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Increasing evidence has proved that miRNA plays a significant role in

biological progress. In order to understand the etiology and mechanisms of

various diseases, it is necessary to identify the essential miRNAs. However,

it is time-consuming and expensive to identify essential miRNAs by using

traditional biological experiments. It is critical to develop computational

methods to predict potential essential miRNAs. In this study, we provided a

new computational method (called PMMS) to identify essential miRNAs by

using multi-head self-attention and sequences. First, PMMS computes the

statistic and structure features and extracts the static feature by concatenating

them. Second, PMMS extracts the deep learning original feature (BiLSTM-based

feature) by using bi-directional long short-term memory (BiLSTM) and

pre-miRNA sequences. In addition, we further obtained the multi-head

self-attention feature (MS-based feature) based on BiLSTM-based feature and

multi-head self-attention mechanism. By considering the importance of the

subsequence of pre-miRNA to the static feature of miRNA, we obtained

the deep learning final feature (WA-based feature) based on the weighted

attention mechanism. Finally, we concatenated WA-based feature and static

feature as an input to the multilayer perceptron) model to predict essential

miRNAs. We conducted five-fold cross-validation to evaluate the prediction

performance of PMMS. The areas under the ROC curves (AUC), the F1-score,

and accuracy (ACC) are used as performance metrics. From the experimental

results, PMMS obtained best prediction performances (AUC: 0.9556, F1-score:

0.9030, and ACC: 0.9097). It also outperformed other compared methods.

The experimental results also illustrated that PMMS is an e�ective method to

identify essential miRNA.
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Introduction

MicroRNAs (miRNAs) are a class of typical non-

coding RNAs (ncRNAs) of 22 nucleotide (nt) in length,

express endogenously, and regulate gene expression on the

posttranscriptional level. During miRNA biogenesis, Drosha

and Dicer process the primary transcript (pri-miRNA) through

a precursor hairpin (pre-miRNA) to the mature miRNA (1). In

other words, RNA polymerase II transcribes the nuclear genes of

miRNA to generate pri-miRNAs. The pre-miRNA is produced

from pri-miRNAs based on the hairpin structure with enzymatic

cleavage. miRNAs often interact with 3’ untranslated region

(3’UTR) of a target mRNA to mediate mRNA degradation

and/or translational repression (2). Furthermore, some studies

also demonstrated that they also interact with other regions,

such as 5’UTR, gene promoters, and coding sequence (3).

The first two known miRNAs, namely lin-4 and let-7, were

derived from Caenorhabditis elegans and were discovered more

than 20 years ago (4, 5). Until recently, thousands of currently

annotated miRNAs have been identified in a variety of species

from plants and animals to viruses (6, 7). miRNAs can be

released into the extracellular environment and transported to

the target cells by vesicles, including exosomes, or via binding

to proteins. Once expressed, miRNAs are integrated into the

RISC and guide the repression of a target mRNA by base

complementarity within the “seed” sequence of the miRNA (8).

This process resulted in either repression or degradation of the

target mRNA and affected the differentiation and proliferation

of cells. In addition, many pieces of evidence have proven

that miRNAs play essential roles in some important biological

processes, such as cell growth, proliferation (9), differentiation

(10), and development (11).

Furthermore, many studies demonstrated that miRNAs

are highly correlated with human complex diseases, and

essential miRNA is crucial in animal development and human

diseases. For example, miR-144-3p was lowly expressed in

non-small cell lung cancer (NSCLC) and might function

as a potential tumor biomarker in the prognosis prediction

for NSCLC (12). miR-200c-141 and miR-200b-200a-429 were

downregulated in human breast cancer stem cell (BCSC),

normal human and murine mammary stem/progenitor cells,

and embryonal carcinoma cells (13). miR-200c inhibited the

clonal expansion of breast cancer cells and suppressed the

growth of embryonal carcinoma cells in vitro. In colorectal

cancer (CRC), miRNAs-21 is one of the most important

miRNAs and is also emerging as a biomarker in CRC, with

good potential as a diagnostic and therapeutic target (14).

