AUTHOR=Granata Simona , Bruschi Maurizio , Deiana Michela , Petretto Andrea , Lombardi Gianmarco , Verlato Alberto , Elia Rossella , Candiano Giovanni , Malerba Giovanni , Gambaro Giovanni , Zaza Gianluigi TITLE=Sphingomyelin and Medullary Sponge Kidney Disease: A Biological Link Identified by Omics Approach JOURNAL=Frontiers in Medicine VOLUME=8 YEAR=2021 URL=https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2021.671798 DOI=10.3389/fmed.2021.671798 ISSN=2296-858X ABSTRACT=

Background: Molecular biology has recently added new insights into the comprehension of the physiopathology of the medullary sponge kidney disease (MSK), a rare kidney malformation featuring nephrocalcinosis and recurrent renal stones. Pathogenesis and metabolic alterations associated to this disorder have been only partially elucidated.

Methods: Plasma and urine samples were collected from 15 MSK patients and 15 controls affected by idiopathic calcium nephrolithiasis (ICN). Plasma metabolomic profile of 7 MSK and 8 ICN patients was performed by liquid chromatography combined with electrospray ionization tandem mass spectrometry (UHPLC–ESI-MS/MS). Subsequently, we reinterrogated proteomic raw data previously obtained from urinary microvesicles of MSK and ICN focusing on proteins associated with sphingomyelin metabolism. Omics results were validated by ELISA in the entire patients' cohort.

Results: Thirteen metabolites were able to discriminate MSK from ICN (7 increased and 6 decreased in MSK vs. ICN). Sphingomyelin reached the top level of discrimination between the two study groups (FC: −1.8, p < 0.001). Ectonucleotide pyrophophatase phosphodiesterase 6 (ENPP6) and osteopontin (SPP1) resulted the most significant deregulated urinary proteins in MSK vs. ICN (p < 0.001). ENPP6 resulted up-regulated also in plasma of MSK by ELISA.

Conclusion: Our data revealed a specific high-throughput metabolomics signature of MSK and indicated a pivotal biological role of sphingomyelin in this disease.