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Inflammatory bowel disease (IBD) is a chronic non-specific inflammatory

disease that occurs in the intestinal tract. It is mainly divided into two

subtypes, i.e., the Crohn’s disease (CD) and ulcerative colitis (UC). At present,

its pathogenesis has not been fully elucidated, but it has been generally

believed that the environment, immune disorders, genetic susceptibility, and

intestinal microbes are the main factors for the disease pathogenesis. With the

development of the sequencing technology, microbial factors have received

more and more attention. The gut microbiota is in a state of precise balance

with the host, in which the host immune system is tolerant to immunogenic

antigens produced by gut commensal microbes. In IBD patients, changes in

the balance between pathogenic microorganisms and commensal microbes

lead to changes in the composition and diversity of gut microbes, and the

balance between microorganisms and the host would be disrupted. This

new state is defined as dysbiosis. It has been confirmed, in both clinical and

experimental settings, that dysbiosis plays an important role in the occurrence

and development of IBD, but the causal relationship between dysbiosis and

inflammation has not been elucidated. On the other hand, as a classic research

method for pathogen identification, the Koch’s postulates sets the standard for

verifying the role of pathogens in disease. With the further acknowledgment of

the disease pathogenesis, it is realized that the traditional Koch’s postulates is

not applicable to the etiology research (determination) of infectious diseases.

Thus, many researchers have carried out more comprehensive and complex

elaboration of Koch’s postulates to help people better understand and explain

disease pathogenesis through the improved Koch’s postulates. Therefore,
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focusing on the new perspective of the improved Koch’s postulates is of

great significance for deeply understanding the relationship between dysbiosis

and IBD. This article has reviewed the studies on dysbiosis in IBD, the use of

microbial agents in the treatment of IBD, and their relationship to the modified

Koch’s postulates.

KEYWORDS

Koch’s postulates, inflammatory bowel disease, dysbiosis, microbial treatment, gut
microbiome

Introduction

Inflammatory bowel disease (IBD) is a chronic non-
specific inflammatory disease that occurs in the intestinal
tract. Patients with IBD often present with abdominal pain,
diarrhea, fever, nutritional disorders, and weight loss, as well
as other recurrent clinical symptoms. IBD is divided into
two subtypes, i.e., the Crohn’s disease (CD) and ulcerative
colitis (UC). The difference between UC and CD lies in that
the UC lesions mainly involve the colon, and the lesions
are limited to the superficial part of the large intestine
and have a continuous distribution; while CD involves all
segments of the digestive tract, mainly in the terminal
ileum and adjacent colon (1). IBD patients also have many
extra-intestinal manifestations and complications, such as
peripheral arthropathy, erythema nodosum, primary sclerosing
cholangitis, nephrolithiasis, peripheral neuritis, and anemia. It
has the characteristics of systemic diseases (2). The incidence
of IBD is higher in western countries, which might be related
to urbanization, industrialization, and adjustment of dietary
structure. In recent years, globalization has led to rapid
economic development of emerging industrial countries such
as China. With the society modernization, the incidence of
IBD has increased. The incidence of IBD has risen sharply
(3), although its incidence is still significantly different in
different countries and regions. However, with the passage
of time, the incidence of IBD has shown an upward trend
in different regions, making IBD gradually known as a
global public health problem (4). The pathogenesis of IBD
has not yet been elucidated (3). Currently, it is believed
that the environment (5), immune disorders (6, 7), genetic
susceptibility (8), and gut microbes (9) represent the main
factors for the disease pathogenesis. A chronic inflammatory
state would result from disruption of the homeostasis between
the microbiota, intestinal epithelial cells, and immune cells by
genetic and environmental factors (e.g., antibiotics, smoking,
and diet) (10).

With the development of the new-generation sequencing
technologies and the gut microbiome macrogenomics

programs, gut dysbiosis has been better understood.
Studies have found that gut dysbiosis can cause and/or
modulate most of the major pathogenic causes of IBD,
such as the impaired intestinal epithelial cell function,
impaired recognition of pathogenic bacteria, and abnormal
innate immune responses (11, 12). Therefore, the gut
microbiome has received more attention in recent years. It
is currently believed that the dysbiosis is not only one of the
pathogenic factors of IBD, but also may be the central factor of
multifactorial pathogenesis.

