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Background: Acute kidney injury is a common renal disease with high

incidence and mortality. Early identification of high-risk acute renal injury

patients following renal transplant could improve their prognosis, however,

no biomarker exists for early detection.

Methods: The GSE139061 dataset was used to identify hub genes in 86

DEGs between acute kidney injury and control samples using three machine

learning algorithms (LASSO, random forest, and support vector machine-

recursive feature elimination). We used GSEA to identify the related signal

pathways of six hub genes. Finally, we validated these potential biomarkers

in an in vitro hypoxia/ reoxygenation injury cell model using RT-qPCR.

Results: Six hub genes (MDFI, EHBP1L1, FBXW4, MDM4, RALYL, and ESM1)

were identified as potentially predictive of an acute kidney injury. The

expression of ESM1 and RALYL were markedly increased in control samples,

while EHBP1L1, FBXW4, MDFI, and MDM4 were markedly increased in acute

kidney injury samples.

Conclusion: We screened six hub genes related to acute kidney injury

using three machine learning algorithms and identified genes with potential

diagnostic utility. The hub genes identified in this study might play a significant

role in the pathophysiology and progression of AKI. As such, they might be

useful for the early diagnosis of AKI and provide the possibility of improving

the prognosis of AKI patients.

KEYWORDS

acute kidney injury, kidney transplantation, ischemia-reperfusion injury, machine
learning algorithms, RNA-seq, disease biomarker

Frontiers in Medicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2022.1016459
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2022.1016459&domain=pdf&date_stamp=2022-10-13
https://doi.org/10.3389/fmed.2022.1016459
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2022.1016459/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-1016459 October 7, 2022 Time: 14:14 # 2

Li et al. 10.3389/fmed.2022.1016459

Introduction

Acute kidney injury (AKI) is a common renal disease
associated with high mortality and morbidity rates. At present,
AKI accounts for 10–15% of complications in hospitalized
patients, with an associated mortality of approximately 23.9%
(1). AKI is often secondary to ischemia-reperfusion (I/R)
injury following kidney transplant, major surgery, nephrotoxic
drugs, and general infection (2). Simultaneously, AKI of
the donor’s kidney directly impairs the recovery of renal
function and organ survival following transplantation (3).
AKI might develop immediately post-transplantation after
initial recovery of kidney function or might occur later in
recovery. In both settings, AKI can originate from unrecognized
severe clinical conditions that require prompt intervention
to prevent graft loss. Such prompt responses can improve
the prognosis of patients with AKI, which relies on early
diagnosis (4). At present, the main diagnostic criteria for
AKI include the “risk, injury, failure” (RIFLE) standard
developed by the acute dialysis quality initiative group (5),
the improved RIFLE standard from the AKI network (6),
and the kidney disease: Improving Global Outcomes (KDIGO)
standard (7). Although all three are widely used clinically, there
remain controversies in predicting delayed graft function or
post-transplant outcomes.

Research studies have gradually deepened our
understanding of the pathophysiology and molecular biological
mechanisms underlying AKI (8, 9). Multiple mechanisms
have been proposed to be involved in AKI pathophysiology,
such as ischemia-reperfusion injury, inflammation, autophagy,
and oxidative stress, but their relationships have not been
thoroughly investigated (10). The pathogenesis of AKI
involves injury to renal tubular cells, glomerular cells, and
renal interstitial cells and can be classified as prerenal, renal,
or postrenal. The mechanisms of injury include apoptosis,
proptosis, autophagy, oxidative stress, etc. However, these
cellular events occur following the initiation of AKI; once these
molecular mechanisms are initiated, cells are beyond rescue.
As such, it is critical to identify the molecular features involved
in initiating AKI to facilitate the development of effective
therapeutic strategies for halting AKI.

