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Background: Acute respiratory distress syndrome (ARDS) is a serious organ

failure and postoperative complication. However, the incidence rate, early

prediction and prevention of postoperative ARDS in patients undergoing

hepatectomy remain unidentified.

Methods: A total of 1,032 patients undergoing hepatectomy between

2019 and 2020, at the Eastern Hepatobiliary Surgery Hospital were

included. Patients in 2019 and 2020 were used as the development and

validation cohorts, respectively. The incidence rate of ARDS was assessed.

A logistic regression model and a least absolute shrinkage and selection

operator (LASSO) regression model were used for constructing ARDS

prediction models.

Results: The incidence of ARDS was 8.8% (43/490) in the development cohort

and 5.7% (31/542) in the validation cohort. Operation time, postoperative

aspartate aminotransferase (AST), and postoperative hemoglobin (Hb) were

all critical predictors identified by the logistic regression model, with an area

under the curve (AUC) of 0.804 in the development cohort and 0.752 in the

validation cohort. Additionally, nine predictors were identified by the LASSO

regression model, with an AUC of 0.848 in the development cohort and 0.786

in the validation cohort.
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Conclusion: We reported the incidence of ARDS in patients undergoing

hepatectomy and developed two simple and practical prediction models for

early predicting postoperative ARDS in patients undergoing hepatectomy.

These tools may improve clinicians’ ability to early estimate the risk of

postoperative ARDS and timely prevent its emergence.

KEYWORDS

acute respiratory distress syndrome, liver cancer, hepatectomy, prediction model,
organ failure, LASSO regression

Introduction

The acute respiratory distress syndrome (ARDS) was
first described in 1967, and specific diagnostic criteria were
established in 1992 by an American-European consensus
meeting (1, 2). ARDS is a common and serious complication
that affects patients worldwide and often leads to a poor
prognosis or even death (3). A prospective analysis of the
ARDS incidence in the United States from 1999 to 2000 (4)
estimated an annual incidence of 190,000 cases of ARDS in the
United States, with a surprising hospital mortality rate of 38.5%.
Another multicenter prospective study called LUNG-SAFE
evaluated intensive care units (ICU) incidence and outcome
of ARDS in 29,144 patients from 50 different counties (5).
According to the findings, the prevalence of ARDS in ICU
patients reached 10%, while it was identified in 23% of all
patients receiving ventilation. In addition, the LUNG-SAFE
study reported that the hospital mortality rate was 34.9% for
patients with mild ARDS and 46.1% for those with severe ARDS.
Furthermore, the global burden of ARDS is the highest in high-
and upper-middle-income countries, with data indicating that
the mean total hospitalization costs in Korea reached 12,336
United States dollars (USD) (6, 7). Therefore, the high morbidity
and mortality of ARDS significantly reduce patients’ prognosis
and place a heavy burden on global health.

There are many risk factors that contribute to ARDS
development, such as pneumonia, non-pulmonary sepsis, major
trauma, including surgical and accidental trauma, aspirations
of gastric contents, and others (8, 9). In addition, other factors

Abbreviations: ASA, American Society of Anesthesiologists; HBV,
hepatitis B viral; PVTT, portal vein tumor thrombus; TACE, transcatheter
arterial chemoembolization; RBC, red blood cell; ARDS, acute respiratory
distress syndrome; PONV, post operative nausea and vomiting; APT,
abnormal prothrombin; TBIL, total bilirubin; ALT, alanine transaminase;
AST, aspartate aminotransferase; LDH, lactate dehydrogenase; ALB,
serum albumin; Cr, creatinine; BUN, blood urea nitrogen; CRP,
C-reactive protein; WBC, white blood cell; N %, neutrophil %; Hb,
hemoglobin; PLT, platelet; INR, international normalized ratio; ALI,
acute lung injury; ARDS, acute respiratory distress syndrome; LASSO,
least absolute shrinkage and selection operator; HCC, hepatocellular
carcinoma; ICU, intensive care unit; SD, standard deviation; ROC,
receiver operator characteristic; AUC, area of under the curve.

such as alcohol consumption, smoking, and hypoalbuminemia
have all been linked to an increased risk of ARDS (10–12).
Although great strides have been made in learning and treating
ARDS over the last 50 years, effective preventive measures for
postoperative ARDS still require further investigation (13, 14).
Previous studies using administrative or perioperative data have
established certain scoring models for predicting the risk of
postoperative pneumonia, acute lung injury (ALI), or ARDS in
patients (15–17). However, the majority of these studies built
models based on either the general population or multiple types
of surgery, and many of the predictors included in the models
were inapplicable to patients undergoing specific type of surgery
(16, 18, 19).

