
ORIGINAL RESEARCH
published: 08 November 2021

doi: 10.3389/fmed.2021.750396

Frontiers in Medicine | www.frontiersin.org 1 November 2021 | Volume 8 | Article 750396

Edited by:

Erping Long,

National Institutes of Health (NIH),

United States

Reviewed by:

Jiewei Jiang,

Xi’an University of Posts and

Telecommunications, China

Zhongwen Li,

Wenzhou Medical University, China

Qingyu Chen,

National Center for Biotechnology

Information (NLM), United States

*Correspondence:

Suraj Mishra

smishra3@nd.edu

Specialty section:

This article was submitted to

Ophthalmology,

a section of the journal

Frontiers in Medicine

Received: 30 November 2021

Accepted: 14 October 2021

Published: 08 November 2021

Citation:

Mishra S, Wang YX, Wei CC, Chen DZ

and Hu XS (2021) VTG-Net: A CNN

Based Vessel Topology Graph

Network for Retinal Artery/Vein

Classification. Front. Med. 8:750396.

doi: 10.3389/fmed.2021.750396

VTG-Net: A CNN Based Vessel
Topology Graph Network for Retinal
Artery/Vein Classification
Suraj Mishra 1*, Ya Xing Wang 2, Chuan Chuan Wei 3, Danny Z. Chen 1 and X. Sharon Hu 1

1Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, United States, 2 Beijing

Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital

Medical University, Beijing, China, 3Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University,

Beijing, China

From diagnosing cardiovascular diseases to analyzing the progression of diabetic

retinopathy, accurate retinal artery/vein (A/V) classification is critical. Promising

approaches for A/V classification, ranging from conventional graph based methods to

recent convolutional neural network (CNN) based models, have been known. However,

the inability of traditional graph based methods to utilize deep hierarchical features

extracted by CNNs and the limitations of current CNN based methods to incorporate

vessel topology information hinder their effectiveness. In this paper, we propose a

new CNN based framework, VTG-Net (vessel topology graph network), for retinal A/V

classification by incorporating vessel topology information. VTG-Net exploits retinal

vessel topology along with CNN features to improve A/V classification accuracy.

Specifically, we transform vessel features extracted by CNN in the image domain into

a graph representation preserving the vessel topology. Then by exploiting a graph

convolutional network (GCN), we enable our model to learn both CNN features and

vessel topological features simultaneously. The final predication is attained by fusing the

CNN and GCN outputs. Using a publicly available AV-DRIVE dataset and an in-house

dataset, we verify the high performance of our VTG-Net for retinal A/V classification over

state-of-the-art methods (with∼2% improvement in accuracy on the AV-DRIVE dataset).

Keywords: retinal images, artery/vein classification, vessel topology, convolutional neural networks, graph

convolutional networks

1. INTRODUCTION

Being the only vascular network of the human body that is visible to non-invasive imaging
techniques, analysis of retinal vascular structures is a common way to diagnose a number of
diseases. Conditions such as arteriovenous nicking, arteriolar constriction, vessel dilation, and
tortuosity alteration are vital for examining various cardiovascular diseases, diabetic retinopathy,
and hypertension (1–3). Specifically, the arteriolar-to-venular ratio (AVR) gives a key biomarker,
critical for quantifying the severity of such diseases. Hence, accurate classification of retinal vessels
into arteries/veins (A/V) is of significant clinical interest.

Significant research has been done on automatic A/V classification. Early studies (4) focused on
designing hand-crafted features for automatic A/V classification. To exploit the tree-shaped retinal
vasculature (5), graph based methods were proposed (3, 6, 7). Such methods used the segmented
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vessel structures to generate a graph, preserving the vessel
topology; the graph was then traversed for accurate vessel
classification. Recently, convolutional neural network (CNN)
based approaches for A/V classification garnered large interest.
In (8), a U-Net (9) based method was used for A/V classification.
A SegNet (10) inspired encoder-decoder architecture (11) was
proposed for pixel-wise classification. A multi-task framework
with spatial activation was given (12) for simultaneous
vessel segmentation and classification. Although outperforming
traditional graph based methods, CNN approaches still suffer
several drawbacks: (i) limited vessel connectivity; (ii) multiple
class assignment of a single vessel segment. Recently, Chen
et al. (13) proposed a generative adversarial network based
method in which a topology preserving module with triplet loss
was introduced to address the issue of limited connectivity of
classified vessels. But, effective solutions for both these drawbacks
of known CNN based approaches still remain highly sought.

