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Background: Due to the limited diagnostic ability, the low detection rate

of early gastric cancer (EGC) is a serious health threat. The establishment

of the mapping between endoscopic images and pathological images can

rapidly improve the diagnostic ability to detect EGC. To expedite the learning

process of EGC diagnosis, a mucosal recovery map for the mapping between

ESD mucosa specimen and pathological images should be performed in

collaboration with endoscopists and pathologists, which is a time-consuming

and laborious work.

Methods: 20 patients at the Zhejiang Provincial People’s Hospital, Affiliated

People’s Hospital of Hangzhou Medical College from March 2020 to July

2020 were enrolled in this study. We proposed the improved U-Net to obtain

WSI-level segmentation results, and the WSI-level results can be mapped to

the macroscopic image of the specimen. For the convenient use, a software

pipeline named as “Pathology Helper” for integration the workflow of the

construction of mucosal recovery maps was developed.

Results: The MIoU and Dice of our model can achieve 0.955 ± 0.0936 and

0.961 ± 0.0874 for WSI-level segmentation, respectively. With the help of

“Pathology Helper”, we can construct the high-quality mucosal recovery maps

to reduce the workload of endoscopists and pathologists.

Conclusion: “Pathology Helper” will accelerate the learning of endoscopists

and pathologists, and rapidly improve their abilities to detect EGC. Our work

can also improve the detection rate of early gastric cancer, so that more

patients with gastric cancer will be treated in a timely manner.
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Core tip: In this article, we present a new approach to
construct the high-quality mucosal recovery maps. We use
approximately 20,000 patches to train a deep segmentation
network to distinguish cancerous and intestinal metaplasia
regions from normal ones. We also develop a mucosal recovery
software tool to generates high-quality mucosal recovery maps.
In clinical application, this technique can greatly reduce the
workload of endoscopists and pathologists and rapidly improve
their abilities to detect EGC.

Introduction

Gastric cancer (gastric carcinoma) is a malignant tumor
originating from the gastric mucosal epithelium. In 2018, there
were 1,033,701 new cases and 782,685 deaths due to gastric
cancer, making it the 6th most commonly diagnosed and 3rd
most fatal cancer worldwide (1). In 2015, 42% of the new cases
of gastric cancer in the world occurred in China, representing
a heavy disease burden of gastric cancer in the country (2).
The prognosis of gastric cancer depends largely on the tumor
stage. The 5-year survival rate for patients with early gastric
cancer is 85–100% with endoscopic submucosal dissection
(ESD) operation, while the 5-year survival rate for advanced
gastric cancer is <10% (3). However, the early detection rate
of gastric cancer is very low. Early detection, diagnosis, and
treatment can effectively reduce the mortality of gastric cancer
and improve the prognosis after timely treatment. In recent
years, with the growth of public health awareness and the
popularity of gastroscopy, there was an increase in the number
of early gastric cancer detections, but not in the rate of EGC
detection. The low rate of diagnosis of EGC may be due to the
limited abilities in EGC diagnosis (4).

To expedite the learning process of EGC diagnosis, a
mucosal recovery map for the mapping between ESD mucosa
specimen and pathological images should be performed in
collaboration with endoscopists and pathologists. The mucosal
recovery map can show the size, boundary, depth of infiltration,
and lymphatic vascular invasion of the lesion. However, it is
a time-consuming and laborious work to prepare a mucosal
recovery map. To finish a mucosal recovery map, the tumor area
should be marked in each slide, and the tumor area should be
mapped to the ESD mucosa specimen. If the lesions are large
and irregular, it can take many hours to reconstruct a case (5, 6).

Fortunately, the rapid development of deep learning
technology provides new ideas to construct mucosal recovery
map. Recently, deep learning has been widely used in medical
applications, such as computed tomography denoising (7),
cell segmentation (8), COVID-19 diagnosis (9), histopathology
image classification (10), and breast cancer diagnosis (11). Deep
learning can automatically learn task-specific features directly
from the data, which can dramatically shorten the time for data
processing. In this study, a novel method is proposed for the

construction of mucosal recovery maps based on deep learning
which can reduce the work intensity of pathologists.