miR-125a-5p could be considered a regulator of glycolipid

metabolism in type 2 diabetes mellitus (T2DM), which can

inhibit hepatic lipogenesis and gluconeogenesis and elevate

glycogen synthesis by targeting STAT3 (15). The expression

of miR-145 is significantly downregulated in dedifferentiated

vascular smooth muscle cells (VSMCs) and in balloon-injured

arteries, which can be considered a potential therapeutic target

(16). miR-228 was also upregulated in osteoarthritis (OA), and

can be considered a biomarker (17). In addition, after knocking

out miR-15b, B cell lymphoproliferative disorders in mice have

been observed (18). After knocking out miR-144, the incidence

of spontaneous B lymphoma and acute myeloid leukemia in

aged mice increased (19).

Due to the importance mentioned earlier and the necessity

of miRNA-disease associations and essential miRNAs, a growing

number of databases have been developed. miRbase was

an online repository for nomenclature and annotation, and

the latest release (v22) contains microRNA sequences from

271 organisms: 38,589 hairpin precursors and 48,860 mature

microRNAs (20). miRGator was also a miRNA portal for deep

sequencing, expression profiling, and mRNA targeting (21).

In addition, many miRNA-disease association databases have

also been established, which include miR2Disease (22), human

microRNA disease database (HMDD) (23, 24), ExcellmiRDB

(25), and miRCancer (26). miR2Disease was a manually curated

database and represented an exhaustive resource of miRNA

deregulation in different human diseases. HMDD was also

an miRNA-disease association database and was developed

in 2007, and the HMDD v3.2 gathered more than 35,547

experimentally confirmed entries of miRNA-disease association

containing about 1,206 miRNA genes and 893 diseases from

19,280 papers. ExcellmiRDBwas also a user-friendly and curated

online database about miRNA-disease associations, which

includes 1,108 extracellular miRNAs-biofluid relationships and

2,773 extracellular miRNA-disease derived from 108 papers

selected from >600 PubMed abstracts. miRCancer collected

878 associations between 236 miRNAs and 79 human cancers

through the processing of >26,000 published articles. Besides,

Cui et al. (27) established an essential miRNAbenchmark dataset

to predict potential essential miRNAs.

Due to the importance and necessity of miRNA and the

development of the miRNA-disease association database and

essential miRNA benchmark dataset, a growing number of

computational methods have been proposed for the prediction

of miRNA-disease association and essential miRNA. For

example, BNPMDA was a typical network-based method to

predict potential miRNA-disease associations by using the

known miRNA-disease association network, integrated miRNA

similarity network, and integrated disease similarity network

(28). DNRLMF-MDA was a miRNA-disease association

prediction method based on dynamic neighborhood regularized

logistic matrix factorization. The main feature of DNRLMF-

MDA was that known miRNA-disease associations are assigned

higher importance levels than unknown miRNA-disease

associations (29). Chen et al. also proposed a method to predict

new miRNA-disease association by completing the missing

miRNA-disease association based on the known associations

and the integrated miRNA similarity and disease similarity

(30). Based on the matrix decomposition and heterogeneous
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graph inference model, MDHGI was proposed to predict

potential miRNA-disease associations (31). It improved the

prediction accuracy (ACC) by taking full advantage of matrix

decomposition before the construction of a heterogeneous

network. Zhou et al. also proposed a method of neural inductive

matrix completion with the graph convolutional network

(NIMCGCN) for identifying miRNA-disease association (32).

NIMCGCN first extracted the latent feature representations

and disease from the miRNA and disease similarity networks.

PDMDA was also an miRNA-disease association prediction

method based on the graph neural network (33). It can predict

not only miRNA-disease association but also predict the

association type. miES was the first essential miRNA prediction

method by using pre-miRNA and miRNA sequences and it also

constructed the benchmark dataset of essential miRNA (27).

PESM was also an essential miRNA prediction method and

improved the prediction performance by adding new features

and gradient boosting machines model (34). In addition, XGEM

was also an essential miRNAs prediction method by applying

the XGBoost framework with Classification and Regression

Trees (CART) on various types of sequence-based features (35).

