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Introduction

Sickle Cell Disease (SCD), a distinct group of β-hemoglobinopathies, includes Sickle

Cell Anemia (SCA) and β-thalassemia (1). An estimate of about 300,000 newborns was

diagnosed with SCA worldwide, mainly in low-income countries such as sub-Saharan

Africa, which contributed to about 75% of this statistic. SCD, a point mutation in the

sixth codon of the β-globin gene (GAG to GTG), led to the replacement of glutamic acid

by valine in the adult hemoglobin (HbA), thus, forming HbS, which in the deoxygenated

state, prone to polymerization, modified the erythrocyte cytoskeleton into the well-

known sickle shaped-form. These cells were susceptible to hemolysis after continuous

oxy-deoxy cycles, contributing to chronic inflammation and nitric oxide depletion, which

would worsen the vascular damage and cause the vaso-occlusion process (1–5).

Inflammation and vaso-occlusion, associated with multisystemic damage, were

responsible for the clinical manifestations, including cardiovascular and pulmonary

diseases, retinopathy, stroke, pain, acute chest syndrome, nephropathy, and priapism,

among others. The diversity of symptoms was associated with the β-globin haplotypes

among SCA patients (2). For example, fetal hemoglobin levels (HbF) could range

from 0.1 to 30%, and those with SCA phenotypes exhibiting HbF persistence might

have minor or lack symptoms (3). The polymorphism in genes associated with the

pathophysiology of SCD, those involved in the chronic inflammatory process and

vascular endothelial dysfunction, were responsible for the various clinical manifestations.

The current research aimed to reduce the disease burden through symptommanagement

to increase the expectancy and quality of life, which is a serious concern, mainly for

developing countries, where the child mortality rate could go up to 90% before the age

of five (4). For developed countries, such as the US, a reduction of up to 30 years in life

expectancy was found by comparing SCD patients with healthy individuals, which seems

inconceivable given the scientific progress in recent years (5).
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Allogeneic hematopoietic stem cell transplant (allo-HSCT),

the curative approach for SCA, could be applied to a small

number of patients since about only 20% of them have a

healthy HLA-identical sibling donor (6). In addition, the high

cost, which was valued in the US estimate at $406,193, chronic

graft vs. host disease, and high rates of morbidities made such

an approach difficult in the clinical routine (7). Genetically

modified autologous stem cells were an alternative for curing

that included correcting the mutation associated with the

disease through gene editing (i.e., CRISPR-Cas9), restoring HbF

production by knockout transcription factors such as BCL11A,

or including modified β-globin genes that avoid hemoglobin

polymerization (i.e., LentiGlobin BB305) (7, 8). The cost for gene

therapy was estimated to be above 1 million USD (6), and access

to this strategy was limited, but in the long run, gene therapy

could be a safer alternative than allo-HSCT.

Clinical care included focusing on hydration, immunization,

blood transfusion, and pain management (9). The most difficult

part of SCA care was the limited number of approved

drugs to reduce and prevent the symptoms, which included

only four drugs, approved by the US FDA: hydroxyurea

(HU), L-glutamine, crizanlizumab, and voxelotor (10). Under

the preclinical perspective, the drug discovery was focused

on preventing HbS polymerization, vascular adhesion, and

coagulation; reducing the inflammatory process, oxidative stress,

and nitric oxide/sCG/cGMP pathway impacts; and promoting

HbF induction (11, 12). HU promoted the HbF induction,

a validated approach, for which it acted through pleiotropic

effects, including the activation of the enzyme sGC, which

increases the level of cGMP; and the downregulation of the

silencing transcription factors BCL11A, KLF-1, and MYB (13,

14). The regulation of the expression of the gamma-globin gene

was themolecular basis for HbF induction.Medicinal Chemistry

approaches were used to design new compounds to inhibit

epigenetic enzymes, and transcription factors, act directly on the

NO/sCG/cGMP pathway and induce HbF production.

During the preclinical stage, the identification of HbF

inducer used phenotypic assays culture cells (i.e., K562;

CD34+, HUDEP-2 cells). The preliminary results obtained from

screening were validated by a secondary assay using different

cell lines since the use of human CD34+ progenitor cells were

mandatory to reduce false-positive results. In vivo assays using

transgenic animals were performed to confirm the efficacy of

the HbF-inducing agent. One of the first HbF-inducing agents,

except for HU, investigated, was the short-chain fatty acids.

