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Computer-aided diagnosis of pathological images usually requires detecting and

examining all positive cells for accurate diagnosis. However, cellular datasets tend to

be sparsely annotated due to the challenge of annotating all the cells. However, training

detectors on sparse annotations may be misled by miscalculated losses, limiting the

detection performance. Thus, efficient and reliable methods for training cellular detectors

on sparse annotations are in higher demand than ever. In this study, we propose a training

method that utilizes regression boxes’ spatial information to conduct loss calibration to

reduce the miscalculated loss. Extensive experimental results show that our method can

significantly boost detectors’ performance trained on datasets with varying degrees of

sparse annotations. Even if 90% of the annotations are missing, the performance of our

method is barely affected. Furthermore, we find that the middle layers of the detector

are closely related to the generalization performance. More generally, this study could

elucidate the link between layers and generalization performance, provide enlightenment

for future research, such as designing and applying constraint rules to specific layers

according to gradient analysis to achieve “scalpel-level" model training.

Keywords: cellular detection, spatial loss calibration, sparsely annotated pathological datasets, convolutional

neural network, object detection network

1. INTRODUCTION

Locating and counting cells in the pathological whole slide images (WSIs) is a direct way to find
effective and important biomarkers, which is an essential and fundamental task of pathological
image analysis (1–3). For instance, the spatial arrangement of tumor cells has been proved to be
related to cancer grades (4, 5). Therefore, the qualitative and quantitative analysis of different types
of tumors at cellular-level detection can help us better understand tumors and also explore various
options for cancer treatment (6, 7).

Recently, object detection frameworks of Convolutional Neural Networks (obj-CNNs) have
been proved powerful for locating instances in medical images [e.g., in CT images (8) and
colonoscopy images (9)]. The big empirical success of obj-CNNs depends on the availability of
a large corpus of fully annotated instances in training images (10). However, different from images
of other modalities, we find two kinds of distributions of cells in pathological images, namely
embedded and dense distribution, making full annotations of cellular-level instances difficult to

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.767625
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.767625&domain=pdf&date_stamp=2021-12-14
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:leicui@nwu.edu.cn
mailto:fengjun@nwu.edu.cn
mailto:linyang@nwu.edu.cn
https://doi.org/10.3389/fmed.2021.767625
https://www.frontiersin.org/articles/10.3389/fmed.2021.767625/full


Li et al. A Robust Training Method

FIGURE 1 | The examples of annotations in the two kinds of datasets. (A) Cells of embedded distribution, which are sampled from the MITOS-ATYPIA-14 dataset.

Obviously, mitoses that need to be annotated are often hidden among hundreds of other cells, tough to categorize and locate. (B) Cells of dense distribution in our

Ki-67 dataset, usually more than hundreds of cells are required to be annotated in a small patch sampled from the whole slide image (WSI), which is an expensive and

laborious task.

be guaranteed (refer to Figure 1). Specifically, the embedded
distributionmeans that positive cells are hidden among hundreds
of other cells, which are challenging for pathologists to categorize,
locate, and then annotate. As for the dense distribution, a small
patch sampled from the WSIs may contain hundreds of positive
cells, making the annotation task expensive and laborious.
Therefore, sparsely annotated datasets (SADs) are common in the
field of the detection of cells.

In fact, when the training dataset contains a certain amount
of sparse cellular annotations, the overfitting issue tends
to easily occur, naturally leading to poor performance in
generalization (11). In this study, we show the fundamental
problems that decrease the generalization performance of the
detector trained on SADs. First, deviation-loss, that is, numerous
unannotated positive cells are mistaken for negative ones in the
SADs, resulting in a serious miscalculated loss during training.
Second, the deviation-loss dominates the early training process,
and then drives the detector to learn only the features of the
annotated cells, which yields the overfitting issue (Experimental
testify can be seen in Appendix A1).

