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Background: Di�erent levels of evidence related to the variable responses of

individuals to drug treatment have been reported in various pharmacogenomic

(PGx) databases. Identification of gene-drug pairs with strong association

evidence can be helpful in prioritizing the implementation of PGx guidelines

and focusing on a gene panel. This study aimed to determine the

pharmacogenes with the highest evidence-based association and to indicate

their involvement in drug-gene interactions.

Methodology: The publicly available datasets CPIC, DPWG, and PharmGKB

were selected to determine the pharmacogenes with the highest drug

outcome associations. The upper two levels of evidence rated by the three

scoring methods were specified (levels A–B in CPIC, 3–4 in DPWG, or 1–2

levels in PharmGKB). The identified pharmacogenes were further ranked in this

study based on the number of medications they interacted with.

Results: Fifty pharmacogenes, with high to moderately high evidence of

associations with drug response alterations, with potential influence on the

therapeutic and/or toxicity outcomes of 152 drugs were identified. CYP2D6,

CYP2C9, CYP2C19, G6PD, HLA-B, SLCO1B1, CACNA1S, RYR1, MT-RNR1, and

IFNL4 are the top 10 pharmacogenes, where each is predicted to impact

patients’ responses to ≥5 drugs.

Conclusion: This study identified the most important pharmacogenes

based on the highest-ranked association evidence and their frequency of

involvement in a�ecting multiple drugs. The obtained data is useful for

customizing a gene panel for PGx testing. Identifying the strength of scientific

evidence supporting drug-gene interactions aids drug prescribers in making

the best clinical decision.
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Introduction

Multiple mutations located in pharmacogenes which encode

proteins (e.g., metabolizing enzymes and drug transporters)

(1) may affect drug disposition, resulting in differences in

drug pharmacology (2, 3). Hence, pharmacogenomic (PGx)

testing is a very useful approach for individualizing patient

therapies and predicting their variable responses to drugs

according to their genotype (4, 5). Many patients have poor

drug outcomes; for example, 30–60% of patients taking beta-2

adrenergic agonists (antiasthmatics), 10–30% of patients taking

angiotensin-converting enzyme (ACE) inhibitors, 15–25% of

patients taking beta blockers, and 30–70% of patients taking

statins do not respond well to their drug therapy (6). In

addition, adverse drug reactions (ADRs) are a major problem

that may lead to higher rates of hospitalization and increased

morbidity, resulting in a significant strain on healthcare systems

(7, 8). These may be partially avoided by screening the

genetic backgrounds of patients and identifying the people

at risk.

Currently, several clinical guidelines and PGx

recommendations, such as the 73 recommendations developed

by the international Clinical Pharmacogenetics Implementation

Consortium (CPIC; https://cpicpgx.org/) (9, 10) and the 63

recommendations suggested by the Dutch Pharmacogenetics

Working Group (DPWG) established by the Royal Dutch

Pharmacist’s Association (KNMP; https://www.knmp.nl/) (11),

are routinely used in multiple advanced medical centers in

Western countries (12). In addition, the Pharmacogenomics

Knowledge Base (PharmGKB; www.pharmgkb.org) (13),

established by Stanford University and funded by the

National Institutes of Health (NIH), is a large comprehensive

pharmacogenomics dataset that annotates existing clinical

practice guidelines (14, 15). The guidelines provide clear

Abbreviations: ACE, Angiotensin-Converting Enzyme; ADRs, Adverse

Drug Reactions; ACMG, American College of Medical Genetics and

Genomics; CPNDS, Canadian Pharmacogenomics Network for Drug

Safety; CPIC, Clinical Pharmacogenetics Implementation Consortium;

DPWG, Dutch Pharmacogenetics Working Group; EMA, European

Medicine Agency; eMERGE, electronic Medical Records and Genomics;

HCSC, Canadian health agency; Health Canada (Santé Canada);

HCV, Hepatitis C Virus; HLA, Human Leukocyte Antigen; IGNITE,

Implementing GeNomics In practice; JAK-STAT, Janus kinase-signal

transducer and activator of transcription; MHC, Major Histocompatibility

Complex; NIH, National Institutes of Health; NSAIDs, Non-Steroidal

Anti-Inflammatory Drugs; PGX, Pharmacogenomic (s); PharmGKB,

Pharmacogenomics Knowledge web-Base; PMDA, Pharmaceuticals

and Medical Devices Agency; RNPGx, French National Network of

Pharmacogenetics; SARS-CoV-2, Severe Acute Respiratory Syndrome

Coronavirus 2; US, United States; USFDA, United States Food and Drug

Administration; VIP, Very Important Pharmacogenes.

advice to change, avoid, or monitor drug therapies based

on patients’ unique genotypes; such genotypes that require

changes in the treatment plan are known as actionable

genotypes (16).

