Blue staining respectively showed osteoarthritic
changes with cartilage abrasion and hypocellularity in the
ACLT + PMM group, whereas no OA-like changes were
observed in the sham group (Figures 4A,B). However, the
ACLT + PMM + clioquinol group showed less cartilage erosion
and richer proteoglycan (Figures 4A,B), suggesting clioquinol
ameliorates ACLT + PMM-induced impairment. The contrast
in different groups of Col-2a1 expression was not obvious, yet
the abrasion in the control group was profound (Figure 4C).
Consistent with staining, OARSI score of the ACLT + PMM
group was significantly higher than that of the sham group,
while the clioquinol treatment resulted in the decrease of OARSI
scores (Figure 4D).

FIGURE 5

The change of MMP-13 expression in cartilage after intra-articular injection of clioquinol. (A) Representative IHC staining showing the
expression and distribution of MMP-13 in cartilage. (B) Quantitation of ICH staining. All data are shown as the mean ± SD. ∗p < 0.05.
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Clioquinol reduces the expression of
inflammatory markers in the rabbit
model

Immunohistochemistry (IHC) as performed for MMP-13, a
main protease responsible for collagen degradation in articular
cartilage. The results showed that chondrocytes with high
MMP-13 expression were increased in the ACLT + PMM
group compared to the sham group. However, in the
ACLT + PMM + clioquinol group, MMP-13 positive cells in the
articular cartilage was significantly reduced (Figures 5A,B).

Clioquinol enhances autophagosome
formation and attenuates apoptosis of
chondrocytes in the rabbit model

We examined the expression of autophagy markers to
clarify if clioquinol treatment can facilitate autophagy in the
rabbit OA model. RT-qPCR results showed that the mRNA
expression of LC3 and beclin-1 was significantly (p < 0.05)
reduced in rabbit OA chondrocytes compared with the sham
surgery chondrocytes, while clioquinol treatment markedly
rescued the inhibited expression of these autophagy markers
(Figures 6A,B). Consistent with the expression of autophagy
markers, TEM also showed that autophagosome formation was
significantly augmented in the ACLT + PMM + clioquinol
group, compared with the ACLT + PMM group (Figures 6C,E).
Apoptosis in chondrocytes is positively associated with OA
progression. Herein, we also detected the level of apoptosis
marker cleaved-caspase 3 by immunohistochemical staining.
The cartilage of ACLT + PMM group showed an increased
expression of cleaved caspase 3 compared to the sham group,
while clioquinol administration significantly repressed the
ACLT + PMM surgery-induced elevation of cleaved caspase
3 (Figures 6D,F), which indicates clioquinol can also protect
chondrocytes from the apoptosis in OA progression.

Discussion

Osteoarthritis has been regarded as a degenerative disease
with a high prevalence, which is the primary cause of
disability and burden for the elderly (19, 20). There is a clear
and urgent need to develop new drugs for OA treatment.
In this study, we reported that clioquinol can significantly
promote autophagy, enhance chondrogenic markers and inhibit
inflammatory markers in OA chondrocytes. Furthermore, we
demonstrated that the intra-articular clioquinol can ameliorate
OA damages in the ACLT-induced OA rabbit model, and
clioquinol can also block chondrocyte apoptosis, which may be
achieved by enhancing autophagy.