Many studies have attempted to identifies early AKI
diagnostic biomarkers. Parikh CR et al. identified kidney injury
molecule-1 (KIM-1) as a biomarker of acute kidney injury (11);
compared with creatinine, the urine concentration of KIM-
1 rises within 24h of AKI onset. It has been demonstrated

Abbreviations: AKI, acute kidney injury; AUC, area under the curve; CKD,
chronic kidney disease; DEGs, differentially expressed genes; ESRD, end-
stage renal disease; GEO, gene expression omnibus; PCR, polymerase
chain reaction; RT-qPCR, real time quantitative PCR; RCC, renal cell
carcinoma; ROC, receiver operating characteristic; SVM-RFE, support
vector machine recursive feature elimination.

that TIMP-2 and IGFBP7 are useful in predicting acute kidney
injury following cardiac surgery (12), and compared with other
biomarkers, TIMP-2 and IGFBP7 might be useful to predict
the onset of severe AKI. In addition, other biomarkers have
been tested in preclinical settings. Compared with patients
without AKI after kidney transplantation, there is an increase
of secretory leucocyte peptidase inhibitor (SLPI) in AKI
patient plasma and urine; SLPI has a unique significance in
transplantation-related AKI (13), and in the perfusion solution.
It may help to identify graft quality after kidney transplantation
(14). In the mouse model of ischemic AKI, ischemia can
upregulate the expression of macrophage migration inhibitor
2, thereby promoting the release of SLPI and imparting
renal protection. In addition, SLPI mRNA is shown to be
significantly up-regulated in renal biopsies of AKI patients
during the early stage after renal transplantation, compared
with patients not affected by post-transplant AKI (15). However,
the availability of sensitive and specific biomarkers related to
the etiology of AKI is limited. With the development of high-
throughput sequencing and bioinformatics, we can analyze
the molecular features of AKI and quickly select relevant
disease markers from the genome. Compared with traditional
research approaches, we can further investigate the molecular
characteristics of AKI by applying these techniques (16, 17).
The detection of AKI-related biomarkers might be more able
to reflect the pathophysiological processes underlying AKI and
is expected to become a means of diagnosis and evaluation of
AKI in the future.

In this study, mRNA microarray data was used
to explore the molecular features of AKI. We further
identified the AKI signature using machine learning. Finally,
we validated these potential biomarkers via an in vitro
hypoxia/reoxygenation injury model.

Materials and methods

Collection and processing of acute
kidney injury datasets

A study flowchart was shown in Supplementary Figure 1.
The mRNA sequencing and its clinical data associated
with AKI samples and control samples (Supplementary
Table 1) were obtained from the Gene Expression Omnibus
(GEO) database (GSE139061)1 (18), and there was no
significant difference in age (p = 0.27) and gender (p = 0.33)
between the AKI samples and control samples in this
study. It included high throughput RNA sequencing data
from 39 AKI and 9 control samples; the platform of
this data set was GPL20301 [Illumina HiSeq 4000 (Homo

1 https://www.ncbi.nlm.nih.gov/geo/
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sapiens)]. The count values were normalized by log2(n+1)
(Supplementary Figure 2).

Differentially expressed genes and
gene enrichment analysis

The limma package (version 3.52.0) was used to identify
differentially expressed genes (DEGs) between AKI and control
samples (19); the Wilcox test was used to calculate the p-values
with significant DEGs defined by the absolute values of log fold
change ≥ 1 (| logFC | ≥ 1, it means the log fold change of
genes from AKI samples and control samples) and adjusted
p-values < 0.05. Then the associated pathway and process
enrichment analysis of DEGs were carried out using Metascape2

(20, 21).

Hub genes selection based on machine
learning algorithms

Three machine learning algorithms were used to select the
gene signatures associated with AKI, including SVM Recursive
Feature Elimination (SVM-RFE) (22), LASSO Model (23), and
Random Forest Model (24).

SVM-RFE algorithm was applied using “rfe” in the R
package “caret” (version 6.0-92); SVM-RFE is widely used
to rank features and select gene signatures. To validate
the SVM-RFE model, we used tenfold cross-validation to
select the AKI-related gene signatures. The LASSO model
is a dimensionality reduction method for evaluating high-
dimensional data. A LASSO model was fitted using the
“cv.glmnet” function in the R package “glmnet” (version 4.1-4).
R package “randomForest” (version 4.7-1.1) was used to build
the random forest model, which is a supervised nonparametric
classification method. Finally, the AKI-related hub genes were
obtained by the intersecting genes of the above three machine
learning models. Finally, the receiver operating characteristic
(ROC) curves and the area under the curve (AUC) were used
to evaluate the diagnostic efficacy; the 95% confidence intervals
(1,000 iterations) of the AUC were estimated by the bootstrap
algorithm (25).