CNN based approaches commonly use a series of feature
extractors (also called spatial filters, kernels, or channels) to
extract hierarchical information. Each filter extracts information
from a fixed size spatial input neighborhood [the receptive
field (14)] and propagates it to the output. Current spatial feature
extraction methods are not able to handle the issues of multiple
class assignment and limited vessel connectivity well (e.g., see
Figure 1). Some seemingly simple cases for the graph based
methods (3, 6, 7) can be wrongly classified by CNNs, possibly
because their feature extractors do not capture vessel topology
effectively. Thus, we believe that incorporating a deep graph-
based model that can effectively capture vessel topology into a
CNN based approach will improve A/V classification.

Recently, graph convolutional network (GCN) models have
been shown to be effective for analyzing graph-structured
data. Information propagation on graphs can be formulated,
by conditioning the learning models both on such data and
the adjacency matrices of the underlying graphs. Known
approaches (15–19) have explored graph convolution for
learning graph data in various applications, such as e-
commerce (customer-product interaction), chemistry (molecule
interaction), and citation networks (author-paper interaction).
For retinal vessel classification, graph convolution was first
proposed in (20) by generating a graph representation with graph
nodes defined using sampled skeleton of vessels; graph edge
information was extracted from the vessel skeleton, and graph
node features were sampled from CNN feature maps using node
locations. In (21), a model was proposed by using only vessel
pixels as graph nodes, ignoring all non-vessel pixels; graph edges
were built using a local patch based neighborhood, and node
features were extracted from CNN feature maps using vessel
segmentation masks. Although quite effective, these approaches
failed to exploit the potential of GCNs by ignoring non-vessel
pixels in graph generation and representation.

To improve A/V classification on fundus images by
incorporating vessel topological features with CNN features, we
propose VTG-Net (vessel topology graph network). VTG-Net
exploits graph convolution based learning by strategically
transforming the hierarchical CNN features of an input fundus
image into a graph representation that preserves vessel topology.

Specifically, using a CNN model trained on the input dataset,
we first extract image features along with the segmented vessels
in the input images. Next, by using CNN features and the
segmented vessels (providing the underlying graph structure), a
graph representation is produced while preserving the non-vessel
pixels as isolated graph nodes. Employing a GCN, we classify the
generated graph by extracting its topological features. Lastly, by
fusing the CNN output and GCN output, the final prediction
is attained.

In contrast to the known GCN based methods for A/V
classification, our VTG-Net seeks to address the issue of
broken vessels by retaining non-vessel pixels as (isolated) graph
nodes. Our approach is hinged on our observation that, if
discarding the information content of non-vessel pixels, the
errors generated by CNN (disconnected vessels generated due
to, e.g., low image quality, lesser model ability) will propagate
and cannot be corrected. The inclusion of isolated background
nodes may facilitate CNN error correction since GCNs in general
leverage not only edge information but also node features for
classification. Further, GCN features learned by VTG-net from
the connected graph portions (positive vessel examples) can help
classify the disconnected portions. Disconnected vessels can still
be classified with good accuracy using node features, since graph
edges need not necessarily encode node similarity (the same
label) (15), which is useful for A/V classification.

We evaluate our VTG-Net using a public dataset AV-
DRIVE (22) and an in-house dataset, and our experimental
results show its high efficacy.