The traditional Koch’s postulates (one pathogen, one
disease) requires the pathogen to meet the following criteria:
(1) the microorganism must be present in all disease cases
and not in healthy individuals; (2) the microorganism can
be isolated in patients and be purified in the culture
medium; (3) the pure cultured microorganism can inoculate
a healthy susceptible host, which can lead to the recurrence
of the disease; and (4) the microorganism can be isolated
and cultured again in the test diseased host (Figure 1).
The Koch’s postulates provides a standard for proving the
role of organisms in disease. However, with the deepened
understanding of diseases, the traditional Koch’s postulates
has been unable to meet the etiological assumptions of
some microorganisms and/or diseases. Therefore, the Koch’s
postulates needs to be improved and modified. Dysbiosis
is an ecosystem state that includes diverse microbes and
their complex interactions, although many experiments suggest
that individual microbes may play important roles in the
immune regulation. However, it is currently believed that the
gut microbiota dysregulation as a whole plays a key role
in the persistent inflammatory response of chronic diseases
(13, 14). Therefore, for such a complex group of pathogens,
the classical Koch’s postulates might not be comprehensive
enough. Through two improved Koch’s postulates, namely,
the ecological and symbiotic Koch’s postulates, the dysbiosis
and the onset of IBD and the re-establishment of the balance
state would be linked with the disease remission. The etiology,
pathogenesis, and improvement of the treatment plan have
important guiding significance.
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FIGURE 1

Traditional Koch’s postulates. The microorganism must be
present in every case of the disease and can be isolated from
the diseased host. After cultured in the laboratory, the
microorganism can cause the same disease when introduced
into a new host.

Gut microflora and inflammatory
bowel disease

Symbiotic microflora

There are about 100 trillion microorganisms in the human
gastrointestinal tract, including bacteria, viruses, fungi, archaea,
and protists (15). The genetic catalog of the gut microbiome
shows that more than 99% of them are bacteria (16). The
diversity of bacteria increases from 15,000 to 36,000 species
according to the rRNA sequence analysis (17). The concept of
enterotype in terms of gut microflora has been proposed in
recent studies, which identifies three enterotypes: Bacteroides
enterotypes, Privobacterium enterotypes, and Ruminococcus
enterotypes. All of these samples are pooled around the
three enterotypes based on their propensity to make up the
community, and the three enterotypes could be varied by the
level of one of Bacteroidetes, Privotella, and Ruminococcus.
Mutual identification and no correlation between enterotypes
and distinct phenotypic characteristics (such as gender,
age, race, and country) suggest that changes in the gut
microbiome are stratified rather than being continuous (18).
Most of the bacteria found in the adult gut belong to
the genera Bacteroides, Parabacteroides, and Clostridium
(19, 20). The human gut microbiota has co-evolved with
the host through a symbiotic relationship. A healthy gut
microbiota is important for nutrient uptake of the host,

and the immune-microbiota pathway is associated with the
maintenance of the homeostasis between mammalian feeding
and weight (21). Commensal microbes play an important
role in the development and maturation of the immune
system (22). Gut microbes are also associated with diurnal
fluctuations in host circadian transcription, physiology, and
disease susceptibility (23). The microflora maintains the
homeostasis of host physiology by competing with potential
pathogens for nutrient sites, producing antimicrobial factors,
and imposing colonization resistance to prevent the growth of
potential pathogens.