Construction of the nomogram model

We created a nomogram model to predict AKI using the R
package “rms” (version: 6.3-0). The expression of each gene has
a corresponding point. The “Total Points” reflected the sum of
all the above elements.

2 http://metascape.org

Gene set enrichment analysis

Using the function “gseKEGG” of the R package
“ClusterProfiler” (version 4.4.4), GSEA was performed
to investigate the potential functions of the hub genes
with the following parameters (nPerm = 10,000,
minGSSize = 10, maxGSSize = 200, pvalueCutoff = 0.05,
pAdjustMethod = "none") (26).

Cell culture and treatment

The human renal proximal tubular cell line HK-2 was
obtained from the China Center for Type Culture Collection
(GDC0152, Wuhan, China) and cultivated in DMEM/F-
12 supplemented with 10% FBS, 100 U/ml penicillin, and
100 µg/ml streptomycin in a humidified atmosphere of 5%
CO2 at 37◦C. The cells were plated in six-well plates and
were treated at 80–90% confluence. The cells in the hypoxia
and reoxygenation (H/R) groups were cultured with glucose-
free and serum-free medium for 6h under hypoxic conditions
(1% O2, 94% N2, and 5% CO2) with following regular culture
treatment with oxygen for 3, 6, and 12h in a general incubator
(5% CO2 and 95% air), respectively (27, 28). Subsequently, cells
were collected at the indicated time points mentioned above for
further verification.

Real-time quantitative PCR analysis

Total RNA extracted from cells following treatment using an
M5 Universal RNA Mini Kit (MF-033-01, Mei5 Biotechnology,
Beijing, China); 500 ng of RNA was reverse transcribed for
cDNA synthesis. The primer sequences used in this study are
summarized in Supplementary Table 2. Real-time quantitative
PCR (RT-qPCR) was used to assess the relative expression level
of genes compared to actin. Relative gene expression expression
was calculated using 2−11Ct.

Statistical analysis

Unpaired Student’s t-test was used to compare two groups
with normally distributed variables, while Mann–Whitney
U-test was used to compare two groups with non-normally
distributed variables. For comparisons of three groups, one-way
analysis of variance and Kruskal–Wallis tests of variance were
used as parametric and nonparametric methods, respectively.
The Chi-square or Fisher’s exact tests were used to analyze
variables in the contingency table. Statistical significance was
defined as a two-tailed p < 0.05. R software was used to
conduct all statistical analyses (version 4.1.0; RStudio, Boston,
MA, USA).
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Results

Identification and gene enrichment
analyses of differentially expressed
genes

Differential expression analysis was conducted for 16,092
genes. By using our identification criteria, we identified
86 DEGs between the 39 AKI and 9 control samples.
Among them, there were 10 down-regulated genes and 76
up-regulated genes (Supplementary Table 1). A heatmap
(Figure 1A) and a volcano plot (Figure 1B) were used
to visualize down-regulated genes and up-regulated genes
in this study. Metascape was used to conduct enrichment
analysis of these DEGs to gain a deeper understanding of
their biological functions and characteristics [(Figures 2A,B)
see text footnote 2]. The results of this were summarized
in Supplementary Table 3 (21, 29). We found 40 terms
with p < 0.05, including the PID MYC ACTIV PATHWAY
(M66), positive regulation of endothelial cell proliferation
(GO:0001938), maintenance of location (GO:0051235),
and SUMO E3 ligases SUMOylate target proteins (R-HSA-
3108232). It appeared that these DEGs are closely related
to the composition and function of cells. The enrichment
ontology cluster graph and its relationship were shown in
Figure 2B.