The rest of this paper is organized as follows. In section 2,
our proposed framework is presented. Experimental results are
discussed in section 3. Ablation analysis is provided in section 4.
Section 5 concludes the paper.

2. METHOD

Figure 2 shows our VTG-Net framework for A/V classification.
It consists of three main steps. (1) A CNN (in the red box of
Figure 2) is trained using the input dataset. (2) The extracted
features and segmented vessels from CNN are used to generate
a vessel topology graph. (3) A GCN model is trained using the
generated graphs to produce classified output (in the blue box
of Figure 2). The final prediction is attained by fusing the CNN
output and GCN output.

2.1. Graph Convolution Based Topology
Analysis
In contrast to standard convolution where information is
exchanged only in a small neighborhood (determined by the
filter receptive field), graph convolution enables long range
information exchange by incorporating adjacency matrices of
graphs into message passing (23). Assume an undirected graph
G = (V,E), with N nodes vi ∈ V (each node containing C
features) and M edges (vi, vj) ∈ E. The edge connectivity
(capturing topological neighboring relations) is represented by
an adjacency matrix A ∈ R

N×N . The spectral graph convolution
of a tensor x ∈ R

N×C with a filter gθ is defined as gθ ⋆ x =
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FIGURE 1 | (A) A sample fundus image. (B) Ground truth of (A) arteries, veins, vessel crossings, and uncertain vessels are marked in red, blue, green, and white,

respectively. (C) Output generated by U-Net (9) on (A) (training performed by merging uncertain vessels and vessel crossings into a single class). Cyan arrows

highlight vessels with multiple class assignments and orange arrows show limited vessel connectivity.

FIGURE 2 | Our proposed VTG-Net framework. Using the CNN component (in the red box), node and edge information for generating our graph representation is

extracted. A GCN model is trained using the generated graphs (in the blue box) for topological feature extraction based on the CNN features. The final output is

generated by fusing the CNN output and the GCN output.

FIGURE 3 | (A) Our proposed method for graph representation generation. Combining the input image with the CNN features (shown in the blue box), node features

are assigned to the graph. Using the segmented vessel structure, the edge connectivity is determined (shown in the orange box). Combining these two types of

information, our graph representation is generated (shown in the green box). In (B), a simple example of an undirected graph [GEX = (VEX,EEX )] is shown; (b2,b3) the

adjacency matrix (A) and the adjacency matrix with self-connections (Â) of this graph.
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FIGURE 4 | Left: Segmented vessels. Middle-left: A zoomed-in segmented vessel segment. Middle-right: Graph representation with vessel (gray circles) and

background (white circles) nodes; graph edges are built following the segmented vessel segment. Right: Each node (for both connected vessel nodes and isolated

background nodes) is associated with the x features and is mapped to the y label.

FIGURE 5 | Our proposed GCN model. Input and output graph representations are shown in the green boxes. Intermediate graph activations are highlighted in the

orange boxes.

UgθU
Tx, where U is the matrix of eigenvectors of the graph

Laplacian matrix L (15), which is a matrix representation of

the graph G. L is defined as L = IN −D− 1
2AD− 1

2 , where D

(Dii =
∑

j(Ai,j)) is a diagonal matrix of node degrees and IN is
the identity matrix (24, 25). To reduce the cost for computing
UgθU

T, the above graph convolution is approximated using
a truncated expression of Chebyshev polynomials Tk(x) up to

the Kth order, i.e., gθ ′ ⋆ x ≈
∑K

k=0 θ
′

k
Tk(L̂)x, where Tk(L̂) =

2L̂Tk−1(L̂) − Tk−2(L̂), with T0(L̂) = 1 and T1(L̂) = L̂ (26), and

θ
′

k
are the filter parameters acting as node feature transformers.

The rescaled graph Laplacian matrix L̂ = 2
λmax

L − IN (λmax is
the largest eigenvalue of L) can be viewed as an encoder of the
topological information of the graph G.