Materials and methods

This study was approved by the Ethics Committee of
the Zhejiang Provincial People’s Hospital, Affiliated People’s
Hospital of Hangzhou Medical College with the informed
consent waived. The proposed method for the construction
of mucosal recovery maps can be broken down into the
following steps: (1) ESD postoperative specimens processing,
(2) Pathological Image Segmentation, and (3) Sections mapping.
The workflow was shown in Figure 1.

Endoscopic submucosal dissection
postoperative specimens processing

A total of 20 patients at the Zhejiang Provincial People’s
Hospital, Affiliated People’s Hospital of Hangzhou Medical
College from March 2020 to July 2020 were enrolled in this
study. All patients were diagnosed with EGC and treated with
ESD resection. After ESD resection, all resected specimens
were processed according to the guidelines of ESD (12). This
procedure included stretching of the fresh specimen, fixation
in formalin, sectioning of the fixed specimen, and macroscopic
photography before and after sectioning. Firstly, the fresh
specimen was stretched and pinned at outer borders upon a
cork plate with standard pins, and a macroscopic image of the
specimen was taken. Then the specimen was immediately fixed
through immersion in 10% formalin for 24∼48 h and a second
macroscopic image was taken. Finally, the fixed specimen was
cut and sectioned into small sections at intervals of 2.0∼3.0 mm
and a third macroscopic image was taken. After the pathological
section made, all the sections are scanned into digital WSIs with
a Motic scanner. The complete procedure is shown in Figure 2.

Pathological image segmentation

When a WSI is prepared properly, pathological image
segmentation is the most critical step for the construction of
mucosal recovery maps. In this study, a novel segmentation
network is proposed for pathological image segmentation. The
segmentation network can be broken down into the following
steps: (1) Data annotation and preprocessing, and (2) Network
construction and training.

Data annotation and preprocessing

The annotation work was carried out according to the
Japanese classification of gastric carcinoma: 3rd English edition
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FIGURE 1

Work flow of the segmentation model. The whole slide images are split into patches (far left). Then the patch-level annotation is obtained with
the trained segmentation model (near left). The patch-level annotation is mapped back to the WSI-level annotation based on their original
location (near right). Finally, these WSI-level annotations are shown on an image of the entire specimen.

A B C D E

FIGURE 2

Processing flow of endoscopic submucosal dissection specimen: (A) Stretching and fixation; (B) macroscopic photography on a cork plate; (C)
sectioning of the fixed specimen; (D) scanning; (E) annotation.

(13). All WSIs were manually labeled by a group of surgical
pathologists by drawing around the cancerous regions (CR)
and intestinal metaplasia regions (IR) with red and blue
masks, respectively (Figure 3). These masks were modified,
confirmed, and verified by another group of pathologists. In the
corresponding mask generated, the cancerous regions, intestinal
metaplasia regions, and normal mucosa regions (NR) were
shown as red, blue, and green, respectively. Then, all annotated
WSIs was divided into a training set and a testing set. The
training set contained 112 WSIs from 11 patients, and the testing
set contained 48 WSIs from 9 patients. Due to the limitations of
GPU memory, all WSIs and corresponding masks were split into
512 × 512 pixel patches at 10x magnification (see as Figure 4),
and all blank images were removed from the training set. There
were 21,799 patches left in the training set and 9,784 patches
left in the testing set. The overview of the dataset was shown in
Table 1. Random oversampling was adopted for overcome the
unbalance between the lesion area and normal area.

Network construction and training

Our segmentation network incorporates an SE block (14)
into U-Net (15) as shown in Figure 5. U-Net is one of the famous

Fully Convolutional Networks (FCNs) (16) used in biomedical
image segmentation. The image-label pairs in the training set are
fed into the segmentation network for training.

The ResNet-34 framework is employed as the backbone
of U-Net. The architecture of our segmentation network is
shown in Figure 6. The special residual blocks (Figure 6B)
in ResNet are made up of several convolutional layers with
the same number of output channels. Each convolutional layer
is followed by a batch normalization layers and a rectified
linear unit (ReLU). Then, a shortcut connection and element-
wise addition is performed between input and output layers
of the block, which make the network easier to optimize (17).
Further, a Squeeze-and-Excitation (SE) block is incorporated
into U-Net to boost the segmentation performance with
increased generalization ability by exploiting adaptive channel-
wise feature recalibration (14).