The existing scientific evidence has driven a number of

worldwide regulatory agencies, in particular, the United States

Food and Drug Administration (USFDA) (17), the American

College of Medical Genetics and Genomics (ACMG) (18),

the European Medicine Agency (EMA) (19), The French

National Network of Pharmacogenetics (RNPGx) (20), the

Pharmaceuticals and Medical Devices Agency (PMDA) in

Japan (21), the Canadian Pharmacogenomics Network for

Drug Safety (CPNDS) (22), and the Canadian Health Agency

[Health Canada (Santé Canada) (HCSC)] (22), to be in favor

of selecting particular genetic tests prior to the administration

of pharmacogenetic drugs. However, the selected drugs to

test for and the PGx information described in the drug

labels vary between different health agencies based on their

variable assessment of the evidence level for gene-drug

association and actionability (23, 24). For example, as of

September 14, 2022, the number of drugs where genetic

testing is required or recommended prior to drug use by

FDA, EMA, HCSC, and PMDA is 127, 75, 45, and 15,

respectively, as assessed by PharmGKB curators and add

the refernce number (13). Currently, several hundred of

genes and thousands of genetic markers are described in

various PGx databases. Therefore, this study aimed to identify

the most important pharmacogenes with robust association

evidence to facilitate the implementation of the relevant

clinical guidelines.

Methodology

This study focused on pharmacogenes with well-established

drug response associations according to the evidence shown in

three reliable scoring methods: CPIC, DPWG and PharmGKB

consortia. CPIC and DPWG databases which focus on the

clinical actionability of gene/drug pairs were selected based

on certain criteria: (i) they rank associations between genes

and drug outcomes based on peer-reviewed publications, (ii)

all possible genes are included, (iii) focus on clinical utility of

PGx tests and provide gene–drug dosing guidelines, (iv) the

most reliable PGx databases in the US and Europe. In addition,

PharmGKB was selected as a scoring database as it (i) provides

evidence levels ranking too based on clinical annotations

reported in the curated literature (25). Thus, PharmGKB is

considered the preeminent comprehensive pharmacogenomic

global database which assesses the clinical validity of PGx data

reported in the literature. Other PGx useful databases are also

available but were not selected in our study as no scoring

system encompassed and some resources were designed to cover
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limited genes. For example, Helix PGx database (https://github.

com/myhelix/helix-pgxdb) provides allelic information related

to four genes only (CYP2C9, CYP2C19, CYP2D6, and CYP4F2),

while PharmVar database was designed to cover PGx data for

cytochrome P450 genes but recently three more non-CYP genes

were introduced (NUDT15, SLCO1B1, and DPYD). Similarly,

the Canadian Pharmacogenomics Network for Drug Safety

(CPNDS) was not considered as it is focused only on genetic

markers relevant to severe and rare adverse drug reactions (26).

The French database (RNPGx) provides PGx guidelines and

genetic testing recommendations but was not selected in this

study as the data are not publicly available and the used level

of evidence was assessed based on the functionality of variants

rather than relying on the quality of supporting literature. In

contrast, the selected publicly available databases in our study

were screened to identify the most important pharmacogenes

of interest based on strong scientific evidence. Selection of

gene panel in our approach was not limited to a specific

drug category.

As of September 14, 2022, the existing association

pairs (gene/drug effect) reported by the CPIC reached 448

associations between 271 drugs and 119 genes (9). A much

larger number of genes (n = 1,803) are described in the

PharmGKB database affecting 747 drugs (13). In contrast,

limited genes (n = 13) and drugs (n = 53) have been reported

by DPWG (11). In our study, only the upper two levels of

evidence ranked with high to moderately high association

gene/drug pairs (those classified as A-B levels by CPIC, level

3–4 by DPWG, or 1–2 levels by PharmGKB) were included.

Other pairs with lower association significance were excluded

because of inadequate evidence of actionability. The levels of

evidence described by CPIC and PharmGKB were identified

directly from the searching engine provided by CPIC website

(https://cpicpgx.org/genes-drugs/). The used searching terms

included the PharmGKB evidence levels (1A, 1B, 2A, and

2B) which enabled us to identify all ranked drug-gene pairs

under these levels. The obtained results were further confirmed

through a separate search in the PharmGKB searching engine

(https://www.pharmgkb.org/). The full table of CPIC level

status can be downloaded as an excel sheet where filtering

is possible to restrict the list of A and B levels. In addition,

the gene-drug pairs suggested by DPWG (level 3–4) was

screened manually through reviewing the latest PGx updated

report (01/02/2022, https://www.knmp.nl/media/1058). The

definitions of the different levels of evidence related to

the three selected consortia are presented in Table 1. The

extent of interaction of each shortlisted gene with various

medications was investigated to highlight the major genes

with higher involvement in drug-gene interactions. The

study was approved by the Institutional Review Board (IRB)

at King Abdullah International Medical Research Center

(KAIMRC) (NRC21R/394/09).

