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This paper proposes an unsupervised way for Phonocardiogram (PCG) analysis, which

uses a revised auto encoder based on distribution density estimation in the latent space.

Auto encoders especially Variational Auto-Encoders (VAEs) and its variant β−VAE are

considered as one of the state-of-the-art methodologies for PCG analysis. VAE based

models for PCG analysis assume that normal PCG signals can be represented by

latent vectors that obey a normal Gaussian Model, which may not be necessary true

in PCG analysis. This paper proposes two methods DBVAE and DBAE that are based

on estimating the density of latent vectors in latent space to improve the performance of

VAE based PCG analysis systems. Examining the system performance with PCG data

from the a single domain and multiple domains, the proposed systems outperform the

VAE based methods. The representation of normal PCG signals in the latent space is also

investigated by calculating the kurtosis and skewness where DBAE introduces normal

PCG representation following Gaussian-like models but DBVAE does not introduce

normal PCG representation following Gaussian-like models.

Keywords: phonocardiogram analysis, auto-encoder, data density, unsupervised learning, abnormality detection

1. INTRODUCTION

Phonocardiogram (PCG) analysis is a popular way for portable heart surveillance, which makes use
of the heart sound to identify possible anomaly of heart statues. Existing PCG analysis methods use
supervised methods which demands a labor expensive process of labeling. The paper proposes an
unsupervised way of PCG analysis, which identifies abnormal PCG signals based on PCG analysis
with normal signals only.

The main task of the proposed system is to characterize normal PCG signals in an unsupervised
way and then identify abnormal PCG signals as outliers despite the existence of background noise
and sound from other resources. In recent year, many attempts have been made to analyse PCG
signals including the PhysioNet and CinC (Computing in Cardiology Challenge) data Challenge
(1), which contains multiple sets of PCG data where both normal and abnormal PCG signals are
presented and labeled.

With labels of normal and anomaly PCG signals, the PCG analysis can be considered as a
classification problem. Classical machine learning techniques such as Support Vector Machine
(SVM) (2), i-vector based dictionary learning method (3) and solutions based on Markov models
(4) are used to solve the proposed problem besides deep learning algorithms (5, 6). However, as
a supervised problem, PCG data collected needs to cover all types of PCG abnormality, which is
labor expensive.
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Inspired by the Anomalous sound detection (ASD) of
Detection and Classification of Acoustic Scenes and Events
(DCASE) data challenge 2020 (7, 8), the PCG analysis could also
be considered as an unsupervised problem where only normal
PCG signals are analyzed for the identification of anomaly PCG
signals, which is considered as an outlier detection problem. This
solution avoids PCG data collection problem as there is not need
to collect all types of anomaly PCG signals for training.

The outlier detection of high-dimensional data is not a new
research problem. Aggarwal and Yu (9) proposed to use sparse
representation to find outliers. Pang et al. (10) using homophily
couplings to identify outlier with noise. With the development of
deep learning, Variational Automatic Encoder (VAE) (11) and a
variant of VAE: β−VAE (12) are used for outlier detection in the
PCG analysis, where the anomaly score of a PCG signal could be
calculated by the features exacted from latent space of the VAE
(13) or the reconstruction loss of β−VAE (14).

The PCG analysis based on VAE systems is based on an
assumption that normal PCG signals can be represented by
via latent vectors that obey a normal Gaussian distribution
N (0, 1). However, as normal PCG signals could be different
from each other, the representation in latent space obeying
a normal Gaussian distribution may not be the best feature
representing PCG signals. For example, if the PCG collected
from different sources, the PCG features could follow a Gaussian
Mixture Model (GMM) due to different background noise
and recording devices. In extreme cases, the resulting VAE
may serve as a denoise VAE that converts anomaly PCG
signals to normal PCG signals. As a result, this paper proposes
two different ways to model normal PCG signals in a latent
space.