Dysbiosis in inflammatory bowel
disease patients

The gut microbiome of healthy individuals is highly
individualized (16, 19, 24). Although the microbiota differs
in healthy individuals, this variation remains at the level of
health plane (HP), whereas the microbiota in IBD patients
fluctuates. Therefore, compared with healthy people, the gut
microflora of IBD patients is in a state of dysregulation (25,
26), which is manifested by changes in the composition,
diversity and stability of the microbiota (26–28). Beneficial or
commensal bacteria (such as Bacteroidetes, Firmicutes, and
Actinobacteria) are reduced in IBD patients, accompanied
by increases in pathogenic species (such as Proteobacteria)
(29, 30). The ratio of potentially pathogenic microbes to
beneficial commensal microbes appears to play a key role in
the disease development (31). Studies have shown that IBD
patients have a substantial reduction in the gut Bifidobacterium
and Lactobacillus (32), which are immunomodulatory bacteria.
Bifidobacteria reduce intestinal pH by fermenting lactic acid,
thereby preventing the colonization of pathogenic Escherichia
coli (33, 34), while certain potentially pathogenic organisms
(such as Klebsiella, Enterobacter, Proteus, and fungi) are
increased in IBD patients (35). Certain E. coli genera, such
as adherent-invasive E. coli and diffuse-adherent E. coli, have
elevated proportions in patients with IBD, and patients with
active CD have a greater proportion of adherent-invasive
E. coli than controls (36), while most of the E. coli isolated
from the feces of UC patients are diffuse-adherent E. coli
(37). Studies have shown that intestinal flora imbalance is
often related to the weakening of intestinal mucosal barrier
function and the activation of inflammatory cells (38). Dysbiosis
would change the proteome in the host, and affect the
mitochondrial function, resulting in a pro-inflammatory state
(39). In healthy individuals, the intestinal barrier consists of
an intact layer of epithelial cells that are tightly connected
by the claudin protein family, and the intestinal epithelial
cells create a mucosal barrier that allows the microflora
to interact with the host immune cell sequestration, thus
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reducing intestinal permeability. In patients with active CD,
claudin-2 is upregulated, while claudin-5 and claudin-8 are
downregulated and redistributed, resulting in a discontinuous
state of tight junctions between epithelial cells (40, 41). Due
to the existence of dysregulation, individuals have a greatly
increased likelihood of opportunistic infection, resulting in
low-grade inflammation of the mucosa, followed by increased
intestinal permeability, ultimately leading to the so-called
permeable gut (42, 43), i.e., the impaired intestinal barrier
function. This would create a vicious circle, where intestinal
barrier impairment will exacerbate intestinal inflammation and
changes in the composition of the gut microbiome, eventually
leading to systemic inflammation (44). Single-chain fatty acids
(SCFAs), the most abundant microbial metabolites in the gut
lumen, have been considered to be potential mediators of
gut microbiota affecting gut immune function, which can
regulate the expression of pro-inflammatory factors such as
interleukin 6 (IL-6), IL-12, and tumor necrosis factor alpha
by activating macrophages and dendritic cells, and thereby
cause an anti-inflammatory effect of the immune system
(45, 46). Under intestinal homeostatic conditions, peroxisome
proliferator-activated receptor-γ (PPAR-γ), a nuclear receptor
mainly synthesized in intestinal epithelial cells, is activated
by butyrate. PPAR-γ promotes mitochondrial β-oxidation
and oxidative phosphorylation of single-chain fatty acids in
colonocytes to maintain a local hypoxic microenvironment. The
obligate anaerobic SCFA-producing bacteria grow vigorously
in such an environment. The colonization and growth of
facultative anaerobic enteric pathogens are inhibited, and
the facultative anaerobic Enterobacteriaceae are significantly
increased when the intestinal microbiota is disturbed (47),
leading to impaired anti-inflammatory effects of the host
intestinal immune system. Experiments have found that wild
mice co-bred with NOD2 gene-deficient mice have increased
expression of apoptosis, necrosis, and oncogenes in their
offspring, and the inflammation caused by chemically induced
colitis would be more severe (48). At the same time, Torres et al.
(49) have found that during pregnancy, pregnant women with
IBD still have IBD-related microbial imbalances in the gut, and
changed diversity and richness of bacteria in the neonatal gut.
Neonatal dysbiosis microflora transplanted into germ-free mice
would elicit abnormalities in the mouse gut immune system.
This suggests that susceptibility to intestinal inflammatory
disease may be due to the inheritance of a dysregulated
microbiota that not only sensitizes the intestinal mucosa to
chemical damage, but also triggers immune abnormalities in
the gut. Impaired intestinal epithelial function, dysfunctional
recognition of pathogens, and abnormal immune responses
that accompany dysbiosis, would severely reduce intestinal
resistance to pathogenic microbial colonization. The microbiota
associated with IBD is rich in pathogenic bacteria. It is
synergistic with pathogens in the process of exacerbating
pathological reactions (50).