In this study, we point out that alleviating the deviation-
loss during the training process can guide the detector to
continuously learn the features of positive cells rather than
only the annotated ones, and the SADs overfitting problem
can be solved. In order to achieve that goal, the first
cornerstone is how to identify those positive cells from
negative ones when annotations are missing. We observe the
more and more significant difference in densities between
the predictions of the positive and negative cells during
training (refer to Figure 2). Based on this observation, we
propose a SADs training method named Boxes Density
Energy (BDE), which utilizes densities’ information to reduce
the deviation-loss. Specifically, the more predictions for a
cell, the more likely the cell is to be positive, and these
predictions deserve smaller losses. In this way, deviation-
loss disappears, and meanwhile, the overfitting problem is
solved naturally.

We have conducted experiments on two datasets, namely
the MITOS-ATYPIA-14 dataset (embedded distribution)1 and
the Ki-67 dataset (dense distribution), which can be seen in
Figure 1. Sufficient experimental results prove that our training
method can significantly boost the performance of SADs. More
importantly, we explore the gradient in the network and find that
BDE brings a significant improvement on the middle layers (20–
60 layers, 80 layers in total) of the network, indicating that the
network’s generalization performance seems to be closely related
to the middle layers of the network. This may change the current
training paradigm, such as applying constraint rules to specific
layers according to gradient analysis to achieve the “scalpel-level"
model training.

The organization of the study is as follows. The review of obj-
CNNs and recent literature on SADs training methods is given
in Section 2. Section 3 describes the proposed method in detail,
and experimental results are presented in Section 4. Finally, we
analyze the gradient of the trained network and conclude in
Sections 5, 6, respectively.

A preliminary version of this study has been published in a
conference study (12), which is only evaluated on the MITOS-
ATYPIA-14 dataset. In this study, we have made significant
extensions to generalize our methods on the Ki-67 dataset,
aiming to provide a strong and comprehensive theory for relevant
research. To be specific,

• We explore that some specific layers of CNN are strongly
related to generalization performance, may provide theoretical
guidance for future related research, e.g., one can improve the
generalization of the network through more constraints on
middle layers when training the network.

• In this study, we define the networks’ training problems on
SADs, from deviation-loss to the overfitting issue.

1MITOS-ATYPIA-14 dataset: https://mitos-atypia-14.grand-challenge.org/

dataset/.
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FIGURE 2 | The change of regression boxes’ density during training on the MITOS-ATYPIA-14 dataset. Among them, the regression box is in green and manually

annotated as red. This typical example shows that as the training process progresses, regression boxes increasingly surround the positive cells. (A) Regression boxes

in 1 k training steps. (B) Regression boxes in 4 k training steps. (C) Regression boxes in 7 k training steps. (D) Regression boxes in 10 k training steps.

• This study formulated two cells’ distribution in pathological
images, namely embedded and dense distribution which may
easily lead to SADs, and BDE can solve the SADs training
problem on both embedded and dense distributions.

2. RELATED STUDY

2.1. Object Detection Networks
2.1.1. The Framework

Object detection networks can be divided into two major
categories, anchor-free and anchor-based frameworks. Among
them, anchor-free frameworks (13, 14) are essentially making
dense predictions, receiving higher recall rates but lower accuracy
results (15), which do not meet the requirement of precisely
pathological image analysis. On the other hand, anchor-based
frameworks are more suitable for our tasks, and can be
generally divided into one-stage methods (16, 17) and two-stage
methods (18, 19). Both of them first tile a large number of preset
anchors on the image, then predict the category and refine the
coordinates of these anchors by one or several times, finally
output these refined anchors as detection results. Because two-
stage frameworks refine anchors several times more than one-
stage frameworks (as shown in Figure 3), the former has greater
accuracy. Hence, we choose the two-stage Feature Pyramid
Network (FPN) (19) as the baseline in this paper.

