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Introduction: There are many different chronic lymphoblastic leukemia (CLL)

survival prediction models and scores. But none provide information on

expression of immune-related genes in the CLL cells.

Methods: We interrogated data from the Gene Expression Omnibus database

(GEO, GSE22762; Number = 151; training) and International Cancer Genome

Consortium database (ICGC, CLLE-ES; Number = 491; validation) to develop

an immune risk score (IRS) using Least absolute shrinkage and selection

operator (LASSO) Cox regression analyses based on expression of immune-

related genes in CLL cells. The accuracy of the predicted nomogram we

developed using the IRS, Binet stage, and del(17p) cytogenetic data was

subsequently assessed using calibration curves.

Results: A survival model based on expression of 5 immune-related genes

was constructed. Areas under the curve (AUC) for 1-year survivals were 0.90

(95% confidence interval, 0.78, 0.99) and 0.75 (0.54, 0.87) in the training and

validation datasets, respectively. 5-year survivals of low- and high-risk subjects

were 89% (83, 95%) vs. 6% (0, 17%; p < 0.001) and 98% (95, 100%) vs. 92%

(88, 96%; p < 0.001) in two datasets. The IRS was an independent survival

predictor of both datasets. A calibration curve showed good performance

of the nomogram. In vitro, the high expression of CDKN2A and SREBF2 in

the bone marrow of patients with CLL was verified by immunohistochemistry

analysis (IHC), which were associated with poor prognosis and may play an

important role in the complex bone marrow immune environment.
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Conclusion: The IRS is an accurate independent survival predictor with a high

C-statistic. A combined nomogram had good survival prediction accuracy in

calibration curves. These data demonstrate the potential impact of immune

related genes on survival in CLL.
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Introduction

There are several survival prediction models and scores for
chronic lymphocytic leukemia (CLL) including Binet and Rai
staging systems, MD Anderson Cancer Center 2007 index score,
CLL International Prognostic Index (CLL-IPI), Barcelona-
Brno score, International Prognostic Score-A (IPS-A), CLL-
01 and a tailored approach (1–5). These models and scores
include clinical, laboratory and genetic co-variates such as age,
disease stage, Eastern Cooperative Oncology Group (ECOG)
performance score, immunoglobulin variable heavy chain
(IGHV) mutation state, cytogenetic abnormalities, especially
del(11) and del(17p), serum β2-microglobulin, lymphocyte
doubling time and others. These models and scores have
only modest accuracy with C-statistics of 0.60–0.77 (6). Data
on the expression of immune-related genes in CLL cells
is not incorporated in any survival prediction, prognostic
model, or score.

We developed a survival predictive model we termed the
Immune Risk Score (IRS) by analyzing immune-related gene
expression data in CLL cells from two publicly available datasets.
We evaluated the model in multivariable analyses and verified
it in a validation dataset. We combined the IRS with Binet
stage and del(17p) cytogenetics data to develop a survival
prediction nomogram.

Materials and methods

Data collection

Data from 2 CLL datasets including 642 subjects with
micro-array survival data, GSE22762 and CLLE-ES (7, 8), were
obtained from the Gene Expression Omnibus (GEO) database
and the International Cancer Genome Consortium (ICGC)
database. The Data Access Committee approved access to
this data under DACO-7056. Gene expression profiles were
derived from the microarray of subjects’ peripheral blood or
bone marrow in two datasets and normalized between different
arrays by sva package used to remove batch effects in high-
throughput experiments to reduce dependence, stabilize error
rate estimates and improve repeatability (9, 10). Download the

list of immune-related genes from the ImmPort database1 for
extracting all immune genes in the GEO dataset and the ICGC
dataset, to obtain a list of candidate immune genes for further
study. The workflow is summarized in Supplementary Figure 1.