Although we have obtained some progress in predicting

essential miRNA based on the development of computing

technology and essential miRNA benchmark dataset, it is

critical to propose new computational method to improve

the prediction ACC. In this study, we provided a method

(predicting essential miRNAs based on the multi-head self-

attention and sequences, PMMS) to predict essential miRNA.

PMMS first calculates the static feature based on the pre-

miRNA and miRNA sequences by statistics and the Vienna

RNA Package (34). The deep learning original feature (BiLSTM-

based feature) is obtained by bi-directional Long Short-Term

Memory (BiLSTM) and pre-miRNA sequences. The multi-

head self-attention feature (MS-based feature) of miRNA is

extracted based on multi-head self-attention mechanism and

BiLSTM-based feature. The deep learning final feature (WA-

based feature) of miRNA is obtained by using a weight attention

mechanism with a static structure feature and MS-based feature

of miRNA. Finally, we obtained the final feature of miRNA

by concatenating the static feature and WA-based feature, and

then takefeature, and then taken it as input into Multilayer

perceptron (MLP) to predict essential miRNA. We conducted

five-fold cross-validation to evaluate the prediction performance

of PMMS and compared it with other computational methods

which includes PESM, miES, GaussianNaiveBayes (Gaus NB),

and support vector machines (SVM) models. The the areas

under the ROC curves (AUC), F1-score, and ACC are used as

metrics. The experimental results showed that PMMS obtains

the best prediction performance according to AUC value of

0.9556. The ACC (0.9037) and F1-score (0.9030) of PMMS in

the five-fold cross-validation were higher than that of other

methods, respectively, and it also proved that it can achieve

better results.

Materials

In this study, we also used the benchmark dataset of

essential miRNA which was also used in PESM and miES.

This benchmark dataset includes 77 known essential miRNAs

that were confirmed by knocking out gene experiments. It

also includes the same number of negative samples which

are randomly selected from the unknown essential miRNAs.

In addition, by considering the production process of mature

miRNA and the hairpin structure of pre-miRNA, we also used

the pre-miRNA and miRNA sequences which are downloaded

from themiRbase database. miRbase provided the nomenclature

and annotation and pre-miRNA sequences and mature-miRNA

sequences of humans, rats, and mice. The latest release (v22)

contains miRNA sequences from 271 organisms: 38,589 hairpin

precursors and 48,860 mature miRNAs.

Methods

As shown in Figure 1, PMMS mainly contains three layers.

The left section of the initialization layer extracted the BiLSTM-

based feature by k-mer and the BiLSTM model. The right

section of the initialization layer obtained the static feature

(statistic and structure feature) by calculating the number of

nucleotides and RNAlib package. In addition, we obtained

the MS-based feature through the multi-head self-attention

mechanism and BiLSTM-based feature. In the embedding layer,

we also obtained the WA-based feature based on the MS-based

feature and weight attention mechanism. Finally, the miRNA

final feature is obtained by concatenating the WA-based feature

and static feature and is input into the MLP model to predict

essential miRNA. The identification of essential miRNA is also

a typical binary-classification problem, and MLP has also been

successfully applied to the data classification problem.

Statistic and structure feature

Based on the production process of mature miRNA, we

calculated the statistic and structure feature of miRNA from

pre-miRNA sequence and mature miRNA sequence. We all

know that RNA polymerase II transcribes the nuclear genes of

miRNA to generate pri-miRNAs which produced pre-miRNA

by enzymatic cleavage on the hairpin structure. Then, the

mature miRNA is produced through cleaving pre-miRNA. Since

the mature miRNA sequence is the subsequence of the pre-

miRNA sequence, we let non-mature miRNA denote the rest

of the pre-miRNA sequence after cleaving miRNAs. First, we

calculated the single nucleotide base content S ∈ {U,C,G} in

pre-miRNA, miRNA, and non-mature miRNA sequences. Three

features with dimensionality 3 were obtained, respectively. The

sequence lengths of pre-miRNA and miRNA sequences were
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FIGURE 1

The overview of predicting essential miRNAs based on the multi-head self-attention and sequences (PMMS) approach.

also calculated as the feature with dimensionality 1, respectively.

In addition, we also calculated the number of dinucleotide pairs

S,Z ∈ {U,C,G} in pre-miRNA and miRNA sequences. Thus, we

obtained features with dimensionality 9 from them, respectively.