2.1.2. The Loss Function and Deviation Loss

In order to locate and recognize positive cells in the image,
the object detection network has two parallel output layers to
generate regression boxes (b) with probability distribution (p).
The original loss (L) consists of the classification loss Lcls and
bounding-box regression loss Lloc:

L
(

p, u, b, v
)

= Lcls(p, u)+ Lloc
(

b, v
)

, , (1)

Lcls(p, u) =
∑

k

−
[

uk · log
(

pk
)]

, (2)

Lloc
(

b, v
)

=
∑

k

smoothL1
(

bk − vk
)

, (3)

smoothL1 (x) =

{

0.5x2 if |x| < 1
|x| − 0.5 otherwise.

(4)

In Equation (2), uk represents a one-hot label for a regression box
indexed by k. When k-box’s Intersection Over Union (IoU) with
any instance annotation higher than a threshold, is assigned with
a positive one-hot label (uk 6= 0), otherwise a negative (uk = 0).
In Equation 3, v indicates the annotated bounding-boxes.

The loss function can accurately measure themargins between
p and u, b, and v on the fully annotated dataset. However, on
the sparsely annotated cellular dataset, all unannotated positive
cells are mistaken for negative, and u and v are translated into
“untrustworthy” ground-truths. Thus, Lcls and Lloc may deviate
seriously from the correct value, which we name deviation-loss.
As a result, the deviation-loss confuses the training of networks,
leading to limited performance.

2.2. Sparsely Annotated Datasets Training
Methods
2.2.1. Pseudo-Annotation Based Methods

In order to solve the SADs training problem, pseudo-annotation
based methods have been proposed and achieved success on
natural images (20, 21). They first train the detector using
available instance-level annotations, then generate pseudo-
annotations, and merge them with the original annotations to
iteratively update the detector. For example, Niitani et al. (22)
trained the detector to generate annotations using the Open
Images Dataset V4 (OID). They then sampled the pseudo-
annotations using assumptions such as “cars should contain
tires.” However, such a priori assumption in the field of
cell detection is unknown. Other methods based on pseudo-
annotations still need a certain number of fully annotated
datasets, like Yan et al. (23) and Inoue et. al. (24) employ a
subset of fully annotated datasets to obtain a pre-trained detector,
generating pseudo-annotations for the next training.

Frontiers in Medicine | www.frontiersin.org 3 December 2021 | Volume 8 | Article 767625

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Li et al. A Robust Training Method

FIGURE 3 | Illustration of the anchor based two-stage framework. (A) The input image with manual annotations. (B) The first stage refines the initial thousands of

anchors. (C) The second stage refines previous results and obtains hundreds of regression boxes.

Obviously, such an iterative process brings uncontrollability
into the training process, e.g., a bad pseudo-annotation generator
may significantly influence the final results. In addition, there is
not much consensus on how to utilize the pseudo-annotations
until now, especially for object detection (22), e.g., determining
the optimal number of iterations is tricky, therefore, it is urgent to
solve the SADs training problem in a non-iterative way. Besides,
considering that such methods are relatively difficult to replicate,
with respect to, empirical and tricky parameter selection or
special requirements of the forms of datasets, this study does not
include such methods in the comparative experiment.

2.3. Loss-Calibration Based Methods
Compared with pseudo-annotation based methods, the loss-
calibration methods for solving noise labels are more relevant
to our study. The meaning of noise labels is wrong labels or
missing labels (25, 26). These methods aim to reduce noise labels
by establishing loss functions that are more noise-tolerant. For
example, Müller et al. (27) softens the labels by adding a uniform
distribution. Wang et al. (28) assumes that the network will
become more and more reliable as the training continues and
proposes reducing the loss gradually to reduce the influence
of noise labels. However, these loss calibration methods also
inevitably reduce the core contributions of correct labels for
the training of the network. On the contrary, our BDE utilizes
the regression boxes’ density to encourage correct predictions
and give relatively more significant losses to wrong predictions,
whether the label is missing or not.