Construction and validation of the IRS

The GSE22762 dataset was used for training to construct
the IRS model. Univariable Cox regression analyses were used
to identify immune-related genes significantly correlated with
survival at p < 0.05. We used Least Absolute Shrinkage
and Selection Operator (LASSO) Cox regression analyses to
identify the best weighting coefficient of immune-related genes
for survival. The maximum likelihood estimate of penalty
after 1,000-fold cross-validation was determined and the 1-SE
criterion was used to determine the optimal value of the penalty
parameter λ. These data were used to develop the IRS. The
CLLE-ES dataset was used as validation set.

Prediction accuracy of the IRS was quantified using time-
dependent receiver-operating characteristic (ROC) curves and
the area under the curve (AUC) method. Subjects were divided
into high- and low-risk cohorts by the optimal cut-off of risk
score in each dataset. Survivals of subjects in the high- and
low-risk cohorts were compared by Kaplan–Meier curves with
log-rank tests. The GSE22762 and CLLE-ES datasets had clinical
co-variates which were included in uni and multivariable Cox
regression analyses.

Nomogram development and
validation

We developed a survival prediction nomogram by
combining the IRS with Binet stage and del(17p) cytogenetics
data. In the nomogram, each co-variate is assigned a point and
added to give a total point corresponding to 1-, 3-, or 5-year
survival. The calibration curve showed the relationship between
the predicted value and the measured value of the nomogram in
the training dataset. The IRS, clinical and laboratory co-variates

1 https://www.immport.org/about
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and nomogram were compared with the time-dependent
receiver operating characteristic curve (time-ROC curve) for
5-year survival.

Patient selection and follow-up

We collected 44 newly diagnosed CLL patients, whose
diagnosis was confirmed by histopathology following
bone marrow aspiration procedures taking place between
2011 and 2020 at Sun Yat-sen University Cancer Center
(SYSUCC), Guangzhou, China. The other inclusion
criteria were: No acute infection 2 weeks prior to
enrollment; no chronic inflammation or autoimmune
disease; and no consumption of immunosuppressive or
immunomodulatory drugs. All patients were followed-
up until September 2020 through hospital records or
phone contact with the patients or relatives who were
aware of their illness. This study was approved by the
Research Ethics Committee of SYSUCC (Approved number
B2021-044-01) and was conducted in accordance with the
Declaration of Helsinki.

Immunohistochemistry analysis

We verified two immune-related genes (CDKN2A and
SREBF2) with the larger weight coefficient according to IRS
model, by immunohistochemistry analysis. Several types of
immune cells, including monocytes, CD4+ T cells, CD8+T
cells, and neutrophils were selected to further explore the
relationship between immune genes and the bone marrow
immune environment.

Briefly, the paraffin-embedded bone marrow puncture
specimens were stained using antibodies against CD4+ T
cells (anti-CD4 antibody, ZSGB_BIO, Catalog No. ZA-0519),
CD8+ T cells (anti-CD8 antibody, ZSGB_BIO, Catalog
No. ZA-0508), monocytes (anti-CD14 antibody, SANTA,
Catalog No. sc-58951), neutrophils (anti-CD66b antibody,
ABCAM, Catalog No. ab197678), and two immune-related
genes: the sterol regulatory element binding transcription
factor (SREBF2; anti-SREBF2 antibody, ABCAM, Catalog
No. ab30682), and the cyclin dependent kinase inhibitor
2A (CDKN2A; anti-CDKN2A antibody, Affinity, Catalog No.
AF0228). Every five duplicate slide was analyzed by two
independent researchers in a blinded manner. For the immune
cells, researchers recorded the number of positive immune
cells and calculated the density of immune cells using Image
J software (National Institute of Health, Bethesda, MD, USA).
For the immune-related genes, we recorded the staining
area and degree of immune protein expression using a 1–
3-point system. The points were added up to obtain a

total immunohistochemistry analysis score for each immune-
related gene.