Results

Genes which met the evidence criteria
reported by CPIC, DPWG, and PharmGKB

As illustrated in Figure 1, the number of pharmacogenes

that fulfilled the inclusion criteria and met the indicated

levels of association evidence according to CPIC, DPWG, and

PharmGKB scoring was 30, 14, and 44, respectively. Thirteen

of the pharmacogenes (ABCG2, CYP2B6, CYP2C19, CYP2C9,

CYP2D6, CYP3A5, DPYD, HLA-B, NUDT15, SLCO1B1,

TPMT, UGT1A1, and VKORC1) labeled by DPWG were also

considered by both CPIC and PharmGKB. In contrast, another

11 genes [CACNA1S, CFTR, CYP4F2, G6PD, HLA-A, IFNL3

(IL28B), IFNL4, MT-RNR1, NAT2, RYR1, and SCN1A] were

reported only by CPIC and PharmGKB. In addition, the Factor

V Leiden (FVL or F5) gene was only suggested by DPWG

and PharmGKB among the list supported by high evidence.

Six genes (CPS1, GBA, HPRT1, NAGS, OTC, and POLG)

were recommended by CPIC only, whereas the remaining 19

evidently supported genes are also appeared in the PharmGKB

list. Of the 44 pharmacogenes reported in the PharmGKB

database with strong evidence, 28 genes were described by

PharmGKB as very important pharmacogenes (VIP). The VIP

genes listed by PharmGKB are classified into three categories

based on the seriousness of drug outcome regardless of evidence

levels: Tier 1 (genes with considerable evidence), Tier 2 (genes

with limited evidence), and cancer genome (genes affecting

anticancer efficacy and toxicity) (n = 34, 25, and 9 VIPs,

respectively) (13). Among the Tier 1 VIP genes, 27 (79.4%)

fit the evidence levels chosen in this study. The remaining

Tier 1 genes (n = 7) with low association evidence, which

were excluded, were ABCB1, ADRB1, COMT, CYP2C8, DRD2,

GSTP1, and TYMS. In contrast, only one VIP gene in the

Cancer Genome group (EGFR) met the evidence criteria, but

none of the Tier 2 genes were included. The total number of

unique pharmacogenes that met the top two highest rankings of

evidence by the three selected PGx consortia was 50 (Table 2);

descriptions of their names, gene ontology, and biological

functions are shown in the Supplementary Table.

Medications a�ected by the suggested
genes

The 50 genes indicated in Table 2 have the potential to

impact 152 therapeutic drugs listed in Table 3. Cytochrome

P450 genes (CYP2D6, CYP2C19, and CYP2C9) were identified

among the top five genes affecting the outcomes of a larger

number of medications (n = 32, 16, and 13, respectively)

(Table 2). Furthermore, G6PD and HLA-B, which came in

second and fifth, respectively, were associated with variable

phenotypes related to 29 and 10 drugs, respectively. The other
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TABLE 1 Definitions of di�erent levels of gene-drug association evidence.

Levels of

evidence

DPWG CPIC PharmGKB

High 4 = Published controlled studies of

good quality and having relevant

pharmacokinetic or clinical endpoints.

A = Strong or moderate recommendations

which should be used to change prescribing of

affected drug.

1A = The association is endorsed by a medical

society into PGx guideline, or implemented at

a major health system.

1B = The association must be replicated in

more than one cohort with significant p values,

and preferably have a strong effect size.

Moderately

high

3 = Published controlled studies of

moderate quality and having relevant

pharmacokinetic or clinical endpoints.

B = Moderate recommendations which could

be used to change prescribing of the affected

drug because alternative therapies/dosing are

extremely likely to be as effective and as safe as

non-genetically based dosing.

2A = The association with a variant located

within a VIP (Very Important Pharmacogene).

So functional significance is more likely

2B = The association must be replicated but

there may be some studies that do not show

statistical significance, and/or the effect size

may be small.

Moderately

low

2 = Published case reports and well

documented case series.

C = There are published studies at varying levels

of evidence, some with mechanistic rationale,

but no prescribing actions are recommended.

3 = An association based on a single significant

(not yet replicated) study or evaluated in

multiple studies but lacking clear evidence of an

association.

Low 1 = Published incomplete case reports

and Product information.

D = There are few published studies, clinical

actions are unclear.

4 = Case report, non-significant study or

in vitro, molecular or functional assay.

top-ranked genes include CACNA1S, MT-RNR1, RYR1, and

SLCO1B1 where each interacts with seven medications, in

addition to IFNL4 which may interact with five medications.

Discussion

The large pharmacogenomic information and its complexity

make it difficult for healthcare providers to implement

PGx guidelines (27, 28). Therefore, prioritizing the PGx

recommendations and focusing on the more important genes

affecting drug responses based on the level of evidence reported

by distinctive PGx databases can be supportive for physicians in

making appropriate clinical decisions (29). Hence, this research

attempted to narrow the extensive repository of data and

provides a practical evidence-based approach that suggests a

panel of genes for clinical preemptive testing. The suggested

panel described multiple variants in 50 genes that potentially

affected 152 drugs based on high the scientific evidence indicated

collectively in the CPIC, DPWG, and PharmGKB. However,

several hundred gene/drug pairs with lower associations can

be reassessed and possibly added to the suggested panel in

the future as more information and/or stronger evidence

become available.