According to the most recent data, liver cancer is one
of the most common cancers and the third leading cause
of death among all cancers (20). Hepatectomy is a major
surgical procedure that is commonly used for treating liver
tumors (21). Despite improvements in hepatectomy safety
over decades, the frequency of postoperative complications
remains significant, ranging from 4.09 to 47.7% (22).
Furthermore, data about the incidence of postoperative
ARDS in patients undergoing hepatectomy is scarce. In
addition, no predictors or prediction models for evaluating
the possibility of developing ARDS in patients following
hepatectomy were identified. Therefore, effective grades,
predictive factors, or prediction models for early identifying the
risk of developing ARDS in patients undergoing hepatectomy
are extremely valuable.

Accordingly, by conducting a retrospective study in 1,032
patients undergoing hepatectomy between 2019 and 2020, we
assessed potential predictors and constructed two prediction
models to early predict the development of ARDS based on
perioperative factors.

Materials and methods

Study design

This was a retrospective, single-center cohort study
conducted at the Eastern Hepatobiliary Surgery Hospital,
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Shanghai, China. The study was approved by the Ethics
Committee of the Eastern Hepatobiliary Surgery Hospital (no.
EHBHKY2021-K-011) and adhered to Helsinki Declaration
and the Strengthening the Reporting of Observational Studies
in Epidemiology (STROBE) criteria. Patients who signed the
informed consent form and authorized permission for future
research use of their medical records were included.

Participants

Patients were included between 1 January 2019, and 31
December 2020, based on the following criteria: (1) over the
age of 18, (2) American Society of Anesthesiologists (ASA)
Status I–III, (3) Child-Pugh class A or B, and (4) elective
hepatectomy for liver cancer treatment, including hepatocellular
carcinoma (HCC) and intrahepatic bile duct cancer. Patients
who denied permission to utilize their health information for
research purposes, as well as those with severe organ failure prior
to surgery or a history of ALI or ARDS, were excluded from this
study. It should be noted that liver failure was defined according
to guidelines (23), heart failure as having a left ventricular
ejection fraction less than 35%, respiratory failure as having
an arterial oxygen partial pressure less than 60 mmHg, and
renal failure as having a serum creatinine level greater than
442 µ mol/L.

Variables and outcomes

The preoperative clinical characteristics of the patients were
recorded. In addition, intraoperative and postoperative factors
such as tumor-related data, surgical data, fluid transfusion,
and postoperative complications were collected. Tumor size
is expressed as the maximum tumor diameter or the sum
of maximum diameters when the tumor number exceeds
one. Furthermore, laboratory results of liver function, renal
function, inflammatory, and other biomarkers were collected
preoperatively and postoperatively within 24 h after surgery.
All data were collected from the digital medical system or
paper medical records by two trained researchers, checked, and
entered into Excel or the EpiData system.

The outcome of this study was the development of ARDS
within the first 7 days after hepatectomy. ARDS was evaluated
and diagnosed by experienced ICU physicians according to the
Berlin Definition (14). The diagnosis of ARDS could be listed as
follow: (1) Within 1 week of a known clinical insult or new or
worsening respiratory symptoms; (2) bilateral opacities of chest
imaging which could not fully explained by effusions, lobar/lung
collapse, or nodules; (3) respiratory failure which could not
fully explained by cardiac failure or fluid overload based on
the examination of electrocardiogram or echocardiogram; (4)
hypoxemia which identified by the arterial blood gas analysis.

(5) Comprehensive analysis based on the clinical symptom, the
biochemical detection of blood and results of bacterial culture.
Furthermore, ARDS prediction models were constructed using
the aforementioned factors and tested in two cohorts.