Dysbiosis and ecological Koch’s
postulates

Ecological Koch’s postulates (one gut ecosystem state,
one disease): (1) an unbalanced microbiota with similar
composition/characteristics would be found in all affected
individuals; (2) an unbalanced microbiota can be obtained
from a diseased host; (3) putting the obtained imbalanced
flora into a sterile host and putting the host in a similar
environment, and the host would produce similar symptoms;
and (4) in a newly invaded host, the composition of the
dysregulated microflora remains relatively stable (Figure 2)
(51). Compared to the disease caused by a single pathogen,
Koch’s postulates of ecology emphasizes the overall role of
the microflora. The role of gut microflora dysbiosis in the
pathogenesis of IBD has been investigated using the ecological
Koch’s postulates. Just as the relationship between H. pylori and
gastric ulcers satisfies the classical Koch’s postulates (52), this
imbalance can be extracted to lead to the disease recurrence
in healthy individuals. Experimental studies using mouse
models of single bacteria related to IBD, such as E. coli,
fecal E. coli, Bacteroidetes, etc., have shown that a single
bacteria as a pathogen can induce chronic inflammation in
susceptible hosts (53–55). However, a single bacterium does
not reflect the complexity and interindividual variability of
the gastrointestinal microflora. By combining seven human
IBD-associated gut bacteria, a simplified bacterial consortium,
SIHUMI, has been obtained. Eun et al. (56) have successfully
colonized SIHUMI in experimental mice and have found
that SIHUMI induces colitis in mice, in an antigen-specific
manner. But this consortium is still too simplistic compared
to the IBD microflora. Studies have reported that obesity-
related metabolic phenotypes in humans can be transferred to
recipient mice by microbiota transplantation (57). This suggests
that the transfer of microflora can trigger related diseases,
which provides ideas for IBD-related microflora transplantation
experiments. Reinoso et al. (58) have shown that colonization
of the microbiota transfer susceptibility to colitis in mice by
means of fecal microbiota transplantation (FMT), making the
incidence and severity of chronic colitis in recipients less than
in donors. Schaubeck et al. (59) have reported that compared
with experimental mice, germ-free mice do not develop CD-
like ileitis, suggesting that the microbiota would be necessary
for the development of intestinal inflammation. In addition, in
this study, the disease-related dysbiosis flora is isolated from the
cecum of the experimental mice, and the isolated disease-related
dysbiosis flora of the cecum is introduced into the germ-free
environment genetically susceptible mice, resulting in the latter
CD-like gyrus, and occurrence of enteritis. It has been shown
that CD-like ileitis can be transmitted through the dysbiosis of
the microbiota, that is, the whole of microbiological dysbiosis
as a pathogenic factor conforms to the second and third items
of the Koch’s postulates. Subsequently, the cecal bacteria of the
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FIGURE 2

Ecological Koch’s postulates. By sequencing healthy individuals and diseased patients, it has been found that their microflora are different.
Dysbiosis of microflora can be obtained from the diseased patients. The dysbiosis of microflora can cause the same disease when introduced
into a healthy host. The dysbiosis of microflora can be detected from the diseased hosts.

recipient mice are subjected to the high-throughput sequencing
analysis, and it has been shown to be consistent with the donor
flora composition. The dysregulated flora is isolated again in
the newly pathogenic mice, which is in line with the fourth
item of the Koch’s postulate. The results herein prove for the
first time that there is a causal relationship between the disease-
related flora imbalance and the occurrence of CD-like ileitis
in the experimental state (59). These findings provide evidence
and ideas for microbiological dysbiosis as a central factor in the
pathogenesis of IBD.

Based on the experimental results of ecological Koch’s
postulates above, we make a similar analogy, i.e., if the
microecological imbalance can lead to the occurrence of IBD,
then when we restore the balance of the microflora, the
remission or even disappearance of the disease state would
occur. In recent years, experimental advances to assess the
therapeutic potential of the gut microbiota in the treatment of
IBD support the hypothesis that host microbiota balance can be
reconstituted, which would elicit clinical remission in IBD by
administration of appropriate microbes.

Microbial therapeutic strategies
for inflammatory bowel disease

Antibiotics

Experiments have shown that the application of antibiotics
can induce remission in the acute phase of IBD and prevent
the recurrence of clinical symptoms in IBD patients (60–63).
Antibiotics can improve the microbial environment of IBD
patients by reducing pro-inflammatory bacteria and increasing
beneficial bacteria in the intestinal lumen of IBD patients (64).
A meta-analysis has been performed on the role of antibiotics
in the treatment of IBD, and consistent results have been found.
The first report has suggested that antibiotics may be beneficial
for the relief of clinical symptoms in UC and CD, and the second
report supports that antibiotics can improve clinical outcomes
in IBD (65, 66). Clinical trials have shown that the combined
application of antibiotics is more effective in the treatment of
IBD, such as OTICS (metronidazole, amoxicillin, doxycycline,
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and vancomycin) combination therapy in the clinical treatment
of moderate to severe refractory ulcerative colitis in children,
and satisfactory results have been obtained in the process
(67). In addition, there are data showing that metronidazole,
when used in combination with azithromycin, is effective in
inducing remission in pediatric CD (68). Meanwhile, antibiotics
application can adversely affect the gut microflora, and short-
term use of antibiotics will lead to a decrease in antibiotic-
sensitive bacteria, a decrease in the overall diversity of the flora,
and an increase in the possibility of colonization by naturally
resistant bacteria (69, 70).