The cleavage site base class is another feature and is divided into

three categories: (1) 1 represents all cleavage sites of mature-

miRNAs from the same pre-miRNAs are U; (2) 0 represents not

all cleavage sites are U; (3)−1 represents all are non− U. Based

on the hairpin structure contained in all pre-miRNAs which can

produce mature miRNA, we also calculated the structure feature

by the Vienna RNA Package. The minimum free energy (MFE)

and nMFE (minimum free energy and it is divided by its length)

are the feature with dimensionality 1, respectively. In addition,

we also further considered the base-pairing propensity, Shannon

entropy, and base-pair distance to obtain 6 features which

include normalized base-pairing propensity (dP), normalized

base-pairing propensity divided by its length (dP/L), normalized

Shannon entropy (dQ), normalized Shannon entropy divided

by its length (dQ/L), normalized base-pair distance (dD), and

normalized base-pair distance divided by its length (dD/L).

These features were widely used in miRNA prediction (36) and

pre-miRNA prediction (37). Table 1 describes the overview of all

statistics and structure features.

BiLSTM-based feature

By considering the successful application of BiLSTM

in natural language processing (NLP) (38) and the timing

characteristic of pre-miRNA sequence, we also applied BiLSTM

to extract the deep learning original feature. Compared with

the LSTM model (39, 40), BiLSTM was provided to encode

information back to front when using LSTM to model the

sequences. It includes two LSTMs that are used to take the input

in a forward direction and a backward direction. For pre-miRNA

sequences, BiLSTM can not only process sequences in temporal

order but also consider the future context. LSTM is composed of

a cell, an input gate, an output gate, and a forget gate. The cell

remembers values over arbitrary time intervals. The three gates

regulate the flow of information into and out of the cell. Based

on the design characteristics of LSTM and the characteristic of

time series data, LSTM is very suitable for processing text and

biological sequence data.

To apply the BiLSTM to pre-miRNAs, we first also defined

“word” in pre-miRNA sequences as k-mer nucleotide. There are

4 types of NNs (A, U, C, and G). In this study, we set k to

be 3 based on the experiment results. Therefore, we can split a

pre-miRNA sequence into an overlapping 3-mer nucleotide. For
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TABLE 1 The overview of statistics and structure feature Fs.

Category Description Dimensionality

Base content

in

pre-miRNAs

The content S in pre-miRNA,

S ∈ U,C,G

3

Base content

in miRNA

The content S in mature-miRNA,

S ∈ U,C,G

3

Base content

in non-miRNA

The content S in non-mature-miRNA,

S ∈ U,C,G

3

miRNA length The sequence length of mature-miRNAs 1

non-mature

miRNA length

The sequence length of non-mature

miRNAs

1

Cleavage site

base class

The cleave sites are assigned into 3

classes, 1: all cleavage sites of

mature-miRNAs from the same

pre-miRNAs are U; 0: not all cleavage

sites are U;−1: all are non− U

1

Dinucleotide

pairs number

in pre-miRNA

The Dinucleotide pairs SZ number in

pre-miRNAs, S,Z ∈ U,C,G

9

Dinucleotide

pairs number

in miRNA

The Dinucleotide pairs SZ number in

mature-miRNAs, S,Z ∈ U,C,G

9

MFE and

nMFE

The minimum free energy of

pre-miRNA secondary structures and it

is divided by its length

2

The

base-paring

structure

feature of

pre-miRNAs

normalized base-pairing propensity

(dP), normalized base-pairing

propensity divided by its length (dP/L),

normalized Shannon entropy (dQ),

normalized Shannon entropy divided its

length (dQ/L), normalized base-pair

distance (dD), normalized base-pair

distance divided by its length (dD/L)

6

pre-miRNA “AUUGUCC...”, the 3-mer nucleotide is defined as

follows:

“AUU′′, “UUG′′, “UGU′′, “GUC′′, “UCC′′, ... (1)

After obtaining the 3-mer nucleotide of pre-miRNA

sequences, we translated them to randomly initialized

embeddings (word embedding). For a pre-miRNA sequence

S = s1, s2, s3, ..., s|s|−1, s|s|, the 3-mer embedding of pre-miRNA

sequence can be concatenated with nucleotide embeddings, and

it is defined as follows:

[s1, s2, s3], [s2, s3, s4], ..., [s|S|−1, s|S|−2, s|S|−3], (2)

where xi = [si; si+1; si+2] and db = 128. After obtaining 3-

mer embedding of sequence, we take it as input to the BiLSTM

model.