It is worth noting that in view of the class imbalance problem
they, the have put forward many loss weighting schemes (17, 29).
However, these methods may cause relatively large losses to
correct predictions lacking corresponding annotations, which
makes them ineffective on SADs.

3. BOXES DENSITY ENERGY

The overall process of our proposed BDE is shown in Figure 4.
BDE is proposed to encourage the correct predictions of
unannotated positive cells to ignore the adverse effect of the
deviation-loss, which can be summarized into five core steps.

Figure 4A A sparsely annotated image is inputted for the
training. At the second stage of the detector, each cell is
surrounded by some regression boxes automatically that we
regard as a group. Figure 4B Boxes Density: Calculate the average
distance between each box and the others. Figure 4C Boxes
Energy: Normalized operation by dividing the Box Density by
the maximum distance between all boxes. Figure 4D Calculate
the original total loss. Figure 4E BDE loss: Calibrate the original
loss with Boxes Energy to guide the detector training in the
right direction.

3.1. Boxes Density
The boxes density can be measured by the average distance
between each box, so that denser boxes have smaller average
distances than isolating ones. The density of a box indexed by i
can be represented as:

Density(bi) =
1

N

N
∑

j

D
(

bi, bj
)

, (5)

where N is the number of boxes per image, D is the distance
function, we choose Manhattan distance (Equation 6) in this
study considering the less computational cost.

D
(

bi, bj
)

=
∣

∣xi − xj
∣

∣ +
∣

∣yi − yj
∣

∣ , (6)

In which, the xi and yi represent the x-coordinate and y-
coordinate of the center point of the box indexed by i.

We can prove that the average distance can measure
the density effectively; if we treat regression boxes around
a cell as a group, and assume that we have k groups
{

G1, . . . ,Gj, . . .Gk

}

. Meanwhile, there are
{

m1, . . . ,mj, . . . ,mk

}

boxes in the corresponding group.
For simplicity, we assume that the distances within a group

are all close to 0, the distances between the groups are all d,
and the total number of boxes is N, which means that N =
∑k

l=1 mL. Thus, the average distance of each box in the j-group is
Equation (7). This indicates that the box in a denser group (larger
mj)of the j-group has a smaller density value.

Density(bi) =
0×mj+(N−mj)×d

N = d × (1−
mj

N ). (7)
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FIGURE 4 | The process of Boxes Density Energy (BDE). The core idea of BDE is to use the distribution of regression boxes in (A), to obtain the Boxes Energy of (C),

and to correct the deviation loss in (D).

3.2. Boxes Energy and Loss Calibration
The main idea of our proposed method is that the more
prediction boxes around a cell, the cell is more likely to be
positive, and therefore, the predictions should have a smaller loss.
The density of each box has been modeled, however, the range
of density is not normalized. Therefore, we use Equation (8) to
convert the Boxes Density to Boxes Energy which is normalized
from 0 to 1. Afterward, Boxes Energy can be utilized as a weight
of Lcls and Lloc (refer to Equations 9, 10). By that, the deviation
loss is alleviated by calibrating the original loss.

Energy(bi) =
Density(bi)

max(D(b))
. (8)

LBDEcls (p, u) =
∑

k

[

1uk=0

(

Energy
(

bk
))

+ 1uk 6=0

]

·
[

−uk · log
(

pk
)]

,

(9)

LBDEloc (b, v, u) =
∑

k

[

1uk=0

(

Energy
(

bk
))

+ 1uk 6=0

]

·
[

smoothL1
(

bk − vk
)]

.