Establishment and validation of
prediction models

Patients with HCC or intrahepatic bile duct cancer who
underwent hepatectomy in 2019 or 2020 were included in
the development and validation cohorts, respectively. For
prediction model construction, a logistic regression model and a
least absolute shrinkage and selection operator (LASSO) model
were used. Potential predictors with p-values of less than 0.05
in the multivariable logistic regression were selected for model
construction. The effectiveness of the prediction model was
validated in the validation cohort. Following that, a LASSO
model was used to screen the most significant factors that
contributed to the development of ARDS in patients. The risk
score was calculated using the same method as described above,
and the model was also validated in the validation cohort.

Due to the lack of an external data set for model validation,
a 10-fold cross-validation method was used in both models.
Furthermore, the nomogram was developed to offer a reliable
and quantifiable method for immediately confirming the ARDS
probability in two prediction models.

Statistical analysis

The statistical analyses were performed and graphics were
designed using the R software, version 4.0.01 and the SPSS
statistics software, version 23.0 (IBM SPSS Inc., Armonk, NY,
USA). Categorical variables were presented as numbers and
percentages, while continuous variables were expressed as mean
and standard deviation or median (25% interquartile range,
75% interquartile range) based on their normality. Continuous
variables were compared using the Student’s t-test or Mann-
Whitney U test. Categorical variables were compared using
the Chi-squared χ2 test. The receiver operator characteristic
(ROC) curve was plotted and the area under the curve
(AUC) was calculated to assess the model discrimination.
Furthermore, calibration curves with C-index were made in
two cohorts to test the prediction model stability. The optimal
risk score cutoff point was determined by Youden’s index. The
multiple imputation method was used to fill in the missing
data for characteristics included in the prediction models,
and all missing proportions were less than 10%. All statistical
tests were two-sided, with p-values less than 0.05 considered
statistically significant.

1 https://www.r-project.org/
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Results

Cohort characterization

According to the inclusion criteria, 490 patients were
included in the development cohort and 542 in the validation
cohort (Table 1). The incidence rate of ARDS was 8.8%
(43/490) in the development cohort and 5.7% (31/542) in
the validation cohort. The overall incidence rate of ARDS in
patients undergoing hepatectomy was 7.2% (74/1,032). Several
characteristics, such as weight, viral hepatitis, portal vein
tumor thrombus, operation time, and others, were significantly
different between the two groups. The incidence rate of
postoperative complications was higher in the development
cohort (32.0%) than in the validation cohort (25.8%). In
particular, the incidence rate of pulmonary or abdominal
infections was higher in the development cohort (10.8%) than
in the validation cohort (3.9%).

In addition, the laboratory results of 14 critical liver,
renal, inflammatory, and coagulation-related biomarkers
were collected preoperatively and postoperatively for model
construction (Table 2). The levels of several biomarkers, such as
lactate dehydrogenase (LDH), serum albumin (ALB), C-reactive
protein, and others, were significantly different between the two
cohorts.

Model construction and validation
based on logistic regression

First, a logistic regression model was used to construct
the prediction model. It included 18 covariates with p-
values of less than 0.05 in the univariable logistic analysis
(Supplementary Table 1). Three critical predictors; operation
time, postoperative aspartate aminotransferase (AST), and
postoperative hemoglobin (Hb); were identified and integrated
into the prediction model (Supplementary Table 2). The risk
score was calculated using the following formula:

Risk score =
(
0.006×operation time

)
+(0.001×postoperative AST)

+(−0.031×postoperative Hb)

The AUC was calculated using the ROC curve, and it
was 0.804 (95% confidence interval (CI): 0.741–0.868) in the
development cohort and 0.752 (95% CI: 0.660–0.844) in the
validation cohort (Figure 1A). Furthermore, model validation
using the 10-fold cross-validation method revealed similar
discrimination with a mean C-index of 0.792 in the development
cohort. Then, using raw data, a model was constructed, and a
similar AUC was found in the two cohorts, with mean AUC
values of 0.805 and 0.773 in the development and validation

cohorts, respectively. Based on the logistic prediction model,
a visual nomogram was developed to establish a reliable and
quantitative method for assessing the probability of ARDS
(Figure 1B).