The BiLSTM model is shown in Figure 2. The model

includes two LSTM sub-networks for the left and right

nucleotide sequenceright nucleotide sequences. They are

forward and backward passes, respectively. The final output of

the i-th 3-mer nucleotide sequence is computed by using an

element-wise sum of forward and backward pass outputs. In

this study, the input of BiLSTM is the 3-mer embedding of pre-

miRNA sequence F
(t)
B0 ∈ Rdb = xi and db = 128. The output of

BiLSTM is the BiLSTM-based feature FB = {F
(t)
B1, F

(t)
B2, ..., F

(t)
B|L|},

|L| = |S| − 2, and FBi = yi ∈ Rdb .

MS-based feature

By considering the application of multi-head self-attention

mechanism (41) in learning tasks with contextual relationships

which include drug-target interaction (42–44), prediction, etc.

The multi-head self-attention mechanism can address the limits

that LSTM cannot obtain long-dependent information when the

sequence is long.

Figure 3 shows the overview of the multi-head self-attention

mechanism model. The part of purple background block is the

scaled dot-product attention model. As depicted in Figure 3,

each k-mer nucleotide vector in a pre-miRNA sequence can be

represented as a query(Q) and key(K)-value(V) pair by the three

mapping matrices. The parameters of these matrices are learned

by backward propagation. The output of each k-mer nucleotide

can be obtained by mapping a query and a set of KV pairs to

get the weighted sum at different locations in the pre-miRNA

sequence.

More specifically, after obtaining the BiLSTM-based feature

of pre-miRNA, we can get the representation of Q and K-V

matrices of each k-mer nucleotide. The dimensionality of Q and

K is dk, and the dimensionality of V is dv. We also computed

the dot products of the Q with all K, dividing each by
√

dk, and

applied a softmax function to obtain the weights on the values.

Based on the queries, keys and values are packed intomatrices Q,

K, and V, the output matrix of the scaled dot-product attention

model is as follows:

Attention(Q,K,V) = softmax(
QkT
√

dk
)V (3)

In addition, the multi-head attention mechanism can jointly

attend to information from different representation subspaces

at different positions. For the output multi-head attention

mechanism, the computation process is defined as follows:

MultiHead(Q,K,V) = Concat(head1, ..., headh)W
o,

where headi = Attention(QW
Q
i ,KW

K
i ,VW

V
i ),

(4)
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FIGURE 2

The overview of the bi-directional long short-term memory model.

in which the projections are mapping matrices W
Q
i ∈

Rdinput∗dk , WK
i ∈ Rdinput∗dk , WV

i ∈ Rdinput∗dv , and Wo ∈

Rhdv∗doutput . The parameters setting are dinput = db = 128 ,

dk = dv = 64, doutput = 38 and h = 4 The matrices Q, K, and

V are initialized by the BiLSTM-based feature FB . Therefore,

after above process, we obtained the MS-based feature FM =

{FM1, FM2, ..., FM|L|} where FMi ∈ Rdoutput .

WA-based feature

After obtaining the static feature Fs and MS-based feature

FM , we further consider the importance of k-mer nucleotide to

static feature Fs.We compute which k-mer nucleotide in the pre-

miRNA are more important for the static feature Fs by assigning

greater weights to this k-mer nucleotide. The detail computation

process of weight attention is defined as follows:

hm = f (winterFs + binter),

hi = f (wconvF
(t)
Mi + binter),

αi = σ (hTmhi),
(5)

in which Winter and binter are the weight matrix and bias

vector, respectively. f is the rectified linear unit (ReLU) active

function. Attention matrix Winter represents the importance

between statistic and structure feature Fs and k-mer nucleotide
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FIGURE 3