Autophagy plays an essential role in maintaining cellular
metabolism and homeostasis (21). Recent studies suggest
that the imbalance of autophagy is a key factor in the
pathogenesis of OA (22). Studies have demonstrated that
the level of autophagy in OA cartilage is reduced (23) and
autophagy can protect chondrocytes from the degradation (24).
Activation of autophagy in chondrocytes by intra-articular
injection of resveratrol, an autophagy inducer, can significantly
delay articular cartilage degeneration in a destabilized medial
meniscus OA mouse model (25). Our previous study found
that an intra-articular injection of chloramphenicol attenuates
the severity of cartilage degradation in a type II collagen-
induced rabbit model of OA, which may be associated with
the induction of autophagy (10). Therefore, pharmacological
induction of autophagy may be an appropriate therapeutic
approach for OA. The development of safe and effective drugs
that can enhance autophagic activities or restore autophagy flux
is a promising strategy for the treatment of OA. This study,
therefore, was planned to assess the potential of clioquinol as
autophagy inducer in primary chondrocytes and rabbits with
ACLT + PMM surgery-induced OA. Clioquinol is a quinoline
derivative used as an antibiotic for the treatment of diarrhea
and soft tissue infections (26, 27). Recently, clioquinol has been
proven to induce autophagy of a variety of cells, including
astrocytes, neurons, leukemia and myeloma cells (11–13).
However, there is no previous study to explore the application of
clioquinol against OA development, whereas our study revealed
the potential of clioquinol as an autophagy inducer for the
treatment of OA. From a mechanistic standpoint, previous
studies indicated that clioquinol acts as a zinc ionophore and
increases intracellular free zinc levels in the cytosol and in
lysosomes, which augments autophagic flux (11, 28). However,
whether clioquinol would induce autophagy in OA through
a similar or the same pathway requires further exploration.
In order to investigate if the autophagy induction property
of clioquinol can protect chondrocytes, we incubated primary
chondrocyte cells with or without clioquinol. Consistent with
the previous studies, autophagy is a self-protective process
in OA in response to the stimulation by clioquinol. In our
study, clioquinol exerts chondroprotective effects on human
OA chondrocytes, which was manifested by the increased
chondrogenic markers Col-2a1 and Acan and the suppressed
expression of genes encoding inflammatory cytokines IL-1β and
IL-6, as well as the cartilage-degrading enzymes from the MMP
family, including MMP-1 and MMP-13 (Figure 3).

According to in vitro experiments, we also sought to
investigate whether intra-articular injection of clioquinol could
block OA progression in vivo, and ACLT + PMM surgery-
induced OA rabbit model was constructed for further studies.
Our study shows that intra-articular injection of clioquinol
can distinctly repress articular cartilage erosion and rescue the
proteoglycan content. Increasing evidences show that MMP-13,
a zinc-dependent protein, plays a vital role by degrading type II
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FIGURE 6

(A,B) The expression of LC3 and Beclin-1 evaluated by PCR. (C,E) Autophagosome formation (arrows) detected using transmission electron
microscopy. (D) Representative IHC staining showing the expression and distribution of cleaved caspase 3 in cartilage. (E,F) Quantitative analysis
of autophagosome formation and cleaved caspase 3. All data are shown as the mean ± SD. ∗p < 0.05.

collagen in articular cartilage in OA (29), which indicates that
the level of MMP-13 is positively associated with OA severity
(30–32). Our findings shows that intra-articular injection of
clioquinol can inhibit MMP-13 expression, which was consistent
to our in vitro study. However, there was no significant
degradation of Col-2a1 in the ACLT + PMM group, which
may be owing to the long half-life of Col-2a1 and activated
metabolism of chondrocytes after the surgery that confound the
effect of clioquinol administration on the expression of Col-2a1
(33, 34).

We also investigated the role of an intra-articular injection
of clioquinol on autophagy in rabbits with OA and detected
that clioquinol can increase the expression of autophagy-related
factors, including LC3 and Beclin1. More autophagosomes were
observed by transmission electron microscopy, consistent with
the alterations of autophagy markers. In addition, clioquinol
reduced the level of cleaved caspase 3, a primary executioner
for apoptosis, which indicated that the increase of autophagy
with a subsequent decrease of apoptosis may be a part of the
mechanism of clioquinol-mediated amelioration for OA.
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There were also some limitations to our study. First, this
is a preliminary result, and it is expected that details of the
interaction between the clioquinol-induced autophagy and OA
require further research. Second, the animal model we used
in this paper was ACLT + PMM surgery-induced OA model,
which is a classical method for establishing OA models; thus,
it may not be broadly representative of all OA conditions.
Third, although clioquinol is promising for the treatment for
OA, owing to the side effect–termed subacute myelo-optic
neuropathy (SMON), it still need more efforts to explore its
appropriate utilization in human.

Taken together, our results suggest that intra-articular
injection of clioquinol can alleviate ACLT + PMM surgery-
induced OA progression. The underlying mechanisms
may include reducing MMP-13, increasing autophagy
and decreasing chondrocyte apoptosis. Intra-articular
administration of clioquinol may be a promising treatment
for OA, and additional comprehensive studies examining the
clinical potential of clioquinol for OA therapy are still required.
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