Model construction and validation
based on LASSO regression

A LASSO model was then used to construct another
prediction model. Finally, 14 predictors were acquired, and
nine predictors with coefficients greater than 0.001 were used
in the final prediction model (Figure 2A). The risk score was
calculated using the following formula:

Risk score = (0.0033×operation time)

+ (0.0048×postoperative TBIL)

+ (−0.0105×postoperative ALB)

+ (0.01×postoperative N%)

+ (−0.0187×postoperative Hb)

+ (0.299×preoperative INR)

+ (0.664×postoperative INR)

+ [0.128×Hypertension (Yes represents 1 and

No represents 0)] + [0.418× portal hypertension

(Yes represents 1 and No represents 0)].

The AUC value reached 0.848 (95% CI: 0.795–0.901) in
the development cohort and 0.786 (95% CI: 0.702–0.871)
in the validation cohort (Figure 2B), exceeding the logistic
prediction model’s discriminating power. In addition, model
validation using the 10-fold cross-validation method showed
similar discrimination, with a mean C-index of 0.808 in the
development cohort. Furthermore, a visual nomogram was
developed to help visualize the prediction model and directly
calculate the probability of ARDS (Figure 2C).

Furthermore, the calibration curves showed good fitting
effects between predicted and observed outcomes for the logistic
prediction model (Figure 3A) and the LASSO prediction model
(Figure 3B) in two cohorts.

Discriminative effects of prediction
models for ARDS by grading risk scores

To better evaluate the discrimination of our prediction
models and simplify models for clinical application, risk
scores were calculated based on formulas and graded to three
degrees: low-risk, medium-risk, and high risk. According to
Table 3, patients’ risk scores were distributed consistently in
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TABLE 1 Clinical characteristics of patients in the development cohort and validation cohort.

Characteristics Development cohort
(n = 490)

Validation cohort (n = 542) P-value

Preoperative

Gender (male/female) 395/95 (80.6%/19.4%) 427/115 (78.8%/21.2%) 0.466

Age (year) 56.6 (11.5) 57.1 (10.8) 0.519

Height (cm)* 167.6 (6.3) 167.1 (6.7) 0.251

Weight (kg)* 67.8 (10.2) 66.3 (9.8) 0.027

ASA stage 0.204

I and II 424 (86.5%) 483 (89.1%)

III 66 (13.5%) 59 (10.9%)

Child-Pugh stage (A/B) 469/21 (95.7%/4.3%) 514/28 (94.8%/5.2%) 0.507

TNM stage 0.562

I 281 (57.3%) 326 (60.1%)

II 156 (31.8%) 156 (28.8%)

III and IV 53 (10.8%) 60 (11.1%)