The overview of the multi-head self-attention model.

of pre-miRNA. Therefore, the WA-based feature FW can be

calculated by the weighted sum of hi with attention and is

defined as follows:

FW =

L
∑

i=1

αihi. (6)

Essential miRNA prediction based on MLP

The essential miRNA prediction is a typical binary-

classification problem. In this study, we used the MLP model to

identify essential miRNA. After obtaining the static feature Fs

and WA-based feature Fw, we concatenated them as the final
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FIGURE 4

The receiver operating characteristic (ROC) curves of PMMS and

other compared methods.

miRNA feature Ff ∈ Rdf where df = 76. Then, we took it

as input for the MLP model to predict essential miRNA. The

hidden vector of t-th layer can be computed as follows:

ht = f (Whht−1)+ bh, (7)

in which Wh and bh are the weight matrix and bias vector,

and all learned by back propagation process. In addition, f is

ReLU active function. Note that the input is h0 = Ff ∈ Rdf .

Finally, the output vector z can be computed as follows:

z = (Woht)+ bo, (8)

where Wo ∈ R2∗df and bo = R2 are the weight matrix

and the bias vector, respectively. Based on the output vector

Z = [o0, o1], the essential miRNA probability can be computed

by a softmax function and it is defined as follows:

pl =
exp(ol)
∑

i oi
, (9)

where l ∈ {0, 1} is the label and pl is the probability of

label l. In addition, the cross-entropy loss is also used as the loss

function and is defined as follows:

losscross = −
1

N

N
∑

i

1
∑

l

yi,llog(pi,l), (10)

where yi,l and yi,l are the real and predicted one-hot

representation on label l of i-th sample, respectively. If the i-th

sample belongs to label l, then yi,l = 1, otherwise yi,l = 0. N

is the number of samples in the training dataset. Therefore, the

TABLE 2 The ACC, F1-score, and AUC values of five methods on the

five-fold cross validation (5CV).

Method PESM miES Gaus_NB SVM PMMS

ACC 0.8516 0.8263 0.8000 0.8206 0.9097

F1-score 0.8572 0.8326 0.8093 0.8271 0.9030

AUC 0.9117 0.8837 0.8720 0.8571 0.9556

The bold values represent the best performance.

TABLE 3 The prediction performances of predicting essential miRNAs

based on the multi-head self-attention and sequences (PMMS) with

di�erent settings of k.

k 2 3 4 5 6

ACC 0.8996 0.8966 0.9097 0.8837 0.8901

F1-score 0.8856 0.8927 0.9030 0.8791 0.8832

AUC 0.9494 0.9557 0.9556 0.9421 0.9541

The bold values represent the best performance.

training objective is to minimize the function loss and is defined

as follows:

loss(θ) = −
1

N

N
∑

i

1
∑

l

yi,llog(pi,l)+
λ

2
||θ ||22, (11)

where θ is the set of all weight matrices and bias vectors. The

parameter λ is the L2 regularization hyper-parameter.

Result

Comparison with previous methods

In this study, we conducted five-fold cross-validation (5CV)

to evaluate the prediction performance of our methods and

other compared methods, which include PESM (34), miES

(27), Gaus_NB (34), and SVM (34). They are essential miRNA

prediction methods. In addition, the AUC, ACC, and F1-score

are used as metrics to measure the performance of prediction

results. The higher the values of AUC, ACC, and F1-score are,

the better the method performs. In 5CV, we randomly divided

all samples into five subsets with equal size. Then, each subset is

in turn considered a test sample, and the rest subsets are treated

as training samples.

Figure 4 shows the receiver operating characteristics (ROC)

curve and AUCs of PMMS and other compared methods. If

AUC = 1, it would indicate that all test samples were perfectly

predicted, while AUC = 0.5 would mean the model only had

random prediction performance. We can observe from Figure 4

that PMMS obtained an AUC of 0.9556 in 5 CV. However,

the AUCs of PESM, miES, Gaus_NB, and SVM are 0.9117,

0.8837, 0.8720, and 0.8571, respectively. It illustrates that our

method can obtain better prediction performance than other

compared methods.