Designing a selected gene panel to explore precise genomic

sequences of interest is a unique approach to minimize genetic

testing costs, decreases the burden of analyzing big data, and

gives more chances to examine a larger number of samples

(30). Our suggested PGx panel is novel as it covers broad

drugs from various therapeutic areas and encompasses 100% of

genes rated among the upper two levels of evidence described

in the three selected databases. Some genes (n = 40) which

were classified by PharmGKB as VIP based on their functions

were excluded from our suggested gene list as they failed to

meet the evidence criteria. Unlike our panel, several PGx gene

panels are commercially available but full coverage of genes with

high evidence is lacking. For example, coverage of PharmGKB

genes (ranked as 1A, 1B, 2A, and 2B) by six widely used

commercial panels is unsatisfactory (22) and ME [1A (19%),

1B (27%), 2A (32%), 2B (32%)], Living DNA [1A (60%), 1B

(64%), 2A (58%), 2B (59%)], PharmacoScan [1A (63%), 1B

(68%), 2A (65%), 2B (70%)], DMET Plus [1A (44%), 1B (36%),

2A (45%), 2B (11%)], Ion AmpliSeq Pharmacogenomics [1A

(37%), 1B (36%), 2A 35%), 2B (8%)], and IPLEX PGx Pro

[1A (38%), 1B (32%), 2A (38%), and 2B (5%)] (31). Similarly,

coverage of 19 CPIC genes with strong evidence in the six

largest PGx panels available in the US was also incomplete [Drug

Response Panel (84%), PGXONE Plus (74%), PGx Complete

(63%), PharmacoDx (53%), RightMed (79%), and Polypharmacy

Comprehensive Panel (74%)] (32).

Recently, the ClinGen database, founded by the National

Human Genome Research Institute in the United States (US)

proposed a list of pharmacogenes with high clinical relevance

(33). In contrast to our study, ClinGen suggested a higher
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FIGURE 1

Distribution of pharmacogenes with highest association evidence according to the Dutch Pharmacogenetics Working Group (DPWG), the

Clinical Pharmacogenetics Implementation Consortium (CPIC), and Pharmacogenomics Knowledge Base (PharmGKB).

number of genes (n = 127) based on wider levels of association

evidence reported in CPIC (Levels A–D) and PharmGKB (Levels

A and B). In our study, we used more consistent criteria by

restricting the list to drug-gene associations reported among

the upper two levels of evidence only of all involved databases;

therefore, we excluded levels C and D of the CPIC. In addition

to the CPIC and PharmGKB, commonly used PGx databases

in the US, we suggested the nomination of the genes listed by
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TABLE 2 Pharmacogenes with satisfactory evidence of drug response associations based on CPIC, PharmGKB and DPWG.

Genes

(n = 50)

Alleles/SNPs Interacting drugs Total no. of

drugs

ABCG2 rs2231142 (T) Allopurinol, Rosuvastatin 2

ACE rs1799752 (del) Captopril 1

ADD1 rs4961 (T) Hydrochlorothiazide 1

ADRB2 rs1042713 (A) Salmeterol 1

APOE rs7412 (C) Atorvastatin 1

ATIC rs4673993 (T) Methotrexate 1

CACNA1S rs772226819 (A),

rs1800559 (T)

Desflurane, Enflurane, Halothane, Isoflurane, Methoxyflurane, Sevoflurane,

Succinylcholine

7

CES1 rs71647871 (A) Clopidogrel 1

CFTR 34 SNPs Ivacaftor 1

CHRNA5 rs16969968 (A) Nicotine 1

CPS1 rs1047891 (A) Valproic acid 1

CYP2A6 *2, *4A, *7, *9A, *10, *12, *17, *19, *20,

*24A, *26, *27, *28A

Nicotine 1

CYP2B6 *4 [rs2279343 (G)], *6 [rs3745274 (T)+

rs2279343 (G)]

Bupropion, Methadone 4

rs3745274 (T), *6, rs28399499 (C), *18

[rs3745274 (T)+ rs28399499 (C)], *26

[*6+rs3826711 (G)]

Efavirenz

rs3745274 (T), rs28399499 (C) Nevirapine

CYP2C9 rs1799853 (T, *2), rs1057910 (C, *3) Acenocoumarol, Celecoxib, Flurbiprofen, fluvastatin, Fosphenytoin, Ibuprofen,

Lornoxicam, Meloxicam, Phenytoin, Piroxicam, Siponimod, Tenoxicam, Warfarin

13

CYP2C19 rs4244285 (A, *2), rs4986893 (A, *3),

rs12248560 (T, *17)

