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Background: Different positive end-expiratory pressure (PEEP) strategies are available

for subjects with coronavirus disease 2019 (COVID-19)–induced acute respiratory

distress syndrome (ARDS) requiring invasive mechanical ventilation. We aimed to

evaluate three conventional PEEP strategies on their effects on respiratory mechanics,

gas exchanges, and hemodynamics.

Methods: This is a prospective, physiologic, multicenter study conducted in China. We

recruited 20 intubated subjects with ARDS and confirmed COVID-19. We first set PEEP

by the ARDSnet low PEEP–fraction of inspired oxygen (FIO2) table. After a recruitment

maneuver, PEEP was set at 15, 10, and 5 cm H2O for 10min, respectively. Among these

three PEEP levels, best-compliance PEEP was the one providing the highest respiratory

system compliance; best-oxygenation PEEP was the one providing the highest PaO2

(partial pressure of arterial oxygen)/FIO2.

Results: At each PEEP level, we assessed respiratory mechanics, arterial blood gas,

and hemodynamics. Among three PEEP levels, plateau pressure, driving pressure,

mechanical power, and blood pressure improved with lower PEEP. The ARDSnet low

PEEP–FIO2 table and the best-oxygenation strategies provided higher PEEP than the

best-compliance strategy (11 ± 6 cm H2O vs. 11 ± 3 cm H2O vs. 6 ± 2 cm H2O, p

= 0.001), leading to higher plateau pressure, driving pressure, and mechanical power.

The three PEEP strategies were not significantly different in gas exchange. The subgroup

analysis showed that three PEEP strategies generated different effects in subjects with

moderate or severe ARDS (n = 12) but not in subjects with mild ARDS (n = 8).
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Conclusions: In our cohort with COVID-19–induced ARDS, the ARDSnet low

PEEP/FIO2 table and the best-oxygenation strategies led to higher PEEP and potentially

higher risk of ventilator-induced lung injury than the best-compliance strategy.

Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT04359251.

Keywords: acute respiratory distress syndrome, coronavirus disease 2019, positive end-expiratory pressure,

mechanical ventilation, lung injury

INTRODUCTION

The World Health Organization announced the coronavirus
disease 2019 (COVID-19) outbreak a pandemic on March 11,
2020. It has been reported that 67% of critically ill subjects
with COVID-19 developed acute respiratory distress syndrome
(ARDS) requiring invasive mechanical ventilation (1). Setting a
sufficient positive end-expiratory pressure (PEEP) level is crucial
for improving oxygenation, keeping alveoli open, and reducing
cyclic reopening–closing (“atelectrauma”) (2, 3). However, an
unnecessarily high PEEP can increase the risk of overdistension,
especially in subjects with low recruitability and severe lung
inhomogeneity (4–8).

Determining the appropriate or “best” PEEP is, however,
challenging (9). Several methods have been used in clinical trials
and routine practice. ARDSnet low and high PEEP–fraction
of inspired oxygen (FIO2) tables are probably the most widely
used methods in randomized controlled trials (10, 11). These
tables, aiming at maintaining oxygenation while minimizing the
use of high FIO2, provided great feasibility for clinical practice.
Alternatively, clinicians can perform a decremental PEEP trial
(12), to find the PEEP providing the highest compliance (“best-
compliance” strategy) or providing the highest ratio of partial
pressure of arterial oxygen (PaO2) to FIO2 (“best-oxygenation”
strategy) (13–15). The so-called best-oxygenation strategy has
not been used in large clinical trials but might be widely
embedded in clinical practice where the oxygen saturation by
pulse oximetry is often used as a surrogate.

While the current guidelines suggest using higher PEEP
(>10 cm H2O) in subjects with COVID-19–induced ARDS (16),
varied lung recruitability and responses to PEEP were reported
from monocenter studies (17–19). Meanwhile, Marini and
Gattinoni proposed that COVID-19–induced ARDS is probably
different from conventional ARDS (20–22). It is unclear how
those conventional PEEP strategies perform in this particular
population. We thus want to evaluate three conventional
PEEP strategies (ARDS low PEEP–FIO2 table, best-compliance,
and best-oxygenation strategies) in subjects with COVID-19–
induced ARDS, to see whether they result in different PEEP
settings, respiratory mechanics, gas exchange, hemodynamics,
and potential risk of ventilator-induced lung injury (VILI).