Prebiotics and probiotics

Prebiotics are non-digestible carbohydrates that are
selectively fermented by gut bacteria and promote their activity,
resulting in beneficial effects on the host (71). Prebiotics
have established an important position in the treatment of
IBD by selectively stimulating the growth of commensal
microorganisms in the gut microflora and increasing the
production of SCFAs, as highlighted in a recent meta-analysis.
Beneficial effects in rats with TNBS-induced colitis include
increased growth of Lactobacillus and Bifidobacterium,
increased production of SCFAs, reduction of colon macroscopic
lesions, and regression of inflammatory markers (72, 73).
Probiotics are defined as live microorganisms that, when
ingested in sufficient amounts, are beneficial to the health
of the host. Common probiotics include Lactobacillus,
Bifidobacterium, and Boula. In the treatment of IBD, the
potential beneficial effects of probiotics include: (1) inhibition
of pathogen invasion; (2) improvement of epithelial barrier
function; and (3) immunomodulation (74). Clinical trials
have shown that the mixed use of lactobacillus and VSL#3
(probiotic combination) shows high efficacy in the treatment
of children with IBD, and VSL#3 can also effectively induce
remission of active UC. Probiotics seem to be a safe alternative
to 5-aminosalicylate as an effective agent for maintaining low
activity of biologics in IBD (75, 76). However, to date, the ability
to understand and monitor the microbiome in IBD is limited,
and clinical trials related to probiotics have not been rationally
designed to correct the microbial dysbiosis that may lead to
IBD. Therefore, any findings of treatment effects should all be
accidental. According to the modern microbial pathogenesis
model of inflammatory bowel disease, it is necessary to apply
macrogenome sequencing technology to identify specific strains
with biologically credible efficacy in IBD, and to design further
experiments to study targeted and specific probiotics.

Fecal microbiota transplantation

Fecal microbiota transplantation is a treatment that injects
the fecal microflora of a healthy donor into the recipient’s gut.

Initially, FMT has been used as a clinical treatment method
for the Clostridium difficile recurrent infection (CDI). In a
landmark article, the first randomized controlled trial of FMT in
the treatment of CDI has been published, and the results show
that 81% of patients recover after FMT has been administered
through a nasoduodenal tube, while the curing rate in the
control group is lower than 31% (77). Thereafter, numerous
experiments have demonstrated the role of FMT in the
treatment of CDI, and it has been identified as a highly effective
therapy for CDI (78), with the curing rate of as high as 97%
(79). The application of FMT in CDI patients aims to restore
the homeostasis of the patient’s gut microflora, and unlike
treatments such as antibiotics and immunosuppressants, FMT
significantly increases the number and diversity of recipient
fecal bacterial populations. The longer engraftment period of
bacterial populations (80, 81) would lead to further assumptions
to evaluate the effectiveness of FMT in the treatment of other
types of diseases in which dysbiosis is a major pathogenic factor
affecting disease progression. Therefore, FMT has been expected
to be a potentially promising treatment for IBD. Results of a
double-blinded, randomized, and placebo-controlled trial in 81
subjects have shown that the application of high-dose, multi-
donor FMT increases the microbial diversity of the experimental
group, which persists and is effective in inducing activity clinical
remission of stage UC (82). Another experiment, by randomly
dividing the subjects into the experimental group (50 ml FMT
enema from healthy donors) and control group (placebo, 50 ml
water enema), conducts a randomized controlled trial, and
the results show that compared with the control group, the
experimental patients achieve stable primary efficacy indicators
(Mayo score ≤ 2 and endoscopic Mayo score of 0), with
no difference in adverse reactions between these two groups.
The fecal microbial diversity of patients receiving FMT is
significantly higher than the placebo group (p = 0.02, Mann–
Whitney U test) (83). These findings show that FMT can be
used as an effective clinical treatment for UC. An interesting
phenomenon has been observed in the second group of
experiments. The feces of one of the six donors induce UC
remission in 39% of the experimental group patients, suggesting
that FMT therapy may have a donor-receiver compatibility
effect in IBD (83). Fang et al. (84) have conducted a meta-
analysis of the therapeutic effect of FMT in IBD, and their
findings confirm the effectiveness of FMT in the treatment of
IBD patients. In addition, their findings suggest that the use of
fresh or frozen donor stool, different routes of administration,
and factors such as whether there is a history of antibiotic
use, have no effects on the efficacy of FMT in the treatment
of IBD patients. This suggests that FMT may be a potential
rescue therapy for the treatment of acute exacerbations of
IBD, or even as an initial standard treatment regimen. He
et al. (85) investigated the microbiome changes before and
after FMT in IBD patients. In their study, 3–5 Units of fresh
fecal bacteria (1 U = 1 × 1013 cells) in suspension (1 U
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with 20 ml saline) was delivered to patient’s gut. They found
that, after FMT, the diversity of the gut microbiota increased
significantly in recipients, and approximated the level of healthy
donors, indicating the ability of FMT to improve the diversity
of disturbed microbiota. Moreover, the relative abundance of
the dominant bacteria in recipients after FMT decreased toward
the level of the donor, which illustrated the modulating effect
of FMT on microbial community structure. In addition, the
authors classified the gut bacteria in recipients after FMT into
two categories, residents and colonizers. The residents were
abundant in patients before FMT, and the colonizers were
relatively absent in patients before FMT but newly acquired
from donors. Then, they defined the ratio of colonizers to
residents after FMT as C2R and found that C2R was significantly
elevated in the FMT response group compared to the failure
group, suggesting the successful colonization of more bacteria
from the donor in the gut of the recipients. These results
imply the importance of diversity changes before and after
FMT and bacterial colonization in IBD patients, which was
also find in CDI patients who are also characterized by gut
dysbiosis (85).