Amitriptyline, Citalopram, Clomipramine, Clopidogrel, Dexlansoprazole, Doxepin,

Escitalopram, Imipramine, Lansoprazole, Brivaracetam, Omeprazole, Pantoprazole,

Rabeprazole, Sertraline, Trimipramine, Voriconazole

16

CYP2D6 *3, *4, *5, *6, *9, *10, *17, *29 *41 or

duplication

Amitriptyline, Aripiprazole, Atomoxetine, Clomipramine, Codeine, Desipramine,

Doxepin, Eliglustat, Flecainide, Fluvoxamine, Haloperidol, Hydrocodone, Imipramine,

Metoprolol, Mirtazapine, Nortriptyline, Oliceridine, Ondansetron, Oxycodone, Paroxetine,

Pimozide, Pitolisant, Propafenon, Risperidone, Tamoxifen, Tetrabenazine, Tramadol,

Trimipramine, Tropisetron, Venlafaxine, Vortioxetine, Zuclopenthixol

32

CYP3A4 rs28371759 (G, *18), rs2242480 (T, *36) Fentanyl 3

rs67666821 (TT, *20), rs35599367 (A, *22), Quetiapine

rs4646437 (A), rs4986910 (G, *3),

rs28371759 (G, *18), rs67666821 (TT, *20),

rs35599367 (A, *22), rs2242480 (T, *36)

Tacrolimus

CYP3A5 rs776746 (A, *1) Tacrolimus 1

CYP4F2 rs2108622 (T, *3) Acenocoumarol, Phenprocoumon, Warfarin 3

DPYD rs3918290 (A, *2A), rs55886062 (G, *13),

rs56038477 (A), rs67376798 (T)

Capecitabine, Fluorouracil, Tegafur 3

EGFR rs121434568 (T), rs121434569 (C) Gefitinib 2

rs121434569 (C) Erlotinib

FCGR3A rs396991 (A) Rituximab 1

FVL rs6025 (A) Contraceptives with Estrogen 1

GBA 48 SNPs [e.g. rs76763715 (C), rs79653797

(G)]

Velaglucerase alfa 1

(Continued)
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TABLE 2 (Continued)

Genes

(n = 50)

Alleles/SNPs Interacting drugs Total no. of

drugs

G6PD 68 SNPs [e.g. rs1050829 (G), rs1050828

(A), rs5030868 (T)]

Aspirin, Chloramphenicol, Chlorpropamide, Ciprofloxacin, Dapsone, Dimercaprol,

Glibenclamide, Glimepiride, Glipizide, Mafenide, Mesalazine, Methylene blue,

Moxifloxacin, Nalidixic acid, Nitrofurantoin, Norfloxacin, Pegloticase, Phenazopyridine,

Primaquine, Probenecid, Quinine, Rasburicase, Sodium nitrite, Sulfacetamide,

Sulfadiazine, Sulfamethoxazole / Trimethoprim, Sulfasalazine, Sulfisoxazole, Tafenoquine

29

HLA-A *31:01 Carbamazepine 2

*33:03 Allopurinol

HLA-B *13:01 Dapsone 10

*15:02 Carbamazepine, Fosphenytoin, Lamotrigine, Oxcarbazepine, Phenytoin

*15:11 Carbamazepine

*57:01 Abacavir, Flucloxacillin

*58:01 Allopurinol

*59:01 Methazolamide

HLA-C *03:01 Allopurinol 3

*01:02 Methazolamide

*04:01 Nevirapine

HLA- DPB1 *02:01 Aspirin 1

HLA-DRB1 *01:01 Nevirapine 1

HPRT1 del Mycophenolic acid 1

IFNL3

(IL28B)

rs11881222 (rs368234815, G) Peginterferon Alfa-2a, Peginterferon Alfa-2b, Ribavirin 3

IFNL4 rs12979860 (T), rs11322783 (G), rs8099917

(G)

Boceprevir, Peginterferon Alpha-2a, Peginterferon Alpha-2b, Ribavirin, Telaprevir 5

ITPA rs1127354 (C), rs7270101 (C) Peginterferon Alpha-2b, Ribavirin 2

KIF6 rs20455 (C) Pravastatin 1

MTHFR rs1801133 (G) Methotrexate 1

MT-RNR1 rs267606617 (G), rs267606619 (T) Amikacin, Gentamicin, Kanamycin, Paromomycin, Plazomicin, Streptomycin, Tobramycin 7

NAGS 29 SNPs Carglumic acid, Valproic acid 2

NAT2 4 slow acetylator SNPs (*5, *6, *7, 14*), 3

rapid or intermediate acetylators (*4, *12,

*13)

Hydralazine, Isoniazid 2

NUDT15 rs116855232 (T) Azathioprine, Mercaptopurine, Thioguanine 3

OTC rs72554356 (T) Valproic acid 1

POLG rs2307441 (C) Divalproex sodium, Valproic acid 2

RYR1 44 SNPs [e.g. rs111888148 (A),

rs112563513 (A)]