The loss function of our segmentation network is the
combination of Jaccard distance loss (18) and cross-entropy loss
(8). The loss function can be formulated as follows:

l = lJaccard distance + lcross entropy (1)
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FIGURE 3

Whole slide image annotation. (Above and lower left) Endoscopic submucosal dissection specimen with cancerous regions outlined in red, and
intestinal metaplasia regions in blue. (Lower right) Corresponding masks for using in deep learning.

FIGURE 4

Split dataset: (A) Intestinal metaplasia region patches; (B) cancerous region patches; (C) normal region patches.
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TABLE 1 The overview of the dataset for network training.

Training set Testing set

Cases 11 9

WSIs 112 48

Patches 21,799 9,784

lJaccard distance = 1−
Intersection

Union
= 1−

1
N

N∑
i=1

pi × yi
pi + yi − pi × yi

(2)

lcross entropy = −

N∑
i

pilog (yi) (3)

In the formula (2) and (3), yi and pi are the i-th pixels of
the labels and predictions, respectively, and N is the number
of image pixels.

The network was trained using Adam optimizer with
learning rate 3 × 10−4 for 50 epochs with a batch size of
4. The input size of our network was 512 × 512 pixels.
To prevent overfitting, data augmentation was operated on
all image-label pairs including rotation (rotation angle range
0∼359◦), cropping (vertical and horizontal shift range in
0∼50 pixels), and vertical and horizontal flips. The network is
implemented with Keras (TensorFlow backend) and trained on
single GTX 1080Ti GPU.

Sections mapping

For each WSI in one case, the WSIs are split into 512 × 512
pixel patches. Then the patch-level annotation with the trained

segmentation model, and map the patch-level annotation back
to the WSI-level annotation based on their original location.
Finally, the WSI-level annotation should be mapped back to the
ESD specimens (see in Figure 7). Considering that pathological
sections may be deformed and atrophied during processing, it
was difficult to construct a perfect mucosal recovery map by
simple stitching. In this study, GloFlow (19) was employed for
slide stitching. GloFlow was a two-stage method for the fusion of
pathological image using optical flow-based image registration
with global alignment using a computationally tractable graph-
pruning approach.

Results

Specimen preparation standard

To successfully complete the construction of mucosal
recovery maps, the specimen needs to meet the following
criteria: (1) The edge of the fixed ESD specimen should not
be curly, (2) the surface of specimen should be dry and free of
mucus, and (3) the photographs of specimen should be without
reflections, and micro-structures should be clearly visible.

Data and result analysis

We have compared the performance of our model with
U-Net on the testing set with 9,784 of patch images. The
performance was quantified by using mean intersection over
union (MIoU) and Dice Coefficient. MIoU is a standard metric
for segmentation purposes, which computes the ratio between
the intersection and the union of prediction and ground truth.

FIGURE 5

Training flow of CNN. The specimen (left) is photographed; the resulting whole slide images are annotated (middle); image-label pairs are fed
into the segmentation network (right), which consists of the U-Net and the Squeeze and Excitation (SE) Block.
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FIGURE 6

Architecture of U-Net: (A) U-Net-like architecture build with pre-trained ResNet-34; (B) residual Block.

FIGURE 7

Whole slide image-level thumbnail results of 13 ESD specimens. Blue mark: Intestinal metaplasia. Red mark: Cancerous.

The Dice Coefficient is two times the Area of Overlap divided by
the total number of pixels in both prediction and ground truth.

As shown in Table 2, the segmentation performance
of our model and U-Net was listed. From the result in
Table 2, our model can achieve better performance than
U-Net. This is mostly due to the fact that a Squeeze-and-
Excitation (SE) block can boost the segmentation performance
with increased generalization ability by exploiting adaptive
channel-wise feature recalibration. Some segmentation results
and corresponding ground truth are shown in Figure 8.