Hypertension (yes/no) 112/378 (22.9%/77.1%) 126/416 (23.2%/76.8%) 0.882

Diabetes (yes/no) 59/431 (12.0%/88.0%) 69/473 (12.7%/87.3%) 0.737

Smoking (yes/no) 196/294 (40.0%/60.0%) 245/297 (45.2%/54.8%) 0.092

Alcohol drinking (yes/no) 156/334 (31.8%/68.2%) 168/374 (31.0%/69.0%) 0.771

Viral hepatitis§ (yes/no) 370/120 (75.5%/24.5%) 296/246 (54.6%/45.4%) 0.000

HBV-DNA < 50 IU/ml (yes/no) 244/246 (49.8%/50.2%) 297/245 (54.8%/45.2%) 0.108

Cirrhosis (yes/no) 254/236 (51.8%/48.2%) 268/274 (49.4%/50.6%) 0.443

PVTT (yes/no) 35/455 (7.1%/92.9%) 20/522 (3.7%/96.3%) 0.014

Portal hypertension (yes/no) § 78/412 (15.9%/84.1%) 99/443 (18.3%/81.7%) 0.318

TACE before surgery (yes/no)*§ 47/443 (9.6%/90.4%) 58/482 (10.7%/89.3%) 0.543

Intraoperative

Open/laparoscopic* 460/30 (93.9%/6.1%) 491/49 (90.9%/9.1%) 0.075

Left/right/caudate/left + right lobe resection* 131/309/6/44 117/344/8/67 0.129

Tumor number (single/multiple) 418/72 (85.3%/14.7%) 442/100 (81.5%/18.5%) 0.106

Tumor size (cm) § 5.6 (3.8) 5.7 (3.8) 0.773

Operation time (min) 188.8 (94.5) 172.6 (82.3) 0.003

Volume of bleeding (ml) 300 [200, 500] 200 [200, 300] 0.000

Plasma transfusion (ml) 0 [0, 0] 0 [0, 0] 0.428

RBC transfusion (ml) 0 [0, 0] 0 [0, 0] 0.333

Crystalloid fluid** (ml) 1,400 [1,000, 1,500] 1,000 [1,000, 1,500] 0.001

Colloidal fluid** (ml) 500 [500, 1,000] 500 [500, 1,000] 0.639

Postoperative

Postoperative complications§§ 157 (32.0%) 140 (25.8%) 0.028

ARDS 43 (8.8%) 31 (5.7%) 0.057

Mild 31 (6.3%) 22 (4.1%) 0.590

Moderate 8 (1.6%) 4 (0.7%)

Severe 4 (0.8%) 5 (0.9%)

(Continued)
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TABLE 1 (Continued)

Characteristics Development cohort
(n = 490)

Validation cohort (n = 542) P-value

Fever§§ (>38◦C over 48 h) 36 (7.3%) 46 (8.5%) 0.499

Pain 29 (5.9%) 37 (6.8%) 0.552

Bleeding 1 (0.2%) 4 (0.7%) 0.377

Pulmonary/abdominal infection§§ 53 (10.8%) 21 (3.9%) 0.000

Severe PONV§§ 1 (0.2%) 3 (0.6%) 0.626

Variables are shown as “mean (SD),” “number (%),” or “median [25% quartile, 75% quartile].”
ASA, American Society of Anesthesiologists; TNM, clinicopathological stage; HBV, hepatitis B viral; PVTT, portal vein tumor thrombus; TACE, transcatheter arterial chemoembolization;
RBC, red blood cell; ARDS, acute respiratory distress syndrome; PONV, post operative nausea and vomiting; SD, standard deviation.
*Factors with a single asterisk indicate patients with missing data.
**Crystalloid fluid means lactated Ringer’s solution and colloidal fluid means hydroxyethyl starch solution (Voluven).
§Viral hepatitis includes HBV and HCV infection. Portal hypertension is defined as gastroscopy revealing esophageal varices or blue earthworm-like changes, TACE before surgery is
defined as patients receiving TACE before surgery within 3 months.
§§Patients with multiple postoperative complications were counted separately. The body temperature is defined as the armpit temperature. Pulmonary infection is identified by
sputum bacterial cultures and abdominal infection is identified by ascitic fluid bacterial cultures. Severe PONV is defined as episodes of the expulsion of gastric contents that need
antiemetic treatment.

the development and validation cohorts, regardless of whether
the logistic or the LASSO model was used, suggesting good
robustness of our models. We were able to effectively classify
patients into different risk groups by dividing the risk score into
three degrees. Based on our cohorts, the incidence of ARDS was
approximately 2% in the low-risk group, while it significantly
increased in the medium-risk and high-risk groups in both
cohorts (Table 3).

In the development cohort using the optimal cutoff, the
logistic model exhibited a sensitivity of 88.4% and a specificity
of 64.2% (Supplementary Table 3), while the LASSO model had
a sensitivity of 83.7% and a specificity of 78.1% (Supplementary
Table 3), suggesting good predictive effects of our prediction
models for ARDS.

Subgroup analysis of two prediction
models in the development cohort

To verify the sensitivity of two models for predicting ARDS,
subgroup analysis was performed in the development cohort.
Table 4 shows that both prediction models had sustained
predictive effects for ARDS in different subgroups. The AUC
value reached 0.887 in the LASSO model in patients less than
60 years old. Furthermore, in the subgroup of patients with
no hypertension, both logistic and LASSO models had superior
predictive effects, with AUC of 0.858 and 0.892, respectively.