Hub genes selection based on support
vector machine recursive feature
elimination, LASSO, and random forest

Three machine learning algorithms were used to select
hub genes in 86 DEGs between AKI and control samples.
In the SVM-RFE model, we found that when the number
of features is 28, the maximum accuracy of the classifier
was 1 (Figure 3A), and the minimum error of the classifier
was 0 (Figure 3B), which include AGTR1, RALYL, GPC2,
UPF2, EHBP1L1, EGFL7, ESM1, TRIM65, MDM4, FBXW4,
PODXL, ADORA2A, AEBP2, ARL6IP6, KCNK6, PSMG1,
TMEM255B, HOXC8, ANP32B, TEAD4, PTCH2, EGF, BTBD19,
MDFI, TEN1-CDK3, CHTF8, ATAD2, and TNK2. In the
LASSO model, after ten-fold cross-validation, there were
11 characteristic genes (Figures 3C,D), including MDFI,
PTMS, EHBP1L1, FBXW4, MDM4, AGTR1, UBAP1L, NAP1L1,
PODXL, RALYL, and ESM1. In the random forest model, 20
characteristic genes were determined with importance > 0.25
(Figure 3E), including EHBP1L1, PTMS, HOXA6, FBXW4,
ANP32B, C16orf72, MDM4, UBAP1L, MDFI, PTCH2, ANK3,
RALYL, AEBP2, RRP9, PLEKHN1, GSTA1, UPF2, CA11,
ESM1, and OGFR. Finally, we selected the intersection of
the results of the above three algorithms which delivered the

hub genes MDFI, EHBP1L1, FBXW4, MDM4, RALYL, and
ESM1. We visualized the hub genes with a veen diagram
(Figure 3F).

Modeling of an acute kidney injury
diagnostic nomogram

We built an AKI diagnostic nomogram (Supplementary
Figure 3A) for the hub genes (MDFI, EHBP1L1, FBXW4,
MDM4, RALYL, and ESM1). Then, the diagnostic efficiency of
the nomogram was evaluated by using ROC and AUC, we found
that the AUC = 1 of the nomogram (Supplementary Figure 3B).
The coefficients of this nomogram were in the Supplementary
Table 4, and the total points could be calculated as follows:

Total Points =
∑

n ∗ coeffcient (n means hub genes)

The diagnostic efficacy of hub genes in
predicting acute kidney injury

Receiver operating characteristic and AUC were used
to evaluate the diagnostic efficacy of the six identified
hub genes in predicting AKI. These showed a potential
efficacy in predicting AKI: the AUC were 0.872 (95%
CI 0.732–0.974) for ESM1 (Figure 4A), 0.917 (95%CI:
0.778–1.000) for EHBP1L1(Figure 4B), 0.949 (95%CI: 0.826–
1.000) for FBXW4 (Figure 4C), 0.970 (95%CI: 0.912–1.000)
for MDFI (Figure 4D), 0.974 (95%CI: 0.923–1.000) for
MDM4 (Figure 4E), and 0.886 (95%CI: 0.786–0.974) for
RALYL (Figure 4F). Then, cutoff values for hub genes were
calculated by ROC analysis and were shown in Supplementary
Table 4. Some calculations were made according to the
cutoff values including calculation of the sensitivity values,
specificity values, positive predictive values, and negative
predictive values, MDFI (cutoff value = 5.04, sensitivity
value = 0.93, specificity value = 1.00, positive predictive
value = 1.000, negative predictive value = 0.75), EHBP1L1
(cutoff value = 9.32, sensitivity value = 0.97, specificity
value = 0.89, positive predictive value = 0.97, negative
predictive value = 0.89), FBXW4 (cutoff value = 8.91, sensitivity
value = 0.97, specificity value = 0.89, positive predictive
value = 0.97, negative predictive value = 0.89), MDM4
(cutoff value = 10.14, sensitivity value = 0.95, specificity
value = 1.00, positive predictive value = 1.000, negative
predictive value = 0.82), RALYL (cutoff value = 6.45, sensitivity
value = 0.87, specificity value = 1.00, positive predictive
value = 1.000, negative predictive value = 0.65), and ESM1
(cutoff value = 4.97, sensitivity value = 0.85, specificity
value = 0.78, positive predictive value = 0.94, negative predictive
value = 0.54).
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FIGURE 1