In (15), a first order approximation of the Chebyshev
polynomial (K = 1) is shown to be effective. Using K = 1 and
λmax = 2, the graph convolution can be approximated as:

gθ ′ ⋆ x ≈ θ ′0x+ θ ′1(L−IN)x = θ ′0x− θ ′1D
− 1

2AD− 1
2 x

≈ θ(IN +D− 1
2AD− 1

2 )x (1)

where θ is chosen as θ = θ ′0 = −θ ′1 for constraining
the number of parameters. To include self-connections of
nodes in localized aggregation (Â = A + IN) and to avoid
vanishing/exploding gradients (D̂ii =

∑
j Âij), a normalization

trick was proposed (15): IN +D− 1
2AD− 1

2 → D̂
− 1

2ÂD̂
− 1

2 .
Applying this normalization trick to Equation (1), the graph
convolution can be generalized as:

Y = D̂− 1
2 ÂD̂− 1

2X2 (2)

where X∈RN×C is the node feature vectors of the graph (N nodes
with C dimensional features), and 2∈RC×F is the matrix of filter
parameters extracting F hidden features. Y ∈ R

N×F is the output
of the graph convolution operation.

Using the graph convolution shown in Equation (2), a
neural network model f (X,A) is trained [unlike a standard
convolutional model f (X)) by conditioning f (·) simultaneously
on the matrix of node features and the adjacency matrix of

the graph [D̂− 1
2 ÂD̂− 1

2X in Equation (2]. Further, similar to
CNN, by stacking multiple layers performing graph convolution,
hierarchical topological features can be extracted by a GCN
model. Both the node definition (node features) and graph
structure (edge connectivity) play a key role in determining
information propagation inGCN. In the next section, we describe
how we utilize the extracted CNN features and segmented vessel
structures to generate the needed graph representation for our
VTG-Net.

2.2. Graph Representation Generation
To leverage a GCN model to incorporate vessel topological
features with the extracted CNN features, a graph representation
of the CNN features is used. We propose a graph representation,
G = (V,E) (vi ∈ V, (vi, vj) ∈ E), which can be generated
utilizing the CNN features for its nodes and the underlying vessel
structure for its edge connectivity. Our proposed method for
graph representation generation is illustrated in Figure 3 along
with its major components. We first explain the CNN feature
extraction, followed by the vessel structure generation. Finally,
we combine these two types of information to generate our
graph representation.
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2.2.1. CNN Feature Extraction

For a CNN performing pixel-wise A/V classification [CNN
output ∈ R

P×Q×CLout , CLout = (background, artery,
crossing+unknown, vein)] on an input image ∈ R

P×Q×CLin

(i.e., height× width × channels), we can assume that the
last layer (uppermost) of the network is the classifier, while the
remaining layers function as the feature extractor. Utilizing theH
output features of the feature extractor, the classifier generates the
final class probabilities (RP×Q×H → R

P×Q×CLout ). For instance,
a convolutional layer with a 1× 1 filter f1×1 ∈ R

1×1×CLout is used
as the CNN classifier in (12, 13). Thus, we use the input feature
maps of the last 1× 1 convolution layer as our representative
CNN features.

2.2.2. Vessel Structure Extraction

The underlying retinal vessel structure (captured by the
segmented vessels) provides a guide on the connectivity among
pixels of the input image. Thus, we use the segmented vessels to
construct our graph representation. Specifically, each pixel of the
segmented vessel mask is treated as a node in G. If two adjacent
pixels are both classified as the vessel class, an edge connects
them in G. To identify all vessel pixels, the multi-class pixel-wise
classified CNN output is converted to foreground/background
classification (i.e., RCLout → R

0,1). Then for each node (i.e., each
pixel) of our graph representation G (N = P × Q), we explore
the pixel’s 8-connected neighborhood (shown in Figure 3). If
and only if both adjacent vi and vj belong to the segmented
foreground, (vi, vj) ∈ E and the adjacency matrix A of G is
updated accordingly. Background pixels (non-vessel pixels) are
represented as isolated nodes in G (shown in Figure 4).