Desflurane, Enflurane, Halothane, Isoflurane, Methoxyflurane, Sevoflurane,

Succinylcholine

7

SCN1A rs3812718 (T) Carbamazepine, Phenytoin 2

SLC19A1 rs1051266 (C) Methotrexate 1

SLCO1B1 rs4149056 (*5, C), rs2306283 (*1B, G) Atorvastatin, Fluvastatin, Lovastatin, Pitavastatin, Pravastatin, Rosuvastatin, Simvastatin 7

TNF-α rs1800629 (A) Etanercept 1

TPMT *2, *3A, *3B, *3C Azathioprine, Mercaptopurine, Thioguanine 3

UGT1A1 rs8175347 [(TA)7R, *28] Atazanavir, Belinostat, Irinotecan, SN-38 4

VKORC1 rs9923231 (A, *2), rs7294 (C, *3),

rs9934438 (A)

Warfarin 1

*Star allele nomenclature given to identify genetic variants.
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TABLE 3 List of medications predicted to be impacted by the 50 pharmacogenes.

PGx drugs (n = 152)

Abacavir Dimercaprol Irinotecan Ondansetron Sertraline

Acenocoumarol Divalproex sodium Isoflurane Oxcarbazepine Sevoflurane

Allopurinol Doxepin Isoniazid Oxycodone Simvastatin

Amikacin Efavirenz Ivacaftor Pantoprazole Siponimod

Amitriptyline Eliglustat Kanamycin Paromomycin SN-38

Aripiprazole Enflurane Lamotrigine Paroxetine Sodium nitrite

Aspirin Erlotinib Lansoprazole Peginterferon Alfa-2a Streptomycin, Succinylcholine

Atazanavir Estradiol containing contraceptives Lornoxicam Peginterferon Alfa-2b Sulfacetamide, Sulfadiazine

Atomoxetine Escitalopram Lovastatin Pegloticase Sulfamethoxazole/Trimethoprim

Atorvastatin Etanercept Mafenide Phenazopyridine Sulfasalazine

Azathioprine Fentanyl Meloxicam Phenprocoumon Sulfisoxazole

Belinostat Flecainide Mercaptopurine Phenytoin Tacrolimus

Brivaracetam Flucloxacillin Mesalazine Pimozide Tafenoquine

Bupropion Fluorouracil Methadone Piroxicam Tamoxifen

Capecitabine Flurbiprofen Methazolamide Pitavastatin Tegafur

Captopril Fluvastatin Methotrexate Pitolisant Telaprevir

Carbamazepine Fluvoxamine Methoxyflurane Plazomicin Tenoxicam

Carglumic acid Fosphenytoin Methylene blue Pravastatin Tetrabenazine

Celecoxib Gefitinib Metoprolol Primaquine Thioguanine

Chloramphenicol Gentamicin Mirtazapine Probenecid Tobramycin

Chlorpropamide Glibenclamide Moxifloxacin Propafenone Tramadol

Ciprofloxacin Glimepiride Mycophenolic acid Quetiapine Trimipramine

Citalopram Glipizide Nalidixic acid Quinine Tropisetron

Clomipramine Haloperidol Nevirapine Rabeprazole Valproic acid

Clopidogrel Halothane Nicotine Rasburicase Velaglucerase alfa

Codeine Hydralazine Nitrofurantoin Ribavirin Venlafaxine

Dapsone Hydrochlorothiazide Norfloxacin Rituximab Voriconazole

Desflurane Hydrocodone Nortriptyline Risperidone Vortioxetine

Desipramine Ibuprofen Oliceridine Rosuvastatin Warfarin

Dexlansoprazole Imipramine Omeprazole Salmeterol Zuclopenthixol

DPWG, which is the most accepted consortium used in Europe,

although all its list of genes (n = 13) are already included in the

other two selected databases (CPIC and PharmGKB). Focusing

on drug-gene associations that are ranked among the top two

level of evidence may become a trend in PGx research. Several

recent studies implemented this approach; for example, one

study assessed the genetic coverage of six various PGx assays.

These assays were compared to each other to determine the best

assay with uppermost coverage of genes with highest evidence

focusing on level 1 A–B and 2 A–B genes listed by PharmGKB

(31). Another study screened 293 genes among Slovenians

to identify their potential pharmacogenetic characteristics,

however, they focused only on 85 variants with association

evidence level of PharmGKB 1A or 1B level (n = 24 variants)

and level 2A or 2B (61 variants) (34). Very recently, 1116 Hong

Kong Chinese subjects were investigated to assess frequency of

133 PGx variants with highest level of evidence according to

PharmGKB (35). The databases we used generated their PGx

data from various populations with different ethnicities, thus,

our suggested gene-panel can be customized to suit the unique

genetic make-up of a selected population.