Statistics

Subjects were divided into high- or low-risk cohorts at
the optimal cut-off IRS which was determined by ROC
curves analyses. Prediction accuracy was quantified using
time-dependent ROCs and AUCs calculated to determine the
Concordance C-Statistic. Survival was defined as the interval
from diagnosis to death from any cause. Time-to-therapy
(TTT) was defined as the interval from diagnosis to start of
1st or next treatment. A significant proportion of patients
in GSE22762 were not analyzed at diagnosis but at a more
advanced disease stage and in relapse. Survival and TTT in those
patients were calculated as the interval from measurement to
the respective event. Survivals were compared in Kaplan–Meier
curves using the log-rank test. In univariable Cox regression
analyses co-variates with P < 0.05 were used in subsequent
multivariable Cox regression analyses. SPSS software version
24.0 (SPSS, Inc., Chicago, IL, USA), R software version 3.6.2
(R Foundation for Statistical Computing, Vienna, Austria),
and Perl version 5.24.3 (Perl Foundation, Holland, MI, USA)
were used for statistical analyses. A two-sided P < 0.05 was
considered significant.

TABLE 1 Clinical co-variates in the training and validation datasets.

Training dataset
GSE22762
(N = 149)

Validation dataset
CLLE-ES
(N = 483)

P-value

Female 88 (59%) 191 (40%) <0.001

Age

<65 y 89 (60%) 278 (58%) 0.70

≥65 y 60 (40%) 205 (42%)

Median (y,
range)

63 (30–84) 62 (28–87)

del (6q) 8 (5%) NA

del (11q) 18 (12%) NA

del (13q) 85 (57%) NA

del (17p) 13 (9%) NA

+12 20 (13%) NA

TP53 NA 14/463 (3%)

IGHV. Unmutated 64/132 (48%) 156/458 (32%) <0.01

Binet stage <0.001

A 58/105 (39%) 427/480 (88%)

B 23/105 (15%) 39/480 (8%)

C 24/105 (16%) 14/480 (3%)

OS status 110/149 (74%) 416/483 (86%) <0.01

OSmedian time (y) 3.76 (0.09–7.38) 7.13 (0.06–26.52)

Median TTT (y) 1.04 (0–6.50) NA

N, number; y, years old; OS, overall survival; TTT, time to treatment.
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Results

Subject selection and IRS development

Clinical and laboratory co-variates of 632 subjects from
GSE22762 and CLLE-ES were displayed in Table 1. LASSO Cox
regression analysis was used to determine the five genes of model
(shown in Supplementary Figure 2A). The optimal weighting
coefficient for each gene was determined by the regularization
parameter lambda (shown in Supplementary Figure 2B). Five
genes with optimal coefficients were selected to develop the
IRS, including CDKN2A, SREBF2, NRIP1, BCL11B, and SIRT1
(Supplementary Table 1). The equation used to calculate the
IRS is:

IRS = (0.54× CDKN2A RNA expression) + (0.27× SREBF2
RNA expression) − (0.04 × SIRT1 RNA expression) −
(0.11 × BCL11B RNA expression) − (0.26 × NRIP1
RNA expression).

We calculated the IRS for each subject in both datasets
according to this equation dividing subjects into high- and
low-risk cohorts based on the optimal IRS cut-off of the

corresponding dataset. The training and validation data sets’
optimal cut-off values are 2.29 and 1.94, respectively.

IRS validation

Sensitivity and specificity of the IRS in each dataset
were assessed by time-dependent ROC analyses. AUCs in the
training dataset for 1-, 3-, and 5-year survivals were 0.90
[95% Confidence Interval, (CI), 0.78, 0.99), 0.84 (0.73, 0.93),
and 0.88 (0.81, 0.96; shown in Figure 1A]. Comparable data
for the validation dataset were 0.75 (0.54, 0.87), 0.63 (0.38,
0.80), and 0.64 (0.48, 0.78; shown in Figure 1B). We also
compared survival of the high- and low-risk cohorts using
Kaplan–Meier curves in each dataset (shown in Figures 1C, D).
In the training dataset, subjects were divided into high-
and low-risk groups using the optimal cut-off value of
IRS. The high- and low-risk groups had 5-year survival of
89% (83, 95%) vs. 6% (0, 17%; P < 0.0001). Comparable
survivals in the validation dataset were 98% (95, 100%)
vs. 92% (88, 96%; P < 0.001). The IRS in each dataset
was an independent prognostic factor in multivariate Cox