2.2.3. Graph Representation Generation

Using themap of extracted CNN features and the vessel structure,
we generate our graph representation G = (V,E), with N nodes
and an adjacency matrix A. By combining the image channels
(CH; RGB for fundus images) as additional features (shown in
a blue box in Figure 3), each node has a feature vector of length
H + CH. Let X ∈ R

N×(H+CH) be the set of feature vectors of
all the N nodes in G. Combining X and A, we are now ready
to learn the GCN model f (X,A) [i.e., to determine the values of
the parameters of the model f (X,A)] by using Equation (2) for
information propagation on our graph representation G.

2.3. Graph Classification and Fusion
To extract hierarchical (topological) features, we propose amulti-
layer GCN model. Our proposed GCN model is shown in
Figure 5. Using the graph convolution operation [defined in
Equation (2)], X is transformed into H′ hidden feature channels
(RN×(H+CH) → R

N×H′

; see the left orange box in Figure 5).
After activation and dropout (27), another graph convolution
operation converts the hidden features into output class
probabilities, i.e., RN×H′

→ R
N×CLout . Using an appropriate loss

function (e.g., cross-entropy) and gradient back-propagation, the
model parameters (2) of the GCN model f (X,A) are learned.

To obtain more accurate classification, we further fuse the
pixel-wise classified CNN output (RP×Q×CLout ) and the GCN
output (RN×CLout ) to generate the final output of our model

TABLE 1 | A/V classification results on the AV-DRIVE and Tongren datasets.

AV-DRIVE dataset (22)

Method Type Acc (%) Sen (%) Spe (%)

(6)

Graph-based

87.4 90.0 84.0

(7) 93.5 93.0 94.1

(3) 93.5 94.2 92.7

(30) 94.7 96.6 92.9

(8)

DL

90.0 - -

(12) 94.5 93.4 95.5

(31) 94.3 93.7 94.3

(13) 96.3 95.3 97.1

(21) GCN 92.6 93.0 92.2

Our

CNN 94.60 ± 0.70 92.51 ± 1.33 96.12 ± 0.52

GCN 96.49 ± 0.02 96.18 ± 0.04 96.76 ± 0.05

Fusion 98.11 ± 0.03 97.32 ± 0.11 98.70 ± 0.06

Tongren dataset

Our

CNN 93.81 ± 0.32 94.02 ± 1.34 93.82 ± 1.4

GCN 96.05 ± 0.01 95.12 ± 0.07 97.20 ± 0.03

Fusion 97.98 ± 0.03 98.01 ± 0.08 98.13 ± 0.10

(i.e., RP×Q×CLout ⊙ R
N×CLout → R

N×CLout , where ⊙ denotes
a fusion operation). One possible way to perform this fusion
is to use an agreement based voting scheme in which only an
agreement between both these outputs permits a class assignment

(e.g., R
N×CLi
Fused

= R
P×Q×CLi
CNN ∩ R

N×CLi
GCN , where i = output class).

Disagreements between the CNN and GCN outputs are ignored.
Another way is to assign weights to the CNN and GCN output

class probabilities (R
N×CLi
Fused

= wCNNR
P×Q×CLi
CNN + wGCNR

N×CLi
GCN ,

where wCNN and wGCN are the weights for the CNN and
GCN output class probabilities, respectively). After the fusion
of individual class probabilities, a 50% threshold is applied to
generate the final output for each class. Various fusion options
with experimental details are shown in section 4.5.