(10)

In Equations 9, 10, uk equals zero indicates the one-hot label of
the box indexed by k is negative.With the loss-calibration of BDE,
the detector can be trained along the right direction on the SADs.
For example, if the box indexed by k is mistaken for negative (uk
is zero) due to SADs, but has a small Energy(bk), then, the original
deviation-loss is calibrated by the term of Energy(bk). Finally, the
total loss is improved from Equation (1) to:

LBDE
(

p, u, b, v
)

= LBDEcls (p, u)+ LBDEloc

(

b, v
)

. (11)

4. EXPERIMENTS

We utilize the FPN (19) with the backbone resnet50 (30) as the
baseline. Our method is also compared with the representative
loss-calibration methods, namely Label Smooth (LS) (27) and
ProSelfLC (28). In Section 4.3, we conduct experiments to
detect mitosis on the 2014 MITOS-ATYPIA Grand Challenge
dataset and to detect tumor-cells on the Ki-67 dataset in
Section 4.4. These two datasets can represent embedded and
dense annotations. Experimental results demonstrate that BDE
outperforms other methods on the SADs significantly, and BDE
can address the training problem of SADs of both embedded and
dense annotations.

Frontiers in Medicine | www.frontiersin.org 5 December 2021 | Volume 8 | Article 767625

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Li et al. A Robust Training Method

4.1. Description and Implementation
Details
The experiments for KI-67 and 2014 MITOS-ATYPIA datasets
set the same hyperparameters. The inputted image is resized to
the resolution of 800×800 pixels. The number of training steps is
10 k. The learning rate is initially set to 0.001 and is divided by 10
at 5 k and 7.5 k steps. In order to objectively evaluate our method,
we perform 4-fold cross-validation on the MITOS-ATYPIA-14
dataset and 3-fold cross-validation on the Ki-67 dataset. We
implement our framework with the open source software library
TensorFlow version 1.12.0 on a workstation equipped with two
NVIDIA GeForce 2080 Ti GPUs.

4.2. Evaluation Metrics
The average precision (AP) and recall are used for performance
evaluation. The recall is defined as the proportion of all positive
examples ranked above a given rank. Precision is the proportion
of all examples above that rank that are from the positive class.
The AP summarizes the shape of the precision/recall curve and
is defined as the mean precision at a set of eleven equally spaced
recall levels [0, 0.1,..., 1]:

AP =
1

11

∑

r∈{0,0.1,...,1}

pinterp(r). (12)

The precision at each recall level r is interpolated by taking
the maximum precision measured for a method for which the
corresponding recall exceeds r:

pinterp (r) = max
r̃ : r̃≥r

p(r̃), (13)

where p(r̃) is the measured precision at recall r̃ (31).

4.3. Experiments on the 2014
MITOS-ATYPIA Grand Challenge Dataset
(embedded annotations)
4.3.1. Data Description

We have conducted experiments on the 2014 MITOS-ATYPIA
Grand Challenge Dataset (MITOS-ATYPIA-14 dataset). The
data samples were scanned by two slide scanners Aperio
Scanscope XT andHamamatsu Nanozoomer 2.0-HT, whole-slide
histological images (WSIs) stained with standard hematoxylin
and eosin (H&E) dyes. The centroids pixels of mitoses were
manually annotated via two senior pathologists. In a situation of
contradiction between the pathologists, the third one will provide
the final say.

We choose the train-set of WSIs scanned from Hamamatsu
Nanozoomer 2.0-HT, and we sample 393 patches that contain
743 mitoses with a sliding window of resolution of 1,663 ×

1,485 pixels. Annotations for training the FPN are generated
by 32×32 bounding boxes centered on all centroids pixels. For
the MITOS-ATYPIA-14 dataset, we refer to the original data
as a fully annotated dataset. Meanwhile, we randomly delete
annotations until there is only one per training image and name
it as an extremely sparse dataset. It is worth noting, we only
conduct the sparse operations on the training dataset, and the
testing dataset is intact.