The novelty of this paper is the use of sample density in latent
space during the training process, which removes the assumption
that normal PCG signals can be represented by latent vectors
obeying a normal Gaussian distribution. At the same time, the
KL divergence between latent vector distribution and normal
Gaussian distribution is removed from the loss function, which
potentially removes the assumption that the latent vectors must
follow a normal Gaussian distribution.

Besides, the paper compares the system with and without the
introduction of sampling process in the latent space during the
training process. The proposed system with the sampling process
in latent space follows the procedure that a VAE system is trained
hence is named as Density based β−VAE system (DBVAE).
The proposed system without the sampling process in the latent
space likes a more traditional auto-encoder hence is named as
Density based β−Auto-Encoder (DBAE) system. Both systems
are compared with a β−VAE system, which is a more classical
way for outlier identification.

The proposed method is tested with the Physio/CinC
Heart Sound Dataset (1). There are six subsets of data
collected, where each subset is collected in roughly the
same way but from different places. This paper proposes
two experiments to examine the performance of the
proposed system. Firstly, the training data used is from
the same subset. The resulting systems are evaluated by
data from both the same subset and other subsets. Then

data from different subsets are combined as the data used
for training. The performance of the proposed systems are
tested by the Receiver Operator Characteristic (ROC) test
with Area Under Curve (AUC) values, which avoids the
introduction of thresholds.

Theoretically speaking, the normal PCG representation in
the latent space should follow a Gaussian-like model as there is
a sampling process from Gaussian model during training. For
the proposed DBAE, the resulting normal PCG representation
in the latent space may not follow a Gaussian-like model
due to the removal of sampling process from a Gaussian
model. To examining the resulting normal PCG representation
in the latent space, the kurtosis and skewness of the latent
vectors are measured.

The paper is organized in the following way. Firstly, the
proposed system is introduced. Then we present the results of
the proposed experiments followed by the discussion to conclude
this paper.

2. METHODS

The proposed system is formed by three stages: pre-processing
of the PCG signal, the training of the revised VAE system and
the post-processing stage to produce the anomaly score, which is
then evaluated by a Receiver Operator Characteristic (ROC) test
for Area Under Curve (AUC) values.

2.1. Pre-processing
The Physio/CinC Heart Sound Dataset contains the audio of
heart sound ranges from 5 to 120 s, effectively contains 6–13
cardiac cycles. For easier processing during the training process,
a standardized 6-s length is used for all samples where longer
samples are truncated and shorter samples are padded in a
recurrent way.

As a common way to extract features, the Mel Spectrogram is
calculated with the following configuration engaged: a window
length of 1,024 with a hope length of 512. There are 14 Mel filters
are used. As the sampling rate of the heart sound audio is 2 kHz,
each frame engaged in the Mel Spectrogram lasts 0.51 s.

For data bias removal, the resulting coefficients in the Mel
Spectrogram is standardized according to each row. Given a Mel
Spectrogram SM×N = [S1, S2, . . . , SM]T , the standardized row Ŝi
in a Mel Spectrogram can be written as

Ŝi =
Si −mean(Si)

std(Si)
. (1)

The standardized Mel Spectrogram can be written as Ŝ =

[Ŝ1, Ŝ2, . . . , ŜM]T .
Each five frames of the standardized Mel Spectrogram then

forms a super-frame, which is considered as a data sample in
the training dataset. The starting frame of each super frame is
selected in a rolling manner i.e., there are L− 4 super-frames for
a piece of audio with L frames. Each super-frame lasts about 3 s,
which should contain at least one complete cardiac cycle.
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2.2. Proposed Systems
The motivation of the proposed system is to relax the assumption
that the use of VAE introduced in PCG analysis: there is a way
to represent normal PCG signals whose representation in the
latent space obeys a standardized Gaussian distribution. The
assumption may cause two types of problems: (1) As VAE is
commonly used as a de-noise system, the resulting VAE system
could serve as a de-noise system for PCG signals which converts
anomaly PCG signals to normal ones; (2) If the PCG signals
are collected from multiple sources, the latent representation of
PCG signals is unlikely to follow a single Gaussian model but
a Gaussian Mixture model. As a result, there are two models
proposed in this paper to solve the potential problems.