3. EXPERIMENTAL EVALUATION

3.1. Datasets
We use a public dataset AV-DRIVE (22) and an in-house dataset
(which we call the Tongren dataset) to evaluate our VTG-Net
for retinal A/V classification. In the AV-DRIVE dataset (22), 20
training images and 20 test images are provided along with pixel-
wise annotation of artery, vein, crossing regions, and uncertain
vessels. We merge the crossing regions and uncertain vessels into
a single uncertain class for our experiments [CLAV−DRIVE

out =

(background, artery, crossing+unknown, vein)]. Our in-house
dataset contains 30 fundus images collected by the Department
of Ophthalmology, Beijing Tongren Hospital, and pixel-wise
ground truth annotations were generated by experts for artery,

vein, and uncertain vessels [CL
Tongren
out = (background, artery,

unknown, vein)]. Twenty images of the Tongren dataset are used
for training and the remaining 10 images are for testing.

Frontiers in Medicine | www.frontiersin.org 5 November 2021 | Volume 8 | Article 750396

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Mishra et al. Vessel Topology Graph Network

FIGURE 6 | (A,F) An image example and two image regions in it. (B,G) The corresponding ground truth. (C–E) The outputs of CNN, GCN, and VTG-Net. (H)

CNN-only outputs by our CNN (cyan arrows highlight some vessels with multiple class assignments, and orange arrows mark limited vessel connectivity in the

CNN-only outputs, which are rectified by our GCN as shown in I).

FIGURE 7 | (A) Example images. (B,E) The corresponding ground truth and zoomed in regions. (C,F) CNN outputs. (D,G) GCN outputs. In (F), cyan arrows highlight

some vessels with multiple class assignments, and orange arrows mark limited vessel connectivity in the CNN-only outputs. In (G), a green arrow highlights a failure

case where multiple class assignments are present in the GCN output.

3.2. Experimental Setup
For the CNN training, we use PyTorch with the He
initialization (28). To limit overfitting, data augmentation
is performed using random flipping and rotation (14). Using a
standard U-Net (9) as the CNN model, training is performed.
The CNN training uses a cross-entropy loss and the Adam
optimizer (29) (β1 = 0.9,β2 = 0.999, ǫ = 1e − 08) with an
initial learning rate 2e − 05, which is halved in every 10k epochs
for 20k epochs. For graph generation, we stack the input image
along with the extracted CNN features (64 feature maps) to
generate the node feature vectors [H + CH = 64 + 3 (RGB)
= 67]. After experimenting with different values (128, 64, 32,
16) for the hyperparameter H′ (GCN hidden features), 32 is
selected. For the GCN training, we use the PyTorch-Geometric
framework. The GCN training uses the Adam optimizer (29)
(β1 = 0.9,β2 = 0.999, ǫ = 1e − 08) with an initial learning

rate 0.003, which is 1
100

th
in every 30 epochs for 200 epochs for

the AV-DRIVE dataset. For the Tongren dataset, GCN training

is performed with an initial learning rate 0.04, which is 1
10

th
in

every 15 epochs for 200 epochs. Following known approaches,
evaluation is performed by treating artery as the positive class
and vein as the negative class.

Following known studies (13), we used accuracy, sensitivity,
and specificity as evaluation metrics. For variability analysis,

TABLE 2 | Isolated background node contribution using the AV-DRIVE dataset

(✓ = with; ✗ = without).

Method A/V classification

GCN Isolated nodes Acc (%) Sen (%) Spe (%)

Proposed
✓ 96.49 96.18 96.76

✗ 94.66 93.29 95.74

experiments are repeated for five times. Mean and standard
deviations are used to report the outcome of the experiments. For
ablation analysis, only the mean values of the base experiments
are used for comparison. Using 2-tailed, paired sample t-tests, p-
values were computed. For p < 0.05, observations are considered
as statistically significant.

3.3. Results
Quantitative results obtained on the AV-DRIVE dataset (22)
and the Tongren dataset are shown in Table 1. On the AV-
DRIVE dataset, comparison is performed with graph based (3,
6, 7, 30), deep learning (DL) based (8, 12, 13, 31) and GCN
based (21)methods. Evaluation under the same criteria as used by
known studies reveals that VTG-Net achieves an mean accuracy
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FIGURE 8 | Examples of CNN feature maps. CNN feature maps are used to generate the node features in the graph representation of VTG-Net.