In all studies, short-term use of FMT appears to be effective
and safe, with most adverse effects being mild, self-limiting,
and gastrointestinal (86). In theory, however, FMT therapy
involves the introduction of an unspecified suspension of
active microbiota that may cause bacterial-related diseases.
Therefore, the main limitation of FMT is the long-term effect
and safety issues (87, 88). The most common adverse reaction
is abdominal pain, and even serious adverse reactions such
as IBD recurrence, serious infection, or death may occur
(87). The current treatment of IBD-related FMT is still in
its infancy, and IBD is a complex disease involving multiple
factors. Numerous results suggest that when combined with
microbial profiling of donors and recipients, FMT may be an
effective treatment and a powerful research tool, which will
aid in the establishment of patient classification criteria and
the development of personalized microbial therapy program.
According to the latest ECCO guidelines, FMT is very promising
for the treatment of active UC, and meanwhile, more researches
(route of administration, donor characteristics, and frequency
and duration of treatment) are needed to determine the
optimal treatment of IBD protocol to improve the efficacy and
safety of FMT in the disease treatment (89). In this section,
we summarized some of the existing microbial therapeutic
strategies in IBD patients, and the detailed study characteristics
are provided in Table 1.

Microbial therapeutic strategies and
commensal Koch’s postulates

Koch’s postulates of symbiotic microorganisms (one
beneficial microorganism, one improvement in disease state):

(1) commensal strains are associated with host health and are
regularly found in healthy hosts but less frequently in diseased
hosts; (2) the symbiotic bacteria can be isolated as cultures
and grown in the laboratory; (3) when the symbiotic strain
is introduced into a new host, it can ameliorate or alleviate
symptoms; and (4) when the symbiotic strain is introduced
into a restored host, this symbiotic strain would be detected
(Figure 3) (90). The symbiotic microorganism rule is used
to supplement the symbiotic microorganisms of IBD patients
to restore the balance of the intestinal microflora, so as to
achieve the improvement of the disease state or the remission
of clinical symptoms, considering the role of dysbiosis in
the pathogenesis of IBD with reverse thinking. It has been
reported that two species of Lactobacillus and Bifidobacterium
play important physiological functions in healthy individuals
(33, 34, 91), while their numbers are significantly reduced
in IBD patients (32). Some researchers have isolated two
genera Lactobacillus and Bifidobacterium from the feces of
healthy mice, and the isolated genera have been cultured, and
identified by the Gram’s method. The cultured genera can
tolerate simulated gastrointestinal conditions. The two types
of bacteria are combined, and called Personalized Probiotic
Mix (PP). The experiment has used Dextran Sulfate Sodium
Salt to induce colitis mouse model for control experiments.
Mice with DDS-induced colitis orally administered PP have
less weight loss, lower disease activity index, and fewer clinical
signs of disease (hunched back, less movement, and stray hair)
compared to controls. In addition, PP can more effectively
modulate the host immune response, reduce the expression of
pro-inflammatory factors (IL-1β and IL-6), and increase the
expression of anti-inflammatory factors (TGF-β and IL-10) (92).
The genus Bacteroides has important physiological functions
in the gut microflora of healthy individuals, whereas patients
with IBD have a reduced number of commensal anaerobic
bacteria, including members of the genus Bacteroides. Delday
et al. (93) have evaluated the effect of Bacteroides polymorpha,
an important component of the Bacteroides genus, on colitis
using DDS-induced and IL-10 knockout IBD mouse models,
respectively. In the DDS model experiment, compared with
the control group (gavage with DDS alone), rats received
with gavage of Bacteroides polymorpha showed significant
improvement in weight loss, with significantly lower levels
of colon histopathological scores and inflammation-related
genes (such as IL-6 and IL-1b). The expression of tumor
necrosis factor alpha is significantly downregulated. In the
IL-10 knockout model, compared with the control group
(receiving culture medium alone), the rats in the experimental
group had significantly increased body weight, and lower
histopathological scores, while macroscopically, colonic
edema and tissue destruction were extensive. Inflammatory
infiltration was significantly improved, and the expression
levels of pro-inflammatory genes (such as Arg1, I-L6, Ccl3,
Spp1, and I-L1a) were significantly decreased (93). This
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TABLE 1 The relationship between different aspects of microbial therapies.