Discussion

Acute respiratory distress syndrome is one of the most
devastating postoperative complications and significantly
increased mortality. Early prediction and treatment of ARDS
are critical for improving patients’ prognosis in clinical practice.

To the best of our knowledge, our study was the first to report
the incidence of ARDS in patients undergoing hepatectomy
for liver cancer treatment, which was approximately 7.2%.
In addition, we constructed two effective prediction models
by integrating 48 perioperative covariates using logistic and
LASSO regression. Both prediction models have good predictive
effects, and the AUC exceeds 0.8 in the development cohort.
Moreover, a number of major risk factors for postoperative
ARDS have been identified. For instance, patients with a longer
operation time, higher postoperative levels of AST, TBIL, and N
%, and lower postoperative Hb and ALB levels are more likely
to develop ARDS postoperatively. Furthermore, the risk of
developing ARDS is effectively assessed by grading risk scores
to three degrees. It enables clinicians to immediately identify
patients at risk of ARDS.

Previously, a single-center retrospective study reported an
acute lung injury (ALI) prediction model called the Lung Injury
Prediction Score (LIPS) (24), and they developed a tool for
evaluating the risk of ALI and ARDS in a population-based
sample, which was validated in a multicenter study (16). Other
studies, which focused on surgical lung injury, developed two
scoring systems termed SLIP and SLIP-2 to predict the risk
of early postoperative ALI and ARDS in patients undergoing
elective surgery (17, 19). These studies supplied effective scoring
systems for clinical practice.

Several predictors and prediction models for predicting
the incidence of ARDS in patients with specific diseases or
injuries have been reported (18, 25, 26). For instance, Majid
et al. constructed a 3-variable model comprising total body
surface area percent, inhalation injury, and von Willebrand
factor-A2 to predict ARDS in patients with burn injuries,
with an AUC of 0.90. In addition, Ning et al. developed a
logistic model to predict the in-hospital incidence of ARDS
in patients with acute pancreatitis (26). In addition, other
studies reported the risk factors of ARDS in patients undergoing
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TABLE 2 Laboratory detections of patients in the development cohort and validation cohort.