The heatmap and volcano plot of differentially expressed genes (DEGs). (A) Heatmap of DEGs. The vertical axis represents the samples, and the
horizontal axis represents differentially expressed genes. Red indicates upregulated genes, and blue represents downregulated genes. (B)
Volcano plot of DEGs. The x-axis represents the log FC, and the y-axis represents the -log10 (adjusted p-value). The blue dots represent
downregulated genes, and the red dots represent upregulated genes.

Signaling pathways related to the hub
genes

Gene set enrichment analysis was used to identify
the relevant signaling pathways of the six hub genes.
EHBP1L1 (Figure 5A) was positively linked to allograft
rejection, asthma, autoimmune thyroid disease, graft–versus–
host disease, and type I diabetes mellitus. ESM1 (Figure 5B)
was positively linked to ascorbate and aldarate metabolism,
collecting duct acid secretion, DNA replication, fatty acid
elongation, and pentose and glucuronate interconversions.
FBXW4 (Figure 5C) was positively linked to alpha–linolenic
acid metabolism, circadian entrainment, maturity onset diabetes

of the young, nicotine addiction, and taste transduction.
MDFI (Figure 5D) was positively linked to alpha–linolenic
acid metabolism, linoleic acid metabolism, maturity onset
diabetes of the young, nicotine addiction, and primary
immunodeficiency. MDM4 (Figure 5E) was positively linked
to alpha–linolenic acid metabolism, linoleic acid metabolism,
maturity onset diabetes of the young, nicotine addiction, and
phototransduction. RALYL (Figure 5F) was positively linked
to 2–oxocarboxylic acid metabolism, citrate cycle (TCA cycle),
fatty acid degradation, glycosaminoglycan degradation, and
valine, leucine and isoleucine degradation.

The results showed that the hub genes were related
to metabolism (ascorbate and aldarate metabolism,
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FIGURE 2

Functional enrichment analysis of DEGs. (A) Bar chart of functional enrichment terms colored by p-values (the darker the color, the smaller the
p-value). (B) The functional enrichment ontology clustering graph represents each term as a circle, and each cluster has a unique color, which
means that circles of the same color are associated with the same cluster. The edges connect terms that have a similarity score of >0.3 which
influences the density of the edge line. Metascape (http://metascape.org) was utilized for visualization.

alpha–linolenic acid metabolism, linoleic acid metabolism,
2–oxocarboxylic acid metabolism, citrate cycle (TCA cycle),
and fatty acid degradation), which might play an important role
in the pathogenesis and progression of AKI.

Hub genes expression and RT-qPCR
validation

Six hub genes were analyzed for their expression
levels (Figures 6A–F). Expression of ESM1 (Figure 6A,
Mann–Whitney U-test, p = 0.001) and RALYL (Figure 6F,
Mann–Whitney U-test, p < 0.001) was markedly
increased in control samples. The expressions of EHBP1L1
(Figure 6B, Mann–Whitney U-test, p < 0.001), FBXW4
(Figure 6C, Mann–Whitney U-test, p < 0.001), MDFI

(Figure 6D, Mann–Whitney U-test, p < 0.001), and
MDM4 (Figure 6E, Mann–Whitney U-test, p < 0.001),
were markedly increased in AKI samples. The difference
in these hub genes may be involved in AKI disease onset
and progression.