The first model is named “Density β−VAE” (DBVAE) that
attempts to avoid the resulting latent representation of the
normal PCG signals follows a normal Gaussian distribution
if unnecessary. The DBVAE adopts a VAE system whose loss
function is formed by the combination of reconstruction loss and
the density of samples in the latent space. Adopted from the VAE
framework, there is a re-sampling procedure from a Gaussian
model in the latent space, which makes the representation of
PCG signals in the latent space may potentially follow a Gaussian
distribution. As a result, the DBVAE expects the PCG signals can
be represented by latent vectors following a single-component
Gaussian model.

If the training data collected is from multiple sources, latent
representations for normal PCG signals resulted from DBVAE
may not necessarily follow a single-component Gaussian model
hence the “Density β−Auto Encoder” (DBAE) is introduced.
By removing the re-sampling process in the latent space, the
representation of normal PCG signals in latent space no longer
follows a Gaussian distribution compulsory. The DBAE uses
the same loss function with DBVAE, which pursues a high
density distribution in the latent space. With the proposed loss
function, DBAE could avoid overfitting in the latent space, which
overcomes the problem of auto-encoders may have. Figure 1
gives a more intuitive explanation of the two methods.

The novel point of the proposed systems is to introduce a
sample density based loss function term in the latent space.
We now describe how sample density is estimated in the
proposed systems.

In this paper, the sample density in latent space is defined
as the average distance between each individual sample and the
centroid point of the dataset. The centroid point of the dataset
C = (c1, c2, . . . , cM) is formed by the centroid point of each
dimension, where

ci =
max(zi1, zi2, . . . , ziN)+min(zi1, zi2, . . . , ziN)

2
. (2)

The representation of all samples in the latent space is
represented by ZM×N whose ith dimension for the jth sample
is represented as zij. Using Zj to represent the latent vector
for sample j, The density measurement for all samples is then

proposed as

D =
1

N

N∑

j=1

||Zj − C||2. (3)

Given Lr to represent the reconstruction loss measure by Mean
Squared Error (MSE), the overall loss functions for both DBVAE
and DBAE are

L = Lr + βD. (4)

2.3. Post-processing
The anomaly score for a PCG signal is based on the
reconstruction error of the proposed systems. For each super-
frame (five consecutive frames) in Mel Spectrogram, the MSE
between original Mel Spectrogram and the recovered Mel
Spectrogram is considered as the anomaly score (ai) for this
particular super-frame. The overall anomaly score (a) for a PCG
signal with N frames is

a =
1

N − 4

N−4∑

i=1

ai. (5)

3. RESULTS

We firstly test the performance of the proposed systems with
each single subset. Then we test the performance of the proposed
system when how the subsets are combined. The baseline system
selected is a β-VAE based system (14), which follows the extract
experiment design in this paper.

There are six subset of data in the Physio/CinC dataset labeled
as “a,” “b,” “c,” “d,” “e,” “f.” Given the fact that there are only a few
samples in the subset “c,” the results for subset “c” is omitted when
only a single subset is used as the data source for training. Besides
the single subset tests, this paper also presents the experiments
that use the combination of multiple subsets as the training data
source. Specifically, the subsets with most data are tested (e.g.,
‘a‘ & “e,” “e,” and “f”) and the case of all subsets used is also
tests (subset “c” inclusive). In all cases, 90% normal PCG data is
used for training and the remaining 10% normal PCG data and
all anomaly PCG data are used for testing. In addition, in order
to make the experiment more credible, this paper introduces an
additional data set calledMichigan (15). The experimental results
are labeled “Michigan” with the same training proportion.