Microbial
therapy

Model Intervention strategy Results References Beneficial effects Deficiency

Antibiotics Human Ciprofloxacin 500 mg, orally twice daily
for 6 month

Experiment group has a significantly lower
disease activity scores than placebo group

George et al. (60) Pathobiont killing;
population expansion of
beneficial microorganisms

Inability to selectively
eliminate pathobiont without
potentially affecting normal
microorganisms

Human Oral amoxicillin, tetracycline, and
metronidazole for 2 weeks

63.3% of steroid refractory and 73.4% of
steroid dependent patients showed a
clinical response within 2 weeks

Kato et al. (61)

Human Oral 800 mg of rifaximin twice a day for
12 weeks were compared with those from
patients who received placebo

All the patients in experiment group were
in remission after 12 weeks of treatment in
comparison with 84% (70/83) of the
placebo group, and the difference was also
persistent at the 24-week follow-up

Jigaranu et al.
(62)

Human Metronidazole (0.6 g/d) for 12 month Metronidazole was useful in the
maintenance of remission in patients with
UC

Gilat et al. (63)

Meta-analysis / Antibiotics was beneficial for the relief of
clinical symptoms in UC and CD

Khan et al. (65)

Meta-analysis / Antibiotics can improve clinical outcomes
in IBD

Wang et al. (66)

Human Antibiotic cocktail [amoxicillin 50 mg/kg
divided by 3 (up to 500 mg X3/d),
metronidazole 5 mg/kg X3/d (up to
250 mg X3/d), and doxycycline 2 mg/kg
X2/d (up to 100 mg X2/d)] for 3 weeks

Wide-spectrum antibiotic cocktail in
Pediatric UC seems promising outcome in
half of patients

Turner et al. (67)

Human Azithromycin 7.5–10 mg/kg day up to a
maximal dose of 500 mg, once daily, for
five consecutive days per week for 4 weeks,
and three times a week for the following
4 weeks in conjunction with
metronidazole 15–20 mg/kg/day in two
divided doses, given daily for 8 weeks

Azithromycin and metronidazole therapy
may be effective in inducing clinical
remission in mild-moderate luminal CD
in children and young adults

Levine et al. (68)

Prebiotics and
probiotics

Rats Administration of combination of FOS
and resistant starch (37.5% FOS and 62.5%
resistant starch) (2 g/rat/day) for 3 weeks

Increasing lactobacilli and bifidobacteria,
improving the intestinal barrier function

Maria et al. (72) Increasing population of
beneficial microorganisms
(such as Bifidobacterium and
Lactobacillus) preventing the
colonization of pathobiont
(such as E. coli)

Limited effects on the overall
composition of the
microbiome as the inability
to monitor the microbiome
in IBD patients

(Continued)
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TABLE 1 (Continued)

Microbial
therapy

Model Intervention strategy Results References Beneficial effects Deficiency

Rats Administration of KOS (1.0 and
4.0 g/kg/day) for 2 weeks

Increased production of SCFAs, reduction
of colon macroscopic lesions, and
regression of inflammatory markers

Liu et al. (73)

Human VSL#3 (probiotic combination) oral
administration twice daily for 90 days

VSL#3 has anti-inflammatory effects and
could reduce endoscopic recurrence after
surgery for Crohn’s Disease

Fedorak et al.
(75)

Human VSL#3 (probiotic combination) oral
administration twice daily for 6 weeks

Effectively induce remission of active UC Bibiloni et al.
(76)

FMT Human 50 ml FMT or placebo consisting of 50 ml
water given as a retention enema once
weekly for 6 weeks

Stool from patients receiving FMT had
greater microbial diversity, compared with
baseline, than that of patients given the
placebo

Moayyedi et al.
(83)

Restoring microbial diversity;
population expansion of
beneficial microorganisms

long-term effects and safety
issues (side effect such as
abdominal pain, severe
infection, etc.)