The data obtained in our study clearly showed that CYP2D6

is the most important gene because of the potential probability

of metabolizing 32 clinically used drugs as supported by strong

evidence. CYP2D6, located on chromosome 22 and expressed

mainly in the liver, plays amajor role in the elimination of several

xenobiotic molecules and consumed chemicals in addition to

its primary function in drug metabolism (36). Patients carrying

CYP2D6 variants with decreased activity, such as the ∗9 and
∗10 alleles, or carrying inactive alleles such as the ∗3-∗8 show

low gene function, moderate or poor drug metabolization

(37). The intake of prodrugs, for example, codeine, requires

satisfactory metabolism by CYP2D6 to be converted into

its active substance (morphine). Thus, patients with slow

metabolizing phenotypes may fail to achieve adequate analgesia

and are predicted to develop more adverse reactions related

Frontiers inMedicine 08 frontiersin.org

https://doi.org/10.3389/fmed.2022.1001876
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Alshabeeb et al. 10.3389/fmed.2022.1001876

to the accumulation of codeine (38). In this case, alternative

drugs (non-CYP2D6 substrates), such as paracetamol, non-

steroidal anti-inflammatory drugs (NSAIDs), or morphine, are

recommended (39).

In our study, other cytochrome P450 genes, such as

CYP2C9 and CYP2C19, located on chromosome 10, were also

emphasized by the three selected PGx databases among the

pharmacogenes that affect the metabolism of large numbers

of drugs. Cytochrome P450, in particular CYP2D6, CYP2C9,

and CYP2C19, are commonly tested in clinical practice, and

their roles are well understood (16). Analysis of these genes

prior to the administration of relevant drugs aims to optimize

their therapeutic outcomes (40). For instance, serious incidents

of arterial thrombosis may develop as a result of therapy

failure of clopidogrel, a pro-drug platelet inhibitor, which

requires CYP2C19 metabolism to be converted to its active

drug metabolite. Clopidogrel resistance was frequently seen in

patients positive for ∗2 and ∗3 alleles in CYP2C19 (41). Likewise,

multiple cases of therapy resistance and thromboembolism or

high level of sensitivity and bleeding related to the anticoagulant

agent, warfarin, were reported, associated with variable risk

variants observed in CYP2C9 (42, 43). Patients with ∗2 and/or
∗3 mutations in CYP2C9 are slower metabolizers of warfarin

by 10% approximately (44), which makes a significant impact

on warfarin accumulation in blood as a result of its narrow

therapeutic index.

The glucose-6-phosphate dehydrogenase (G6PD) gene came

next to CYP2D6 in terms of the number of affected drugs (n

= 29). Individuals with enzymatic deficiency of G6PD, with

mutations on the X chromosome, are generally asymptomatic;

however, they may experience acute hemolytic anemia upon

exposure to the indicated medications, in particular sulfa

drugs, and some foods such as fava beans (45). Preemptive

genetic testing can help prevent such incidents, which can be

fatal unless treated early and properly (46). Although various

quantitative spectrophotometric assays are available to measure

G6PD activity, enzyme deficiency can be masked in the case

of marked reticulocytosis, a heterozygous female, a very high

white blood cell count, and in recent blood transfusions (47).

Thus, molecular testing should be considered. A wide range of

polymorphisms in the human leukocyte antigen (HLA)-B loci,

located in the major histocompatibility complex (MHC) region

on chromosome 6, have been shown to be risk factors for various

adverse reactions (e.g., hypersensitivity and hepatotoxicity)

related to nine different medications (48, 49). HLA-B∗57:01 is

a famous example of an allele seriously associated with life-

threatening reactions as a consequence of exposure to abacavir

(induces severe hypersensitivity) (50) and flucloxacillin (induces

liver injury) (51). In addition, testing for various variants in

HLA-A, HLA-B, and HLA-C is helpful in predicting patients at

risk of developing severe cutaneous reactions induced by several

drugs, such as carbamazepine, allopurinol (52), and lamotrigine

(53). The solute carrier organic anion transporting polypeptide

1B1 (SLCO1B1) gene, located on chromosome 12, encodes

organic anion transporting polypeptide 1B1 (OATP1B1), which

acts as a drug uptake transporter. The 1B1∗15 haplotype, which

includes SLCO1B1∗5 (rs4149056, 521T > C) and SLCO1B1∗1B

(rs2306283, 388A > G), has been identified as a risk factor for

myopathy caused by multiple statins (n = 7); lipid-lowering

agents (54). This allele may possibly affect methotrexate-related

toxicity, though the association evidence level is moderately

low (55).

This study revealed other important pharmacogenes such

as ryanodine receptor 1 (RYR1), calcium voltage-gated channel

subunit alpha1 S (CACNA1S), and mitochondrially encoded

12S RNA (MT-RNR1), which also interact with several drugs

(n = 7) and possibly impact patient outcomes. Numerous

polymorphisms in RYR1 and CACNA1S, which encode the

ryanodine receptor and calcium channel in skeletal muscles,

respectively, on chromosomes 19 and 1 (56), are associated

with malignant hyperthermia when patients are preoperatively

exposed to one of the anesthetic agents from the flurane group

(desflurane, enflurane, isoflurane, methoxyflurane, sevoflurane),

halothane, or succinylcholine (57, 58). Nephrotoxicity and

ototoxicity induced by aminoglycosides (amikacin, gentamicin,

kanamycin, paromomycin, streptomycin, and tobramycin) are

possibly related to variants in MT-RNR1, the mitochondrial

RNA gene (59).