Biomarkers Development cohort (n = 490) Validation cohort (n = 542) P-value

Hepatic function biomarkers*

APT ≤ 40 mAU/ml (yes/no) 162/328 (33.1%/66.9%) 164/378 (30.3%/69.7%) 0.333

TBIL

Pre-operation 13.4 [9.5, 17.6] 13.5 [10.3, 18.2] 0.124

Post-operation 27.5 [18.7, 39.5] 28.9 [21.0, 41.3] 0.057

ALT

Pre-operation 27.0 [19.0, 41.0] 26.0 [18.0, 40.0] 0.432

Post-operation 269.0 [148.0, 461.8] 244.0 [142.5, 461.8] 0.527

AST

Pre-operation 28.0 [21.0, 38.3] 27.0 [20.0, 38.0] 0.579

Post-operation 223.0 [131.8, 431.5] 225.0 [137.0, 415.5] 0.602

LDH

Pre-operation 172.0 [150.0, 203.5] 166.0 [146.0, 197.0] 0.030

Post-operation 362.0 [258.8, 523.5] 330.0 [248.0, 473.5] 0.021

ALB

Pre-operation 41.2 (4.3) 41.8 (4.0) 0.032

Post-operation 39.7 (5.9) 41.5 (6.1) 0.000

Renal function biomarkers

Cr

Pre-operation 75.1 (16.5) 74.0 (15.4) 0.282

Post-operation 75.1 (33.8) 69.4 (18.3) 0.001

BUN

Pre-operation 5.4 [4.3, 6.4] 5.2 [4.3, 6.1] 0.099

Post-operation 4.2 [3.3, 5.3] 3.9 [3.0, 4.9] 0.000

Inflammatory biomarkers

CRP

Pre-operation 2.5 [2.5, 5.0] 2.5 [2.5, 5.0] 0.017

Post-operation 25.7 [12.4, 53.6] 31.6 [17.8, 63.4] 0.000

WBC

Pre-operation 5.4 (2.6) 5.4 (2.1) 0.572

Post-operation 13.8 (5.2) 13.4 (9.3) 0.472

N %

Pre-operation 59.2 (9.8) 59.0 (10.9) 0.761

Post-operation 86.5 (6.3) 85.9 (7.9) 0.212

Others

Hb

Pre-operation 138.1 (20.2) 140.0 (17.8) 0.126

Post-operation 121.7 (23.7) 122.0 (20.6) 0.842

PLT

Pre-operation 155.7 (66.4) 158.9 (71.2) 0.456

Post-operation 141.6 (64.2) 140.4 (60.3) 0.766

(Continued)
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TABLE 2 (Continued)

Biomarkers Development cohort (n = 490) Validation cohort (n = 542) P-value

INR

Pre-operation 1.0 [1.0, 1.1] 1.0 [1.0, 1.1] 0.002

Post-operation 1.2 [1.1, 1.3] 1.2 [1.1, 1.3] 0.000

Variables are shown as “mean (SD),” “number (%),” or “median [25% quartile, 75% quartile].”
APT, abnormal prothrombin; TBIL, total bilirubin; ALT, alanine transaminase; AST, aspartate aminotransferase; LDH, lactate dehydrogenase; ALB, serum albumin; Cr, creatinine; BUN,
blood urea nitrogen; CRP, C-reactive protein; WBC, white blood cell; N %, neutrophil %; Hb, hemoglobin; PLT, platelet; INR, international normalized ratio.
*Laboratory detections within 24 h after surgery were acquired for post-operation time point.

FIGURE 1

Model construction and validation based on logistic regression. (A) The ROC analysis of the prediction model in the development and validation
cohorts. (B) The nomogram of prediction model based on the logistic regression in the development cohort.
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FIGURE 2

Model construction and validation based on LASSO regression. (A) The construction of prediction model based on the LASSO regression.
(B) The ROC analysis of the prediction model in the development and validation cohorts. (C) The nomogram of the prediction model based on
the LASSO regression in the development cohort.

Frontiers in Medicine 09 frontiersin.org

https://doi.org/10.3389/fmed.2022.1025764
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1025764 December 30, 2022 Time: 15:13 # 10

Wang et al. 10.3389/fmed.2022.1025764

FIGURE 3

Calibration curves for testing the stability of prediction models in the development and validation cohorts. (A) Calibration curves for the logistic
model. (B) Calibration curves for the LASSO model.

major surgery or extracorporeal membrane oxygenation (16, 18,
27–29). For instance, James et al. analyzed preoperative and
intraoperative predictors of postoperative ARDS in a general
surgical population (30). However, studies focusing on the
incidence and early prediction models of ARDS in hepatobiliary
surgery are scarce.

The logistic prediction model identified operation time,
postoperative AST, and postoperative Hb as the most crucial
predictors of ARDS. The operation duration reflects the
complexity of the operation, and a longer operation duration
usually means more trauma for the patients, as mentioned

in another study on ARDS prediction (18). Furthermore,
several studies found associations between liver function
biomarkers (TBIL, AST, ALB, and international normalized
ratio) and ARDS progression (31–33). Hypertension and portal
hypertension also contributed to the development of ARDS
based on the LASSO model (34, 35). It is possible to explain
how portal hypertension can lead to ARDS as it is mainly
caused by various forms of cirrhosis, which is closely associated
with liver function and may aggravate ascites formation and
hypoproteinemia. These predictors could be new biomarkers or
targets for ARDS.
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TABLE 3 Incidences of ARDS classified by risk scores in the
development cohort and validation cohort.