4.3.2. Results of MITOS-ATYPIA-14 dataset

Boxes Density Energy can improve recall results on the fully
annotated dataset. Table 1 lists the recall and AP results on the
fully annotated dataset. For the AP results, all methods have
lower AP results than the baseline (FPN), which demonstrates
that when loss-calibrationmethods are introduced to the training
on fully annotated embedded annotations, interfering with the
network’s accuracy. On the other hand, for the recall results,
BDE can improve the recall results significantly. FPN, LS,
and ProSelfLC achieve 89.8, 85.5, and 88.7% average recall,
respectively. While BDE achieves 94.6%, exceeding that of FPN
by 4.8%.

Boxes Density Energy improves the network’s performance
in all aspects on the sparsely annotated dataset. As shown in
Table 2, BDE outperforms other methods significantly on both
AP and recall results. However, LS’s overall performance is
reduced compared with the baseline, which indicates that the
assumption of annotation-distribution of LS is incompatible in
the embedded annotations, whose positive and negative samples
are extremely unbalanced.

4.4. Experiments on the Ki-67 Dataset
(Dense Annotations)
4.4.1. Data Description

The Ki-67 dataset is used for training FPN to detect tumor-cells
and count their number. We have 206 patches with a resolution
of 1,080× 1,920 pixels sampled fromWSIs, and the pathologists
try their best to annotate all the tumor cells with key points in all
patches. Finally, 21,025 tumor cells have been annotated. Then,
we generate 32×32 bounding boxes centered on all key points.

4.4.1.1. The SAD of the Ki-67 Dataset
For the Ki-67 dataset, considering that there is an average of 102
annotated tumor cells in each patch, so we can retain different
annotation rates to train the network to fully validate BDE, e.g.,
the retentive rate is 0.1 if 10% of annotations are retained. We
have carried out experiments starting from the retentive rate of
0.1 and increasing it to 1 by 0.1. We believe that if the retentive
rate is below 0.5, then the dataset we can define as a SADs
because the number of unannotated instances is greater than the
number of annotated instances in such a dataset. Experimental
results have demonstrated the BDE can significantly boost the
performance of networks trained on that SADs.

4.4.2. The Quantization Results

We evaluate the performance of our BDE which is trained
on datasets with different retentive-rates, and observe that
BDE is a robust training method, which is hardly affected
by the quality of data annotations. For example, in Table 3,
when the retentive-rate is dropped from 1.0 (original) to
0.1, BDE’s AP result dropped from 49.02 to 46.45%, only
reducing by 2.57%. On the other hand, FPN decreased by
23.88%, and LS decreased by 27.17%, and ProSelfLC decreased
by 21.05%.

Similarly, Table 4 lists the recall results of different methods
trained on different retentive-rates. When the retentive-rate
decreases from 1.0 to 0.1, BDE only reduces recall results by
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TABLE 1 | The recall and average precision (AP) results on the fully annotated MITOS dataset (original dataset).

Method
Fold1 Fold2 Fold3 Fold4 Avg. Recall Avg. AP

Recall AP Recall AP Recall AP Recall AP

FPN (Baseline) 80.2 41.8 89.4 46.9 95.8 44.6 93.6 60.7 89.8 48.5

LS (27) 75.6 36.7 84.6 47.7 91.6 41.7 90.4 64.2 85.5 47.6

ProSelfLC (28) 80.2 32.7 86.5 40.6 95.2 40.3 93.1 62.7 88.7 44.1

BDE (ours) 90.6 40.7 93.3 42.3 99.4 43.2 95.0 59.1 94.6 46.3

TABLE 2 | The recall and AP results on the sparsely annotated MITOS dataset (retain one annotation in each image).

Method
Fold1 Fold2 Fold3 Fold4 Avg. Recall Avg. AP

Recall AP Recall AP Recall AP Recall AP

FPN (Baseline) 69.8 34.5 81.7 32.9 94.6 37.4 88.1 55.9 83.6 40.2

LS (27) 65.8 24.6 71.1 30.4 86.8 33.9 83.4 54.6 76.7 35.8

ProSelfLC (28) 80.2 28.8 84.6 28.4 95.8 30.1 85.7 50.1 86.5 34.3

BDE (ours) 88.5 41.8 89.4 37.1 95.8 40.2 91.3 60.1 91.3 44.8

TABLE 3 | The AP results on different annotations-retentive rates on the Ki-67 dataset.