FIGURE 1

Validation of the immune risk score model. (A,B) Sensitivity and specificity of the IRS model were assessed in each dataset by time-dependent
ROC analyses. (C,D) Survival differences between high- and low-risk cohorts in each dataset.
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regression analysis (Table 2). Moreover, time to treatment
(TTT) was statistically different between high-risk and low-
risk cohorts in the training dataset (P < 0.001, shown in
Supplementary Figure 3). In addition, the 64 patients who
were initially diagnosed with CLL in the training set were
divided into subgroups to further verify the difference in
survival between high and low immune score groups, as
well as the sensitivity and specificity for predicting survival,
all of which were well validated (shown in Supplementary
Figure 4).

Nomogram

Next, we built a survival nomogram for the training
dataset combining the IRS with Binet stage and del(17p)
data (shown in Figure 2A). (There were too few
deaths and lack of data in the validation cohort for
nomogram building.) A calibration curve showed good
accuracy predicting 1-, 3-, and 5-year survivals (shown
in Figure 2B). The nomogram increased 5-year survival
prediction accuracy compared with IRS only, Binet
stage only and del(17p) only (shown in Figure 2C).
The concordance statistics of the nomogram was 0.87
(0.70, 1.00) compared with concordance statistics of
0.83 (0.64, 1.00), 0.74 (0.53, 0.95), and 0.65 (0.46, 0.85),
respectively.

In vitro validation in bone marrow of
CLL patients by IHC

Forty-four patients newly diagnosed with CLL were
retrospectively enrolled in our study. The age range was 28–
78 years old, and the survival time range was 96–3,371 days.
Immunohistochemistry analysis experiments confirmed high
expression of SREBF2 and CDKN2A proteins in the bone
marrow of CLL patients (Figures 3A, B). In addition, the
information on each immunohistochemical indicator was
shown in the Table 3. According to the best cut-off value of
the immunohistochemistry analysis score, the prognosis of CLL
patients in the high expression group was significantly worse
than that in the low expression group (P < 0.05; Figures 3C,
D). Interestingly, SREBF2 expression levels were negatively
correlated with the infiltration of CD8+ T cells, CD4+ T
cells, CD14+ monocytes, and CD66b+ neutrophils, whereas
CDKN2A expression negatively correlated with the presence of
CD8+ T cells, CD4+ T cells, and CD66b+ neutrophils (P < 0.05,
Figure 3E).

Discussion

No CLL survival prediction model includes data on
expression of immune-related genes in chronic lymphocytic
leukemia cells. Using data on immune-related gene expression

TABLE 2 Univariable and multivariable regression analyses of survival.

Characteristics Uni-variable Multi-variable

Hazard ratio (95% CI) P-value Hazard ratio (95% CI) P-value

Training cohortGSE22762 (N = 149)

Age (< vs. ≥ 65 y) 1.00 (0.53, 1.89) 0.99

Sex (F/M) 1.38 (0.73, 2.58) 0.32

del (6q) (N/Y) 3.75 (1.57, 8.99) <0.01 0.84 (0.26, 2.75) 0.77

del (11q) (N/Y) 2.35 (1.07, 5.13) 0.03 3.35 (0.84, 13.33) 0.09

del (13q) (N/Y) 1.05 (0.56, 2.00) 0.87

del (17p) (N/Y) 8.09 (3.88, 16.85) <0.001 19.71 (5.17, 75.12) <0.001

+ 12 (N/Y) 1.45 (0.64, 3.29) 0.38

IGHV mutated (N/Y) 0.26 (0.12, 0.55) <0.001 0.53 (0.19, 1.51) 0.24

Binet stage (A vs. B vs. C) 2.53 (1.57, 4.10) <0.001 2.18 (1.18, 4.02) 0.01

Immune risk score 20.8 (9.4, 45.9) <0.001 5.41 (1.69, 17.28) <0.01

Validation cohortCLL-ES (N = 483)