We then used RT-qPCR to verify these findings. After
reoxygenation, ESM1 expression trended lower than in the
control group (Figure 6G) but the difference was not significant.
However, after 12h of reoxygenation, ESM1 expression was
increased. After reoxygenation, the expression of EHBP1L1
(Figure 6H), FBWX4 (Figure 6I), MDFI (Figure 6J), and
MDM4 (Figure 6K) was significantly higher (Kruskal–Wallis
test, ∗p < 0.05, ∗∗p < 0.01). These results support the
reliability of our findings and underpin their future utility.
After reoxygenation, RALYL expression was higher than
in the control group (Figure 6L), which is contrary to
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FIGURE 3

Hub genes selection based on machine learning algorithms. (A) The accuracy and (B) the error of the feature selection for the SVM-RFE
algorithm. (C) 10-flod cross-validation for tuning parameter selection in the LASSO model. Each curve corresponds to a single gene. (D) LASSO
coefficient profiles of DEGs. The solid vertical lines represent the partial likelihood of deviance SE. The dotted vertical line is drawn at the
optimal Lambda. (E) The rank of genes by their relative importance in the random forest algorithm. (F) Venn diagram showing the characteristic
genes shared by LASSO, random forest, and SVM-RFE algorithms.
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FIGURE 4

Diagnostic efficacy of hub genes in the prediction of AKI. (A) ESM1 AUC = 0.872 (95%CI: 0.732–0.974), (B) EHBP1L1 AUC = 0.917 (95%CI:
0.778–1.000), (C) FBXW4 AUC = 0.949 (95%CI: 0.826–1.000), (D) MDFI AUC = 0.970 (95%CI: 0.912–1.000), (E) MDM4 AUC = 0.974 (95%CI:
0.923–1.000), (F) RALYL AUC = 0.886 (95%CI: 0.786–0.974).
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FIGURE 5

Gene set enrichment analysis (GSEA) identifies signaling pathways involved in the hub genes. (A–F) The main signaling pathways that are
significantly enriched in high expressions of hub genes. (A) EHBP1L1, (B) ESM1, (C) FBXW4, (D) MDFI, (E) MDM4, (F) RALYL.

our prediction. Further investigation is required to explain
this finding.

Discussion

AKI was a clinical syndrome caused by acute decline or
loss of renal filtration function stemming from multiple causes
(10) and was associated with high morbidity and mortality (30).
AKI was also a serious complication of other severe conditions
(31). Most AKI develops gradually and manifests with a variety
of pathophysiological symptoms and signs across a spectrum
spanning mild decline of renal filtration function to the need for
renal replacement therapy. Ischemia and hypoxia were the main
triggers of AKI (32). As AKI progresses, ischemia and hypoxia
further damage the morphology and functional anabolism of
renal tubular epithelial cells and renal fibroblasts, resulting in
delayed recovery and the loss of renal tubule reabsorption and
secretion function. In addition, renal microvascular endothelial
growth factor levels decrease, further reducing the number

of capillaries, aggravating hypoxia, and eventually resulting
in chronic kidney disease (CKD) (4). Renal transplantation
was the most effective treatment of end-stage renal disease
(ESRD), but ischemia-reperfusion injury may occur during the
process of kidney organ donation and transplantation, resulting
in AKI (33). As such, the prevention of postoperative AKI
relied on being able to reliably quantify its risk following renal
transplantation.

In this study, we used three machine learning algorithms to
select hub genes in 86 DEGs between AKI and control samples
by using the GSE139061 dataset. Then, we selected common
genes from the three algorithms which were the hub genes
MDFI, EHBP1L1, FBXW4, MDM4, RALYL, and ESM1. The
AUC of these genes ranged from 0.872 to 0.974, indicating a
high level of predictive power for AKI, and the AUC of the
nomogram was 1, we also used the bootstrap algorithm to
estimate the 95% AUC confidence intervals. We quantified the
traditional AKI diagnostic markers such as KIM-1, Cystatin
C, NGAL, IL-18 and their associated protein-coding genes
(HAVCR1, LCN2, IL18, CYCS, and CST3) and assessed the
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FIGURE 6

The expression level of hub genes and RT-qPCR validation. (A–F) Box plots showed the mRNA expression level of hub genes between AKI
samples and control samples, and the p-value was marked below the horizontal line in the figure. (A) ESM1 (p = 0.001), (B) EHBP1L1 (p < 0.001),
(C) FBXW4 (p < 0.001), (D) MDFI (p < 0.001), (E) MDM4 (p < 0.001), (F) RALYL (p < 0.001). (G–L) Box plots for Real-time PCR validation among
hub genes, Kruskal–Wallis test, ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

diagnostic performance of these genes using ROC and AUC.
The AUCs were 0.638 (95% CI 0.453–0.806) for HAVCR1
(Supplementary Figure 4A), 0.613 (95%CI: 0.430–0.781) for