As discussed by Higgins et al. (12), in general β > 1 is
necessary to achieve good disentanglement. However, as reported
by Li et al. (14), a smaller β value may help the performance of
PCG analysis. As a result, this paper sets the β values to wider
range: 0.01, 0.1, 1, 10, and 100 to test how the value of β effects
the performance of proposed systems.

As a summary, Table 1 shows the best and worst performed
model for each type of candidate model with different settings of
β values.

From Table 2, the proposed DBAE and DBVAE systems
generally outperform the BVAE system if the value of β is
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FIGURE 1 | In the BVAE method, the latent space only ensures that the sample points roughly obey the standard normal distribution, but there is no specific

requirement for the density of the sample points. In the DBVAE method, the latent space not only retains the characteristic that the sample points obey the standard

normal, but also makes the samples more aggregated by increasing the sample density. The whole process is shown in the figure, taking two-dimensional plane as an

example. Firstly, the edge sample is determined, and the center line of the edge point is made according to the center of the edge sample on each dimension.

Secondly, the average of the center lines of the edge points is calculated to get the center line, and the intersection of the center lines of different dimensions is

defined as the centroid point. Finally, all the sample points shrink to the centroid. In the method of DBAE, the distribution assumption of sample points is canceled and

only the sample density is required. The samples shown in the figure are normal sample points during the training process.

TABLE 1 | Best and worst performed system for all tests in terms of AUC values

(at the first line of each row).

Best a b d e f ae ef ALL Michigan

BVAE (AUC) 0.825 0.559 0.691 0.923 0.846 0.822 0.899 0.786 0.966

when β: 0.01 1.00 100 0.01 100 0.01 0.01 0.01 1.00

DBVAE (AUC) 0.862 0.642 0.845 0.924 0.831 0.861 0.914 0.803 0.966

when β: 0.1 0.01 0.1 0.01 10 0.01 0.01 0.01 1.00

DBAE (AUC) 0.842 0.614 0.940 0.928 0.842 0.887 0.929 0.808 0.944

when β: 0.1 1.00 0.1 0.1 10 0.1 100 1.00 0.01

Worst a b d e f ae ef ALL Michigan

BVAE (AUC) 0.798 0.551 0.583 0.881 0.801 0.765 0.836 0.644 0.725

when β: 1.00 0.1 0.1 1.00 10 100 10 100 0.1

DBVAE (AUC) 0.763 0.523 0.726 0.844 0.787 0.793 0.870 0.719 0.731

when β: 100 0.1 100 100 1.00 100 100 10 0.1

DBAE (AUC) 0.762 0.527 0.75 0.918 0.765 0.851 0.895 0.761 0.616

when β: 10 100 0.01 1.00 100 10 10 100 1.00

The configuration of β is set as the second line of each row. The subsets used for training

is labeled as the title of each column.

properly set. Specifically, when a single subset serves as the data
source for training, the DBVAE has a comparable performance
with DBAE in general whereas when multiple subsets are used as

the data source for training, the DBAE in general outperforms the
DBVAE and DBVAE is better than BVAE baseline.

Moreover, in the experiment presented, the results reveal that
the effects of β differ from the candidate systems. Assuming the
best performed β configuration is βb and the worst performed

β configuration is βw, Table 2 shows the value of δ =
βb
βw

− 1

for all experiments presented, which effectively measures how
much performance be can gained by adjusting the value of β in
extreme cases.

From results of δ, the effects of β value selection can be
summarized as the following: (1) using multiple subsets generally
reduce the effects on β value; (2) BVAE systems are more stable
than DBVAE and DBAE when data from single subset is used;
(3) DBAE improves the stability of system performance when
multiple subsets are used for training.