Age (< vs. ≥ 65 y) 1.99 (1.22, 3.23) <0.01 1.00 (0.60, 1.66) 0.99

Sex (F/M) 1.53 (0.92, 2.57) 0.11

TP53 (N/Y) 1.49 (0.36, 6.10) 0.58

IGHV mutated (N/Y) 0.12 (0.07, 0.22) <0.001 0.72 (0.40, 1.29) 0.27

Binet stage (A vs. B vs. C) 1.65 (1.08, 2.53) 0.02 0.23 (0.03, 1.51) 0.13

Immune risk score 2.63 (1.30, 5.32) <0.01 2.61 (1.24, 5.48) 0.01

CI, confidence interval; N, number; y, years old; F, female; M, male; N/Y, no/yes.
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FIGURE 2

Building the survival nomogram. (A) The combined nomogram plot was built in the training dataset. (B) Time-dependent ROC curves of training
nomogram were compared based on co-variates 1-, 3- and 5-year survivals. (C) 5-year ROC curves and C-statistics of the nomogram
compared with other co-variates in the training dataset.

from the public GSE22762 dataset, we developed a prognostic
model, the IRS, which we independently verified in the CLLE-
ES dataset. In our model high expression of NRIP1, BCL11B
and SIRT1 were associated with a good and high expression
of CDKN2A and SREBF2 with poor prognoses. Functions of
these genes are summarized in Supplementary Table 2. Areas
under the curve (AUC) for 1-year survivals in the training
and validation datasets were 0.90 [95% Confidence Interval
(CI), 0.78, 0.99] and 0.75 (0.54, 0.87). With the combination
of Binet stage and del(17p) cytogenetic data, we developed a
nomogram that enhanced the accuracy of survival prediction,
with a C-statistic of 0.87 (0.70, 1.00) in the training set. Due
to missing data, we were not able to test the nomogram in
the validation set.

NRIP1, BCL11B, and SIRT1 are the 3 genes whose elevated
expression is linked to better survival. NRIP1, expression is
associated with a favorable prognosis in previous CLL studies
and may operate via the NF-κB pathway and/or Wnt signaling
pathways in CLL (7, 11). Del(17p13) and del(11q22) are
associated with low NRIP1 expression as unmutated IGHV state
(12, 13). Consequently, high NRIP1 expression in CLL may be a

surrogate for absence of one or more of adverse prognostic co-
variates. Of note, a recent study identified NRIP1 as a partner
of the NRIP1-MIR99AHG fusion in acute myeloid leukemia.
Although it is a rare fusion, it is suspected to be associated with
poor clinical outcome (14).

BCL11B regulates thymocyte development and is a cancer
suppressor gene in T-cell leukemia/lymphoma (15–19). BCL11B
inactivation in normal thymocytes triggers cell proliferation,
TP53-dependent apoptosis and increases growth of transformed
lymphocytes (20). BCL11B up-regulates NKG2D ligands of the
major histocompatibility complex class I-related molecules A
and B (MICA and MICB), promotes the anti-tumor response of
T- and NK-cells and prevents immune evasion of colon cancer
cells (21). Down-regulation of BCL11B expression inhibits
proliferation and induces apoptosis in malignant T-cells (22, 23).
There are no data other than ours on the impact of BCL11B
expression in CLL.

SIRT1 is up-regulated in some cancers including acute
and chronic myeloid leukemias (AML and CML) but
down-regulated in breast and liver cancers (24, 25). Low SIRT1
expression increases abnormal self-renewal of myelodysplastic
syndrome (MDS) stem cells by enabling over-acetylation
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FIGURE 3

In vitro validation in bone marrow of CLL patients by IHC. (A,B) Representative images of SREBF2, and CDKN2A -positive cells in a bone marrow
sample taken from one CLL patient. Scare bar: 50 µm. (C,D) Kaplan–Meier curves for overall survival of CLL patients associated with SREBF2
and CDKN2A expression. (E) Representative images of CD4, CD8, CD14, and CD66b -positive cells in a bone marrow sample taken from one
CLL patient. Scare bar: 50 µm. Correlation analysis between two immune-related genes and immune cell types (Spearman analysis).
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TABLE 3 The mean, the best cut-off value, and the number of cases with high and low IHC scores for each immunohistochemical index.