(Acc) of 98.11% on the AV-DRIVE dataset, outperforming
all state-of-the-art methods. In comparison with CNN-only
approaches, utilizing GCN improves classification accuracy and
sensitivity (with p = 0.003 and p = 0.004, respectively).
The improvement shown in specificity by GCN is found to
be not statistically significant (p > 0.05) over the CNN-
only approaches. Qualitative results of several example cases
are given in Figure 6. Improved connectivity and reduction
in multiple class assignments achieved by our VTG-Net are
highlighted in Figure 6I, compared to the CNN-only outputs
shown in Figure 6H. Additional qualitative examples are shown
in Figure 7, highlighting the CNN-only outputs and GCN-only
outputs. In Figure 7G, a failure case produced by GCN with
multiple class assignments is shown. On the Tongren dataset,
VTG-Net yields considerably improved classification accuracy
compared to the CNN-only method (p < 0.05).

We should mention that a main limitation of our framework
evaluation is that the sizes of the datasets used are relatively small.
For the public AV-DRIVE dataset, we have followed the standard
training/test splitting adopted in existing work [e.g., (12, 13)]
in the evaluation, and our VTG-Net has outperformed those
methods on this dataset. In our future work, we plan to conduct
training and validation of VTG-Net on larger datasets for a more
thorough evaluation.

4. ABLATION STUDY

We perform systematic ablation study on the graph structures,
along with different components of our proposed framework.
The ablation experiments use the AV-DRIVE dataset to examine
the performances.

4.1. Graph Node Choices
Our framework utilizes isolated background pixels along with
vessel pixels as graph nodes. In order to analyze the contribution
of such isolated nodes, we remove all of them from the graph
representation. Experiments are conducted using the graph
containing only vessel pixels as graph nodes, and the results are
shown in Table 2. It is interesting to see that, in the absence
of such isolated nodes, accuracy degrades. In the presence
of additional node information, VTG-Net is able to improve
classification accuracy.

4.2. Graph Node Feature Assignment
In VTG-Net, each graph node contains CNN features (some
examples of hidden feature maps are shown in Figure 8)

TABLE 3 | Node feature contribution analysis using the AV-DRIVE dataset.

Method A/V classification

GCN Node features Acc (%) Sen (%) Spe (%)

Proposed

Proposed (67) 96.49 96.18 96.76

CNN features (64) 96.48 96.17 96.74

RGB (3) 09.92 00.00 14.99

along with the input image channels (RGB) as node features
(H + CH = 64 + 3 = 67). In order to assess the effect of
different node features, we modify the node feature assignment
by generating two test cases. In case 1, we use only the
CNN features as the node features (H = 64); in case 2,
only the RGB image is used as the node features (CH =

3). Results obtained on the AV-DRIVE dataset are shown in
Table 3. The inclusion of the input image as node features
has only a little impact on graph classification. In contrast,
CNN features are critical for accurate graph classification
as the accuracy degrades significantly in the absence of
CNN features.

4.3. Graph Edge Arrangement
VTG-Net utilizes CNN-segmented vessels for graph edge
assignment (shown in Figure 3), by exploring a node’s (pixel’s)
8-connected neighborhood. Note that during output generation,
CNN may incur some errors in vessel segmentation and
classification. As thresholded classification is used to generate
the CNN-segmented vessels, errors on segmented vessels may
affect the final output generation. Such CNN errors are
likely to occur around the segmented vessels (e.g., broken
vessels). In order to include the likely error pixels/nodes
into the graph structure for possible GCN correction, we
explore dilation of the segmented vessels for graph generation.
Specifically, during graph generation, we dilate the segmented
vessels with different dilation rates to generate the graph
representation (e.g., see Figure 9). Using a disk-shaped area
of radius r, dilation is performed on each segmented vessel
pixel (with the pixel as the center of the disk area). Results
thus obtained are shown in Table 4. Observe that for a
smaller dilation rate (r = 1), improvement in accuracy and
specificity is observed. But, dilation with a bigger r results in
accuracy degradation.
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FIGURE 9 | (A) A fundus image example. (B) The corresponding segmented vessels. (C–E) Dilated vessels with a disk-shaped area of radius r = 1, 2, 3, respectively.