4. DISCUSSION

The proposed systems pursues different regulations on the
distribution of latent vectors. To show how the PCG signals
is presented in the latent space, the kurtosis and skewness
are measured for the distribution of normal PCG signals. The
definition of kurtosis and skewness is represented as follows.
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TABLE 2 | The ratio δ between the models with best β settings and the worst β

setting in all experiments.

a b d e f ae ef ALL Michigan

BVAE 0.034 0.018 0.185 0.048 0.051 0.074 0.076 0.220 0.332

DBVAE 0.131 0.217 0.164 0.095 0.056 0.085 0.050 0.118 0.321

DBAE 0.105 0.165 0.254 0.011 0.101 0.042 0.037 0.062 0.532

A smaller number indicates less effects of β on system performance.

TABLE 3 | The average skewness and kurtosis for all resulting models in all

experiments.

Skewness (γ1) Kurtosis (γ2)

N (0, 1) 0 0

BVAE 0.115 (±0.093) 1.368 (±0.884)

DBVAE 2.674 (±8.128) 610.499 (±1669.592)

DBAE −0.088 (±0.317) 3.369 (±4.413)

The sign “±” represents then standard deviation of the data. N (0, 1) represents normal

Gaussian distribution.

Given a representation of PCG signal in the latent space [Zj =

(z1j, z2j, . . . , zMj)] and the mean value of all latent vectors (Z), the
skewness (γ1) and kurtosis (γ2) of N samples in the latent space
can be calculated as:

γ1 =

1
N

∑N
i=1(Zj − Z)3

( 1N
∑N

i=1(Zj − Z)2)3/2
(6)

γ2 =

1
N

∑N
i=1(Zj − Z)4

( 1N
∑N

i=1(Zj − Z)2)2
− 3. (7)

Table 3 shows the average value and standard deviation
of the skewness and kurtosis of the distribution in the
latent space. For a normal Gaussian distribution, the
skewness and kurtosis is expected to be 0. A larger kurtosis
value indicates the distribution of latent vectors is more
dense. A skewness value with higher absolute value is
considered as more different with a normal Gaussian
distribution.

It is not surprising to find that BVAE systems produce
a latent vector distribution that is similar with the normal
Gaussian distribution. For DBAE, the resulting latent vectors
in the latent space also follow a unbiased distribution with
gentle variations on kurtosis in most cases, which suggests
the resulting latent vectors follow a Gaussian-like model.
Given the fact that for training data from multiple subsets
should follow and mixture of models, it is interesting to find
that the latent vectors as PCG normal signal representation
follow a Gaussian-like model rather than a mixture of models.
Moreover, it is surprising to find that the DBVAE results
to heavily biased and high dense distribution despite a
sampling process from Gaussian distribution, which suggests

the resulting latent representation for DBVAE model is not
following a Gaussian-like model. As a result, the normal PCG
representation in the latent space needs further investigation in
the future.

The motivation of proposing the DBVAE is to relax the
assumption of the latent representation for normal PCG signals
should follow a normal Gaussian distribution. The motivation
of proposing DBAE is to relax the assumption of the latent
representation for normal PCG signals should follow a Gaussian-
like distribution. Both proposed system are expected to introduce
an improvement of the system performance compared with VAE
systems. Moreover, the DBAE is expected to outperform DBVAE
when multiple subsets are used for training.

The final results confirm that both DBVAE and DBAE
introduce an improvement on performance. DBAE introduces a
small improvement compared with DBVAE when single subset
is used as the source of training data. When multiple subsets
are used for training, DBAE introduces a larger improvement
compared with DBVAE. However, the investigation on the
kurtosis and skewness of the distribution of PCG normal
representation in latent space does not confirm the assumption
this paper made where the DBVAE introduces a normal PCG
representation in the latent space does not follow a Gaussian-like
model but the DBAE introduces a normal PCG representation in
the latent space that follows the a Gaussian-like model which are
not expected.

As a quick conclusion, the introduction of density based auto-
encoder systems, DBAE and DBVAE, improves the performance
of PCG analysis however the latent representation of the
proposed systems for normal PCG signals need investigation
in the future for further improvements. The introduction of
multiple subsets stabilizes the performance of the systems
especially for DBAE, which reduces the efforts of tuning the value
of β in the proposed systems.
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