Index CD8 CD4 CD14 CD66b SREBF2 CDKN2A

Mean± variance 1.48± 0.6 1.27± 0.4 0.46± 0.2 1.12± 0.4 18.68± 3.8 7.86± 2.3

The best cut-off 1.65 1.09 0.44 0.75 15 6

High score (N) 15 (34%) 31 (70%) 22 (50%) 37 (84%) 34 (77%) 31 (70%)

Low score (N) 29 (66%) 13 (30%) 22 (50%) 7 (16%) 10 (23%) 13 (30%)

and reducing the activity of TET2 (26). Inhibition of SIRT1
expression promotes the growth of T-cell ALL by activating
the NOTCH and NF-κB pathways (27). The impact of SIRT1
expression in other on hematologic cancers is controversial.
Two studies reported SIRT1 is over-expressed in primary CLL
cells and in the JVM-3 and MEC-2 CLL cell lines and that
inhibiting SIRT1 expression might activate the p53 pathway
inhibiting cell proliferation and promoting apoptosis in CLL
(28, 29).

Increased expression of CDKN2A and SREBF2 correlated
with worse survival. CDKN2A is a rather contradictory gene.
Manifested as inactivation of CDKN2A and p53 in pancreatic
cancer (30). However, CDKN2A is highly expressed in gastric
precancerous lesions but decreased expression in gastric cancer
stage (31). This appears to have similar changes in hematologic
malignancies. In this study, CDKN2A was highly expressed
in CLL/SLL. CDKN2A is inactivated when CLL is converted
to Richter syndrome; CDKN2A inactivation combined with
mutations in TP53, MYC and NOTCH1 are associated with
transformation of CLL to Richter syndrome (32–34). At present,
the expression level of CDKN2A in CLL patients has not been
clearly reported. These data represent different meanings of
CDKN2A at different stages. SREBF2 expression is associated
with a poor prognosis in T-cell lymphoma, AML, plasma cell
myeloma and liver cancer (35–38). There are no data on the
impact of SREBF2 expression in CLL.

According to previous research, the presence of immune
cells (CD8+ T cells, CD4+ T cells, CD14+ monocytes,
and CD66b+ neutrophils) in the bone marrow immune
environment correlated positively with good CLL prognosis (39,
40). We hypothesize that upregulation of SREBF2 and CDKN2A
may be associated with decreased infiltration of bone marrow
immune cells. This may be an underlying mechanism that causes
CLL immunosuppression.

Why should immune gene expression in leukemia cells
correlate with prognosis? We hypothesize expression of these
genes reflects biologic features of the leukemia cells, but it is
also possible there is an interaction with the host immune
response, cancer micro-environment, both or something else.
We also emphasize we are reporting correlations, not necessarily
cause-and-effect.

Our study has several limitations. 1st, the datasets we
interrogated lacked more important clinical and/or laboratory
co-variates (such as CLL-IPI score) limiting our multivariable
analyses. 2nd, survival of subjects in the validation set was

significantly better than in the training dataset reflecting
different therapies and disease stage, which has the advantage of
allowing us to term the IRS a prognostic rather than predictive
score. However, the very good survival of the high- and low-
risk cohorts in the validation cohort decreased but did not
negate discrimination power of the IRS. 3rd, the large differences
between the datasets make it impossible to define a uniform cut-
off. Future studies are necessary to establish an optimal cut off.

In conclusion, we developed and validated a prognostic
survival model for CLL based on the expression of 5
immune-related genes which had high accuracy. We also
developed a survival nomogram by adding Binet stage and
del(17p) cytogenetics data to the IRS which improved the
C-statistic. Two immune-related genes were predicted and
validated using immunohistochemistry analysis experiments,
which may play an important role in the complex bone marrow
immune environment.
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