The development of “Pathology
Helper”

For the convenient use, a software pipeline named as
“Pathology Helper” for integration the workflow of the

TABLE 2 The segmentation performance of our model and U-Net.

Methods MIoU Dice

Our model 0.955± 0.0936 0.961± 0.0874

U-Net 0.921± 0.1761 0.932± 0.1585

construction of mucosal recovery maps was developed. The
interface of “Pathology Helper” is shown as Figure 9.

Conclusion

In the clinical diagnosis and treatment of early gastric
cancer, the detection rate (i.e., the number of early gastric
cancers as a percentage of the total number of diagnosed
gastric cancers) is an important index measuring the level of
an endoscopic center. The detection rate varies from place to
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FIGURE 8

Example of segmentation result in patch-level. (A) Whole slide image patches; (B) annotation masks; (C) deep learning model prediction results.

place in China: It can reach 40% in developed cities along
the southeast coast, but is less than 10% in remote areas. The
overall detection rate in China is about 15%. Therefore, it is very
important to improve the detection rate of early gastric cancer.

Mucosal recovery maps can help pathologists and
endoscopists improve their understanding of endoscopy
and pathomorphology. However, given a specimen of
6 cm × 5 cm × 0.2 cm and lesion area about 3 cm × 2 cm, it
will take about 60 min for a skilled subspecialist in pathology
to complete a finely made mucosal recovery map. If the
histological classification of the cancer is complex, it may take
even longer to complete the task. As a result, many endoscopists
are unable to obtain high-quality mucosal recovery maps. In
recent years, deep learning has been widely applied in the
field of pathological diagnosis, thanks to the popularization of
pathological section digitization. In 2017, Esteva et al. (20) used
a convoluted neural network to analyze 129,450 pathological
images of skin lesions and trained the model to distinguish skin

squamous cell carcinoma from seborrheic keratosis, malignant
melanoma, and benign nevus with the same accuracy as
doctors. In 2019, Kather et al. (21) used a deep residual learning
algorithm to identify microsatellite instability (MSI) directly
from pathological slices. The accuracy of MSI recognition
of colorectal cancer was 84%. There have also been artificial
intelligence-assisted diagnostic studies on histopathology,
including glioma grade (20), lymphoma classification (21),
colorectal cancer polyp classification (22), and prostate cancer
diagnosis (23). All these works matched or even went beyond
the diagnostic level attained by human pathologists.

In this study, we design a novel segmentation network for
pathological image segmentation. Starting with WSIs labeled by
surgical pathologists in early gastrointestinal cancer, we trained
a novel segmentation network for the automatical annotation
of WSIs. Our segmentation network incorporates an SE block
(14) into U-Net (15), one of the famous Fully Convolutional
Networks (FCNs) (16) used in biomedical image segmentation.
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FIGURE 9

Whole slide image-level results mapping flow: (A) Mapping with Pathology Helper software; (B) specimen photo; (C) mapping result.
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U-Net has had many successful applications, such as brain
image segmentation (24), liver image segmentation (25), and
cell counting, detection, and morphometry (26). However, it
fails to take the differentiate between channel-wise features. In
general, the SE block was proposed to be placed in InceptionNet
(27) and ResNet (17) for boosting performance in classification
and object detection via feature recalibration. Accordingly,
we incorporate it into U-Net to boost the segmentation
performance with increased generalization ability by exploiting
adaptive channel-wise feature recalibration. The experiments
show that our proposed network has better performance than
U-Net alone. After pathological image segmentation, the WSI-
level segmentation result is mapped back to the ESD specimen
with the help of a mucosal recovery software tool “Pathology
Helper”.

“Pathology Helper” can help in the production of high-
quality mucosal recovery maps. This will accelerate the learning
of endoscopists and pathologists, and rapidly improve their
abilities to detect EGC. Our work can also improve the detection
rate of early gastric cancer, so that more patients with gastric
cancer will be treated in a timely manner. However, this software
tool still had several limitations. For example, the pathological
image segmentation network was developed and trained on
the dataset from a single large academic institution, which
lacked multi-center or external data validation. Future research
is required to determine if the same model trained can achieve
high performance on larger or multi-institutional datasets.
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