Patient responses to five antiviral agents (boceprevir,

peginterferon alfa-2a, peginterferon alfa-2b, ribavirin, and

telaprevir) are predicted to be influenced by the intronic variant

rs12979860 located in the interferon lambda 4 (IFNL4) gene.

This gene, located on chromosome 19, encodes a protein

(cytokine) with ligands that form a complex through binding

with IFN lambda receptors, which results in activation of the

Janus kinase-signal transducer and activator of transcription

(JAK-STAT) signaling and upregulation of multiple interferon

genes. This pathway mediates ultimately a major role in

protection from viral infection, particularly hepatitis C virus

(HCV) (60). Patients with the CC genotype of rs12979860

showed higher viral clearance than the TT genotype in response

to treatment with peginterferon alpha-2a or 2b in addition to

ribavirin (61). Response to these three medications may also be

influenced by other variants that possibly impact the function of

interferon genes [rs11322783 (formerly known as rs368234815);

exonic variant in IFNL4, rs8099917; intronic variant located

upstream of IFNL4, and rs11881222; intronic variant in IFNL3]

(62, 63). Genetic testing of patients using the indicated antiviral

agents may be useful to ensure optimal therapeutic efficacy.

Alternatively, the new hepatitis C therapies such as sofosbuvir,

ledipasvir, and daclatasvir, which are not known to be affected

by the mutations in IFNL3 and IFNL4 genes, can be used (64).

However, it has been reported that selected polymorphisms in

the ABCB1 and HNF-α genes influence the concentration of

sofosbuvir plasma metabolite (65).

The ranking of genes in this study was made based on the

level of association evidence and the number of drugs affected

by each gene. In addition, identifying genes that affect the
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most commonly prescribed medications has to be considered

as a criterion for selecting panel genes (66). In a previous

study which investigated usage of PGx drugs over 7 years in

the Netherlands, CYP2D6, SLCO1B1, and CYP2C19 were only

found to be influencing 95% of the PGx drugs used by 11.4

million individuals (67). According to our study criteria, the

three genes were nominated among the top-ranked genes.

Educating drug prescribers about the precautions of PGx

medications, particularly the drugs identified in this study, and

the benefits of ordering genetic testing may attract them to the

concept of personalized medicine versus the usual standard of

care (68). The evolution of practicing medicine has gone from

empirical to evidence-based. Evidence-based medicine provides

the necessary information that allows precision medicine to be

practiced (69). While evidence-based medicine emphasizes the

importance of evidence quality in guiding practice guidelines,

precision-based medicine goes a step further by identifying the

relevant patient(s). Precision medicine uses molecular evidence

to identify drug targets and patient responses to drugs (70).

A classic example of this is the EGFR gene in metastatic

non-small cell lung cancer. EGFR inhibitors such as gefitinib

and erlotinib when administered to patients positive for either

rs121434568 (T) or rs121434569 (C). SNP are predicted to show

decreased response and lower progression-free survival time

(71). Precision medicine has opened up basket trials that are

being performed in a tissue agnostic manner to treat cancer

based on the molecular landscape of patients. Prioritization of

genes of interest based on their level of association evidence is

critical for maximizing the utility of PGx big data by directing

efforts to the most promising gene candidates (72). Currently,

collaborative efforts are ongoing between various genomic

institutes worldwide to suggest and validate an innovative model

for testing an optimal gene list (73). An example of this in

the United States is the cooperation between the Implementing

GeNomics In pracTiCe (IGNITE), Clinical Trials Network

(http://www.ignite-genomics.org/) with the electronic medical

records and genomics (eMERGE), Network (https://emerge-

network.org/). Similarly, a large study was conducted on 8,000

subjects from seven European countries (the Netherlands, Spain,

UK, Italy, Austria, Greece, and Slovenia) in an attempt to assess

the safety level and cost-effectiveness of testing a specified gene

panel in a PGx program called Ubiquitous (U-PGx) (74). We

believe that our shortlisted panel discussed in this study may

contribute to tailoring the most appropriate pharmacogenes for

preemptive testing.

Conclusion

This study highlighted 50 genes with strong evidence of

association with variable responses to 152 drugs. The suggested

genes fit the top two levels of evidence criteria of at least

one of the indicated scoring databases: CPIC, DPWG, and

PharmGKB. The genes CYP2D6, CYP2C9, CYP2C19, G6PD,

HLA-B, SLCO1B1, RYR1, CACNA1S, MT-RNR1, and INFL4

influence a wide range of drug therapies. Prioritizing the

tested pharmacogenes would be helpful in easing the PGx

implementation process.
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