Retentive rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPN (Baseline) 26.22 33.57 39.92 41.94 43.88 45.15 46.17 47.28 48.22 50.1

LS (27) 24.30, 37.39 41.01 44.16 45.48 46.47 47.69 48.96 50.01 51.47

ProSelfLC (28) 30.67 38.85 43.07 45.37 46.57 47.72 48.79 49.91 50.87 51.72

BDE (ours) 46.45 46.36 46.24 46.71 46.94 47.52 47.24 48.05 48.60 49.02

TABLE 4 | The recall results on different annotations-retentive rates on the Ki-67 dataset.

Retentive rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPN (Baseline) 38.84 44.81 48.34 49.84 51.01 51.73 52.39 53.14 53.64 54.22

LS (27) 31.45 45.23 48.01 50.82 51.93 52.84 53.46 54.00 54.43 54.69

ProselfLC (28) 43.43 48.24 50.28 51.62 52.25 52.78 53.31 53.90 54.16 54.38

BDE (ours) 52.70 53.07 53.12 53.32 53.25 53.68 53.37 53.82 53.95 53.29

0.59%. While FPN, LS, and Proself LC decreased by 15.38, 23.24,
and 10.95%, respectively. Furthermore, from Figures 5, 6, the
robustness and stability of BDE can be demonstrated from the
perspective of AP results and recall results’ curves. Our method is
almost unaffected by sparse annotations. In particular, when the
retentive rate is in the range of 0.1–0.5, that is, sparse annotation,
BDE achieves significant improvements.

4.4.3. The Qualitative Results

In Figure 7, we list some detection results produced by different
methods. A score threshold of 0.6 is used for display. Obviously,
other methods trained on the sparsely annotated dataset (the
retentive rates is 0.1) tend to miss tumor cells, while our method
largely avoids that mistake. Meanwhile, our BDE trained on the
0.1 retentive rate even achieve better performance than other
methods trained on the 0.4 retentive rate.

5. LAYER-LEVEL GRADIENT ANALYSIS

5.1. Why Need Layer-Level Gradient
Analysis
The gradient of a kernel is obtained by taking the chain derivative
of the loss with respect to the weight, so that, the larger the
weight of the kernel, not only its gradient is smaller but it also
indicates that the kernel is more important. Thus, by comparing
gradients of the same kernel but trained by different methods, we
can know the advantages and disadvantages of training methods
for this kernel. However, there are usually more than thousands
of kernels in a single network, and it is not instructive to
understand the superiority of kernel-level training. On the other
hand, the same layer’s kernels are responsible for similar feature
extractions, e.g., kernels of a specific layer extract edges from
different angles. Naturally, all kernels’ average gradients in each
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FIGURE 5 | The average precision (AP) test-results curve of different methods trained on the Ki-67 dataset of different retentive rates. The horizontal coordinate

stands for different retentive rates and the vertical coordinate for AP(%).

FIGURE 6 | The recall test-results curve of different methods trained on the Ki-67 dataset of different retentive rates. The horizontal coordinate stands for different

retentive rates and the vertical coordinate for recall(%).
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FIGURE 7 | Examples of detection results on the Ki-67 dataset. These results are trained on the dataset with the retentive rate of 0.1 and tested on the test-set.

Predictions are drawn in green diamond, and manual annotations are in red boxes. A score threshold of 0.6 is used for display.

layer can be used as an objective evaluation standard for feature
extraction ability. Therefore, we analyze the gradient of each layer
to investigate why BDE can improve the performance.