LCN2 (Supplementary Figure 4B), 0.749 (95%CI: 0.550–
0.917) for IL18 (Supplementary Figure 4C), 0.554 (95%CI:
0.276–0.798) for CYCS (Supplementary Figure 4D), and 0.581
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(95%CI: 0.305–0.832) for CST3 (Supplementary Figure 4E). We
found that while these genes may contribute to the diagnosis
of AKI, their diagnostic efficacy was slightly lower than the
hub genes identified in this study. Thus, we believed that the
diagnostic model developed in this study showed a marked
potential for clinical application in the early identification of
AKI. We used GSEA to identify the relevant signaling pathways
of the six hub genes. As a result, we found that the hub
genes were associated with metabolism, including ascorbate
metabolism, alpha–linolenic acid metabolism, and fatty acid
degradation, which may contribute to the pathogenesis and
progression of AKI. This showed that the metabolic state
of AKI renal cells was different from controls; this may
be related to the ischemic and hypoxic state of renal cells
in AKI (32).

Previous studies had linked some of these hub genes with
kidney disease. EHBP1L1 regulates the CpG methylation of
renal cells and was associated with the prognosis of renal clear
cell carcinomas (34). The exact mechanisms of EHBP1L1 were
not elucidated and further research was needed to verify our
findings. MDM4 mRNA expression was increased in clear cell
renal cell carcinomas (ccRCC); as such, it was a prognostic
marker and its silencing inhibits the migration and invasiveness
of RCC cells (35–38). Similarly, RALYL was related to the
prognosis of RCC (39); its expression was significantly reduced
in RCC, and this was associated with poor prognosis. However,
there our findings into RALYL expression were conflicted
between RNA-sequencing and qPCR. It had been indicated
that around 15% of genes showed inconsistent results between
RNA sequencing and RT-qPCR data (40). As such, further
investigations were required to explain these findings. The
expression of ESM1, also known as Endocan, was associated
with adverse clinical outcomes in renal insufficiency, including
AKI. As a marker of endothelial dysfunction, it was important
in glomerular/vascular disease, which may lead to AKI (41).
Some studies had shown the value of ESM1 in diagnosing
acute rejection after renal transplantation. ESM1 was observed
in circulating endothelial cells in the peripheral blood and in
renal allografts after renal transplantation; the expression of
ESM1 mRNA and protein was found to be significantly higher
in patients with acute rejection (42). Although there was no
evidence that the MDFI and FBXW4 genes are associated with
kidney disease, MDFI can regulate the WNT signaling pathway,
which is essential for the development of the mammalian
kidney (43), and it was a cysteine rich glycoprotein in the
extracellular matrix and played a key role in embryonic
development and adult tissue homeostasis (44), Wnt/ β- Catenin
signal was involved in the regulation of glomerulosclerosis and
podocyte dysfunction, it was related to renal fibrosis. WNT
was relatively silent in the normal adult kidney but played
an important role in renal protection or pathogenesis when it
comes to AKI (45). The role of FBXW4 in AKI needs further
research to confirm.

Although we screened the hub genes related to AKI using
bioinformatics approaches and verified their diagnostic value,
some limitations should be noted. Firstly, our samples were of
a one-off cross-sectional nature. Because we did not perform
longitudinal analyses, we were not able to test the predictive
value of these hub genes on patient prognosis. Secondly, this
study lacked our own clinical samples. Therefore, we need to
conduct research with a larger clinical sample size and additional
experiments to further verify our findings.

Conclusion

In this study, we identified six hub genes related to AKI
based on three machine learning algorithms; their AUCs showed
potential diagnostic utility in predicting AKI. The hub genes
identified in this study might play a significant role in the
pathophysiology of AKI. They might be exploited for the early
diagnosis of AKI and help improve AKI prognosis.
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