TABLE 4 | Graph edge arrangement analysis using the AV-DRIVE dataset.

Method A/V classification

GCN Dilation rate Acc (%) Sen (%) Spe (%)

Proposed

Segmented (r = 0) 96.49 96.18 96.76

r = 1 97.16 95.49 98.34

r = 2 96.07 95.01 96.89

r = 3 95.69 94.39 96.68

4.4. Graph Neural Network Models
In VTG-Net, we use GCN (15) to include topological features for
A/V classification (as shown in Figure 5). Here, we experiment
with various graph message passing techniques to evaluate the
effects of different graph convolution models (16, 17, 32). Results
obtained are shown inTable 5. Note that themethod in (16) (with
k = 1) exhibits the best specificity. Comparing with GCN (15),
other graph convolution models do not show any improvement
in accuracy.

4.5. Fusion
VTG-Net utilizes an agreement based voting scheme between
the CNN output and GCN output to generate the final

fusion output (R
N×CLi
Fused

= R
P×Q×CLi
CNN ∩ R

N×CLi
GCN , where i =

output class), as discussed in section 2.3. Here, we experiment
with different fusion options by assigning different weights

to the CNN and GCN output class probabilities (R
N×CLi
Fused

=

wCNNR
P×Q×CLi
CNN + wGCNR

N×CLi
GCN , where wCNN and wGCN are

the weights for the CNN and GCN output class probabilities,
respectively). To achieve this, each individual class probability
is stored separately (without applying argmax to both the
CNN and GCN outputs), and used for fusion. After fusion,
a threshold of 0.5 is used to generate the final output for
each class. Results thus obtained are shown in Table 6. Observe
that the test cases with higher GCN class probability weights
yield better sensitivity and specificity compared to the cases
with higher CNN class probability weights. This is expected
since the GCN output is a more refined version of the
CNN output.

TABLE 5 | Comparison of different graph neural network (GNN) models using the

AV-DRIVE dataset.

A/V classification

GNN model Acc (%) Sen (%) Spe (%)

Proposed [GCN (15)] 96.49 96.18 96.76

SAGEConv (17) 93.43 90.77 95.51

ChebConv (16) (k = 1) 96.26 94.92 97.22

ChebConv (16) (k = 2) 93.76 92.77 94.58

ChebConv (16) (k = 3) 94.16 92.52 95.44

GENConv (32) (k = 2) 93.60 91.37 95.32

GENConv (32) (k = 3) 93.66 90.81 95.87

TABLE 6 | Comparison of different fusion options using the AV-DRIVE dataset.

A/V classification

Fusion Acc (%) Sen (%) Spe (%)

Proposed 98.11 97.32 98.70

wCNN = 0.8, wGCN = 0.2 96.04 94.72 97.10

wCNN = 0.6, wGCN = 0.4 96.93 95.74 97.89

wCNN = 0.5, wGCN = 0.5 97.18 96.19 97.99

wCNN = 0.4, wGCN = 0.6 97.31 96.39 98.07

wCNN = 0.2, wGCN = 0.8 97.35 96.43 98.12

wCNN = 0.1, wGCN = 0.9 97.23 96.40 97.94

5. CONCLUSIONS

In this paper, we proposed VTG-Net, a new graph
convolution based neural network, for A/V classification.
VTG-Net transforms CNN features extracted in an
image into a graph representation, preserving vessel
topology. Then by exploiting GCN, VTG-Net learns both
CNN features and topological features simultaneously.
Further, by fusing the CNN output and GCN output,
we tackled the two problems of multi-class assignment
of a single vessel and limited vessel connectivity.
Comprehensive experiments demonstrated the efficacy of
our new approach.
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