The preclinical data suggested its potential as a new drug;

however, the irregular and poor pharmacokinetics limited its

use in humans. Moreover, the clinical trials of sodium 2,2-

dimethylbutyrate revealed a limited effect by increasing at 2%

the levels of HbF, and only 2.7% when combined with HU

(NCT01322269) (15). Molecular studies for short-chain fatty

acids induced HbF through inhibition of histone deacetylase

(HDAC) enzymes. HDAC, an epigenetic enzyme constituted of

eighteen HDAC isoforms distributed in four classes: I (HDAC-

1, 2, 3, and 8), IIA (HDAC-4, 5, 7, and 9), and IIB (HDAC-6

and 10), III (sirtuins 1–7), and IV (HDAC-11). HDAC, acted

by removing the acetyl group from ε-N-acetyl-lysine in histone

tails, and thus, regulated gene transcription of the γ-globin gene,

whose expression provided selective inhibition of HDAC-1 and

HDAC-2 (16). Structural requirements to design selective class

I, specifically HDAC-1 and HDAC-2, were described elsewhere

(17). Compound ACY-957, a 2-aminobenzamide derivative,

selectively inhibited HDAC-1 and HDAC-2 with IC50 values

of 7 nM and 18 nM, respectively, and showed a favorable

pharmacokinetic profile in mammals and rodents in preclinical

studies. For example, monkeys treated with ACY-957 (25 and

75 mg/Kg) increased HbF levels, but white blood suppression

observed during the treatment disappeared after washout time.

Alternative schemes considering non-daily administration were

well tolerated (Figure 1).

The inhibition of epigenetic enzymes was pursued, including

lysine-demethylase 1 (LSD-1), which had pronounced effects on

HbF induction. In vitro and in vivo studies using transgenic

sickle mice validated LSD-1 as a promising target as a HbF-

inducing agent (18, 19). A phase I study (US Clinical trial:

NCT03132324) was initiated using the LSD-1 inhibitor named

INCB059872 but was terminated due to a business decision.

Pharmacological interventions were important to regulate γ-

globin gene expression, and their interference with several

transcription factors, including TR4, BCL11A, KLF-1, MYB,

SOX-6, GATA-1, Nrf2, and FOXO3 had been associated with

HbF production. However, their involvement was a vital

process, and low druggability caused serious concerns about

long-term safety in the use of compounds interfering with

transcription factors. The drug pomalidomide, which modulates

the levels of SOX-6, here, held importance. The additional anti-

inflammatory effects, beyond its interference, helped in SCA

treatment. Phase I trials using pomalidomide at 4 mg/day for 12

weeks reported a significant increase in the HbF levels (Clinical

Trial: NCT01522547) (20).

Guanylate cyclase and the NO/cGMP signaling pathway

presented another promising approach to finding out new HbF-

inducing agents (Figure 1). The involvement of the soluble

guanylate cyclase (sGC) in physiological processes such as

vasodilation, platelet, and leukocyte adhesion had beneficial

pleiotropic effects beyond HbF induction. Olinciguat, an sGC

stimulator able to induce γ-globin mRNA expression up to

2.9-fold at 10µM, received orphan drug status from the

US FDA in 2018 to treat SCA. This drug showed both

anti-inflammatory effects and prevented vaso-occlusion events

(21, 22). A phase-II trial (Clinical Trial: NCT03285178)

was terminated, revealing that the drug was safe and well

tolerated by SCA patients. As NO levels were reduced in

SCA patients, its reestablishment could improve vascular

homeostasis. The beneficial effects of NO-donors to increase

HbF levels are accompanied by concerns regarding its adverse
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FIGURE 1

Emerging HbF inducers for Sickle Cell Disease.

cardiovascular effects. Thus, the kinetic effects of NO-release

as well as the use of appropriate formulations need further

investigation. A phase III trial with inhaled NO (Clinical

Trial: NCT03285178) did not show a reduction in the time

to solve the vaso-occlusive crisis, although other outcomes

improved (23).

The current status of some clinical trials found in the

US clinical trials database (https://clinicaltrials.gov/) involving

HbF-inducing agents was still limited. Some of these studies are

investigating the use of HU in pediatric patients (NCT01506544;

NCT00305175) or in combination with other drugs (i.e.,

crizanlizumab - NCT03814746; tadalafil - NCT05142254; and

clotrimazole - NCT00004492). It has been estimated that the

rate of HU failure is about 30%, however, patients-related

issues such as the lack of treatment adherence, adverse-effects,

failures to health access and medicines, and a non-optimal

dose schemes could be the main reasons to contribute for so

high levels of failure, suggesting that rate of non-responsiveness

must be lower. The investigations on safe and efficacious

new drugs acting as HbF-inducing agents are valuable and

could represent an alternative for HU. Despite the expectancy

toward the gene editing technologies regarding the cure of

genetic diseases, the implementation of this approach into

the clinic is expensive and demands medical facilities, highly

specialized workers, and involves high risks for patients.

Considering the diversity of SCD symptoms, the use of HbF-

inducing drugs will represent an alternative for many patients,

mainly in low-income countries for the next few years. An

efficacious treatment was to take into account interventions

due to the multifactorial aspects of SCA and the diversity

of phenotypes through various pathways to control the main

symptoms in many aspects. There were a lot of perspectives

regarding the future of HbF-inducers, and the authors believed

that additional efforts to investigate the drug discovery of

polypharmacology drugs could provide a promising start. Even

after advancements in gene therapy, the use of small molecules

would be an important part of the treatment, considering that

the diversity of clinical manifestations and the NO/sCG/cGMP

pathway to be a promising approach for drug discovery in

the future.
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