Frontiers inMedicine 08 frontiersin.org

https://doi.org/10.3389/fmed.2022.1015278
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Yan et al. 10.3389/fmed.2022.1015278

FIGURE 5

The final miRNA feature vectors of the test sets are visualized after dimensionality reduction by t-SNE, PCA, and UMAP. The red circle and green

circle represent the essential miRNAs and unknown essential miRNAs, respectively.

Furthermore, Table 2 also demonstrates the ACC, F1-score,

and AUC values of PMMS and other comparedmethods. PMMS

obtained the ACC and F1-score values of 0.9097 and 0.9030,

respectively. In addition, the best ACC and F1-score values of

compared methods were 0.8516 and 0.8572, respectively. It also

demonstrated that our method outperformed other compared

methods according to ACC and F1-score values.

Model and parameter analysis

In this study, we also analyzed the influence of prediction

performance on different parameters. Furthermore, we also

analyzed the feature learning ability of our method.

The parameter k is used to obtain the BiLSTM-based feature

in k-mer of pre-miRNA sequences. We can observe from Table 3

that PMMS achieved better prediction results when k is set to

be 3 (AUC:0.9557) or 4 (ACC:0.9097, F-measure:0.9030) on the

5CV. Our method has stable prediction performance when k

ranged from 3 to 6, the AUC values were 0.9494, 0.9557, 0.9556,

0.9421, and 0.9541, respectively. Therefore, we set the default

value of parameter k to 4.

To analyze the feature learning ability of our method, we

project the feature vectors into the two-dimensional feature

space and visualize the result of essential miRNA classification

based on the 5CV. We take the final miRNA feature as input

to t-SNE (45), PCA (46), and UMAP (47) for reducing the

feature dimensionality. Figure 5 shows the visualization result of

essential miRNA classification based on the final miRNA feature

by reducing the feature dimensionality by three methods. We

can observe from Figure 5 that PMMS can distinguish essential

miRNA from unknown essential miRNA in three feature

dimensionality reduction methods. In addition, it also shows

that compared with t-SNE and PCA dimensionality reduction

methods, UMAP is relatively more obvious in distinguishing

the samples.

Discussion

MiRNAs are an important class of single-stranded

ncRNA molecules that have close association with human

diseases. In addition, some miRNAs are also essential

through knocking out gene experiments. Due to the

importance of miRNA to human disease, it is very urgent

to identify potential essential miRNAs. It is also very

important to systematically understand the mechanisms

of the etiology and pathogenesis of diseases. However,

since identifying potential essential miRNAs via biomedical

experiments is expensive and time-consuming, the effective

computational methods for essential miRNAs prediction

are in demand. Currently, some essential miRNAs

prediction methods have been proposed by researchers.

They also provide a basis for the development of new

computational methods.

Conclusion

In this study, we also proposed a new computational

method (PMMS) to predict essential miRNAs. PMMS first

calculated the statistics and structure features based on the

pre-miRNA and miRNA sequences. By considering the timing

characteristic of the pre-miRNA sequence, we also obtained

the original deep learning feature by the BiLSTM model. The

multi-head self-attention-based feature is obtained by original

deep learning feature and multi-head self-attention mechanism.

Furthermore, by further considering the importance of the

subsequence of pre-miRNA to statistics and structure feature

of miRNA, the final deep learning feature is obtained

by weight attention mechanism with the statistics and

structure feature and multi-head self-attention-based feature.

Finally, we concatenated the statistics and structure feature

and the final deep learning feature as an input to the

MLP model to predict essential miRNAs. The experiment
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results demonstrated that our method outperformed other

compared methods and is an effective essential miRNA

prediction approach.

However, despite the effectiveness of PMMS as discussed

above, some limits also exist in this method. The first

limitation is that the number of known essential miRNAs

is relatively small based on the limit of benchmark dataset.

We would construct a new benchmark dataset by extracting

the essential miRNAs from published literatures. In addition,

other biological networks of miRNAs should be considered,

such as miRNA-target associations. Furthermore, new deep

learning model should also be considered based on added

biological networks, such as GCN and other models (48–50).

Therefore, we would develop new computational method to

improve the ACC of essential miRNA prediction method in

the future.
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