Human 3–5 Units of fresh fecal bacteria (1
U= 1× 1013 cells) in suspension (1 U
with 20 ml saline) was delivered through
one of the three delivery ways: endoscopic,
nasojejunal tube, or transendoscopic
enteral tubing, Patients were assessed at
the point of baseline, day 3, week 4, week
12, and every 3 months after each FMT

Diversity of the patient’s gut microbiota
increased significantly in recipients, and
approximated the level of healthy donors

He et al. (85)

Meta-analysis / FMT is an effective and safe therapy for
both pediatric and adult IBD; fresh or
frozen donor stool, delivery route, and
antibiotic pretreatment or not have no
impact on the efficacy of FMT in IBD

Fang et al. (84)
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FIGURE 3

Commensal Koch’s postulates. Detection of health-related
specific beneficial commensal microorganisms by sequencing in
healthy individuals and inflammatory bowel disease (IBD)
patients. The beneficial commensal organism can be isolated
and cultured in the laboratory. Then the organism can prevent
or mitigate disease when it is re-introduced to IBD hosts. The
commensal organism can be detected and re-isolated from
healthy recovered hosts.

suggests that the microbiota transplantation of healthy
individuals can restore the balance of intestinal microflora by
supplementing the commensal microbiota, destabilizing the
antibacterial flora, and reducing the inflammatory response of
the intestinal tract, which is in line with the first three items
of the Koch’s postulates of commensal microbes. However,
further researches are still needed to complement the existing
experiments.

Summary and outlook

Human microbial macrogenomic DNA sequencing has
revealed the diversity and complexity of the composition of the
human gut microbiota, which is essentially a highly complex
community almost indistinguishable from other ecological
communities in the natural environment. As hosts, humans
coexist and co-evolve with the gut microbiota, maintaining
a delicate balance. The stability of the host-gut microbial

ecosystem plays a crucial role in human health. In IBD patients,
the delicate host-microbiota balance has been disrupted,
with significantly altered composition of the gut microbiota,
reduced diversity, and altered ratios of pathogenic microbes
to symbiotic microbes, resulting in microbiota dysbiosis. This
dysbiosis will not only lead to changes in the metabolic
pathways of related microorganisms, but also be associated
with abnormal immune responses, weakened intestinal barrier
function, and genetic susceptibility to diseases. However, the
causal relationship of gut microbiota dysbiosis and IBD has
not been fully elucidated. Meanwhile, with the progress of
research on the role of dysbiosis in the occurrence and
development of IBD, the therapeutic effect of microbial
preparations in IBD has gradually been paid attention to,
and it is considered to be an effective and promising
method for the treatment of IBD. Antibiotics, prebiotics,
probiotics, and FMT have made encouraging progresses
in the treatment of IBD. However, the optimal treatment
strategies regarding the optimization of the administration
route, treatment time and frequency, and, appropriate strain
selection, as well as reducing adverse reactions, still face
significant challenges.

Nowadays, the era of whole-genome sequencing has been
coming, and further revisions to disease causality guidelines are
necessary, especially for the complex diseases such as IBD, where
the Koch’s postulates needs to be extended to accommodate
polymicrobial triggers. The modified Koch’s postulates is still
valuable in proving causality. This article utilizes two extended
Koch’s postulates, by reviewing some experimental results,
from forward (ecological Koch’s postulates, i.e., the microbial
dysbiosis can transmit disease) and reverse (symbiotic microbial
Koch’s postulates, i.e., improving dysregulation to re-establish
balance can alleviate the disease) directions, expounding the
important position of dysbiosis in the pathogenesis of IBD.
The current challenge is that the existing experiments do
not meet the full conditions of the rule and need to be
supplemented by further researches. Meanwhile, given the
recent understanding of microbial populations, we should
consider them in the broader context of system and etiology
of disease, including the host’s genetic susceptibility, abnormal
immune response, health status, and microflora. With the
advancement of genome sequencing technology and the
identification of new host-microbe interaction mechanisms,
we need to further expand and supplement the Koch’s
postulates to meet its application in non-infectious and
complex modern diseases. By linking the modern Koch’s
postulates to the microbiome, it is expected not only to reveal
the potential causal relationship between microbial dysbiosis
and IBD, but also to guide the development of optimized
microbial preparations to provide more effective treatment
for IBD patients.
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