Degrees of risk score* Incidences of ARDS

Development
cohort

(n = 490)

Validation
cohort

(n = 542)

Logistic model:

Overall** −2.42 [−3.06,
−1.68]

−2.5 [−3.14,−1.81]

≤−2.15 (low-risk) 6/294 (2.0%) 8/357 (2.2%)

−2.15 to−1.15 (medium-risk) 18/134 (13.4%) 11/118 (9.3%)

≥−1.15 (high-risk) 19/62 (30.6%) 12/67 (17.9%)

LASSO model:

Overall** 0.22 [−0.23, 0.73] 0.19 [−0.23, 0.74]

≤0.40 (low-risk) 4/299 (1.3%) 6/339 (1.8%)

0.40 to 1.22 (medium-risk) 20/127 (15.7%) 12/139 (8.6%)

≥1.22 (high-risk) 19/64 (29.7%) 13/64 (20.3%)

*The cutoff of risk scores was determined by the ROC curves in the development
cohort. The lower bound was defined as the maximum of risk score when the
sensitivity ≥ 90%, and the upper bound was defined as the minimum of risk score when
the specificity ≥ 90%.
**The distribution of risk score was expressed as “median [25% quartile, 75% quartile].”

According to relevant studies, the incidence rate of ARDS
following cardiac surgery ranges from 0.4 to 8.1% (17, 28,
36). Daryl et al. reported a 2.6% (113/4,366) incidence of
ALI and ARDS in patients undergoing high-risk surgery, and
3.3% and 22% for patients undergoing spine surgery and high-
risk vascular surgery, respectively (17, 19). In our study, the
incidence of ARDS in patients undergoing hepatectomy was
7.2% (74/1,032), indicating a higher incidence rate of ARDS than
in other types of surgery. Therefore, more attention should be
paid to early prediction and prevention of ARDS development
in patients undergoing hepatectomy.

In our study, two alternative prediction models were
constructed, each with its own set of advantages. First, only
three predictors were included in the logistic prediction
model, making it easier and faster for clinicians to calculate
risk scores and identify patients at risk for ARDS. Second,
according to the AUC, the LASSO model with nine predictors
outperforms the logistic model in predicting ARDS, with an
AUC of 0.848 in the development cohort. However, predicting
ARDS is more difficult for clinicians and requires more data
from patients. Nevertheless, because only preoperative and
postoperative (within 24 h after surgery) factors were included
in the models, both models made it possible to early predict
postoperative ARDS, saving time for pre-treatment of patients
at high risk of ARDS.

There are some limitations to this study. First, due to the
retrospective design of this study, there is unavoidably potential
bias and confounding. Secondly, this is a single-center cohort,
and prediction models are only validated using internal data.

TABLE 4 Subgroup analysis of two prediction models for predicting
ARDS in the development cohort.

Subgroups Logistic model LASSO model

AUC 95% CI AUC 95% CI

Gender

Male 0.806 0.729–0.883 0.843 0.781–0.906

Female 0.774 0.653–0.895 0.867 0.776–0.958

Age

<60 years 0.835 0.765–0.905 0.887 0.833–0.941

≥60 years 0.776 0.674–0.879 0.809 0.722–0.897

TNM

I 0.799 0.684–0.913 0.854 0.767–0.941

II–IV 0.794 0.722–0.865 0.827 0.758–0.896

Smoking

Yes 0.787 0.682–0.892 0.820 0.716–0.924

No 0.817 0.737–0.897 0.863 0.804–0.922

Alcohol drinking

Yes 0.816 0.700–0.932 0.810 0.686–0.933

No 0.803 0.726–0.879 0.865 0.811–0.919

Cirrhosis

Yes 0.828 0.732–0.924 0.872 0.801–0.942

No 0.784 0.701–0.867 0.828 0.750–0.906

Hypertension

Yes 0.683 0.538–0.828 0.749 0.609–0.888

No 0.858 0.800–0.916 0.892 0.850–0.934

AUC, Area under the curve; CI, confidence interval; TNM, clinicopathological stage.

To compensate for this shortcoming, a 10-fold cross-validation
method was employed to validate the robustness and accuracy
of models simultaneously. Further studies are warranted to
validate the results in more centers.

Conclusion

In conclusion, we reported the incidence of ARDS in
hepatobiliary surgery and developed two simple and practical
prediction models for predicting postoperative ARDS in
patients undergoing hepatectomy. These tools may improve
clinicians’ ability to early estimate the risk of postoperative
ARDS and timely prevent its emergence.
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