5.2. How to Analyze the Gradient
We analyze the mean value of the gradients in each
layer of the network by computing the back-propagation

via the testing loss. Specifically, for a layer indexed
by l, whose mean gradient (µl) can be computed
as follow:

µl =

k=K
∑

k=1

1

K
· Al,k; µl ∈ R1, (14)
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FIGURE 8 | The gradient is visualized on the whole network (80 layers) with different training methods and different retention rate annotations (from 0.1 to 1.0, bottom

to top). Each row in this figure contains 80 grids representing 80 layers, and the color of each grid encodes which training method obtains the minimum gradient at a

layer, e.g., the red grid representing BDE has the minimum gradient for a specific layer.

in which, K is the number of convolution kernels in the layer
indexed by l, and Al,k can be obtained by Equation (15).

Al,k =
1

d × w× h

d
∑

i

w
∑

j

h
∑

m

G
i,j,m

l,k
, (15)

where Gl,k is the gradient of k-th convolutional kernel in the l-th
layer. Meanwhile, d, w, and h are the depth, the width, and the
height of this kernel. Gl,k can be computed by Equation (16).

Gl,k =

N
∑

i

1

N
· |

∂Litest
∂Wl,k

|; Gl,k ∈ Rd×w×h, (16)

where Litest represents the loss computed on the i-th testing image,
and there are N testing images, and Wl,k is the weights of the
k-th convolutional kernel in the l-th layer. Further, the gradient
represents the direction whether it is positive or negative, so that
we perform an absolute operation on the calculated gradient.

5.3. Visualization and Discussion of the
Gradient
As shown in Figure 8, we visualize the layer-level gradient of the
networks (with 80 layers), which are trained on the Ki-67 dataset
(retentive rates range from 0.1 to 1), and the gradient is obtained
by the testing loss of the Ki-67 dataset. For each layer, we compare
whose gradient is trained on different methods. Specifically, a
grid with different colors indicates which method can obtain
the minimum gradient, e.g., a red grid shows that our approach
reduces the test gradient for a particular layer.

We can observe from Figure 8when the network is trained on
a dataset whose retentive rate below 0.5, BDE improves most of
the middle layers (roughly 20–60 layers), which does not seem to
happen by accident. Therefore, we can further presume that the
generalization performance improvement of the cell detection
task is closely related to the middle layers of the network.

6. CONCLUSION

In this study, through theoretical analysis and experimental
verification, we identify that the detector trained on sparsely
annotated cellular datasets may fall into overfitting due to
deviation-loss. In order to address the training limitation,
we propose a novel training method, which is utilized
to calibrate the deviation-loss based on the cues provided
by the density of regression boxes. Extensive experiments
demonstrated the strength of BDE to significantly improve
the training performance of the cellular detector, even with
90% of annotations missing, the performance of our method
is barely affected. Thus, our proposed BDE might enable
better and faster development of accurate cellular detection.
More importantly, through the visual analysis of the network
gradient, we find that the improvement of generalization
performance is closely related to the middle layer of the network,
which is expected to provide a new theoretical direction for
future research.
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APPENDIX

Overfitting Issues When Datasets Are
Sparsely Annotated
Figure A1A in Appendix exhibits the loss curve of a
standard object detector trained on the KI-67 dataset at
different cellular-level retentive annotation rates. Before
3,000 steps, the detector trained on the datasets with

a lower retentive annotation rate leads to a larger loss,
which indicates that the deviation-loss dominates the
training process. After that, lower retentive annotation
rates lead to smaller losses, which indicates that the
detector tends to focus on the annotated instances and
then drives the overfitting issue. As shown in Figure A1B

In Appendix, our method can significantly solve the
overfitting issue.

FIGURE A1 | The loss curves for a standard detector and our method training under different cellular-level retentive annotation rates of the training dataset, smaller

retentive rate indicates fewer annotations. (A) For a standard detector’s loss curve. (B) The loss curve of our training method.
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