MATERIALS AND METHODS

Study Population
This is a prospective physiologic study conducted in seven
intensive care units (ICUs) of seven hospitals (Wuhan Jinyintan

Hospital, The People’s Hospital of Wuhan Xinzhou, Huangshi
Hospital of Traditional Chinese Medicine, Wuhan Asia General
Hospital, Wuhan Fifth Hospital, Wuhan Wuchang Hospital,
and Wuhan Pulmonary Hospital, Wuhan, China) from March
5 to 16, 2020. Inclusion criteria were between 18 and 80
years old, laboratory-confirmed COVID-19, receiving invasive
mechanical ventilation, and meeting the Berlin Definition of
ARDS at clinical PEEP level. Exclusion criteria were pregnancy,
hemodynamic instability (i.e., norepinephrine >0.05 µg/kg per
minute or dopamine >5 µg/kg per minute), acute brain injury,
pneumothorax, or pneumomediastinum.

The study was approved by the local Research Ethics
Board. Written informed consent was obtained from
substitute decision makers. The study was registered at
ClinicalTrials.gov (NCT04359251).

Study Protocol
During the study, subjects were measured at a semirecumbent
position under volume control ventilation with a square flow
waveform. Tidal volume (VT) was kept at 6 ml/kg per predicted
body weight, and respiratory rate was kept the same at different
PEEP levels. Subjects were administered a continuous infusion
of analgesia and sedation. If spontaneous breathing effort was
strong during sedation, neuromuscular-blocking agents were
administered to suppress spontaneous breathing.

PEEP trial: (1) We first set PEEP by the ARDSnet low
PEEP/FIO2 table; goals of PEEP and FIO2 settings were PaO2 55-
80mm Hg, or SpO2 88-95%. An arterial blood gas (ABG) was
obtained at this PEEP level. (2)We then performed a recruitment
maneuver by using continuous positive airway pressure at 30 cm
H2O for 30 s, to standardize lung volume history. (3) Thereafter,
PEEP was set at 15, 10, and 5 cm H2O for 10min, respectively.
At each PEEP level, an ABG was obtained. In addition, if a
subject had extremely high plateau pressure (Pplat, e.g., >35 cm
H2O) or hemodynamic instable or refractory desaturation, the
duration of that PEEP level was reduced for safety consideration
(Figure 1).

“Best-compliance PEEP” was defined as the PEEP (among
15, 10, and 5 cm H2O) providing the highest respiratory system
compliance (Crs).

“Best-oxygenation PEEP” was defined as the PEEP (among 15,
10, and 5 cm H2O) providing the highest PaO2/FIO2 ratio.

Measurements
Airway pressure was measured using a ventilator (SV300,
Mindray, China). Pplat was measured by performing end-
inspiratory occlusion. Total PEEP (PEEPtot) was measured by
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performing end-expiratory occlusion. Static Crs was calculated
with the following formula: VT/(Pplat – PEEPtot) (23). Driving
pressure was calculated with the following formula: Pplat –

FIGURE 1 | Flow diagram.

PEEPtot. Mechanical power was calculated with the following
formula: 0.098 × RR × VT × (Ppeak – ½ × driving
pressure) (24).

Criteria of “High Risk of VILI”
To determine how many subjects were potentially exposed to
high risk of VILI by three PEEP strategies, we defined the high
risk of VILI by meeting one of the following criteria: (1) Pplat
> 30 cm H2O, (2) driving pressure > 15 cm H2O, and (3)
mechanical power > 25 J/min (11, 25, 26).

Data Collection
The general characteristics of subjects such as gender, age, height,
Sequential Organ Failure Assessment (SOFA) score, and days
of invasive mechanical ventilation were collected. Ventilator
settings, mechanics parameters, ABG, blood pressure, and heart
rate were also documented at study enrollment and during the
PEEP trial.

Statistical Analysis
Data are presented as the mean ± standard deviation,
unless specified otherwise. Comparisons between three
PEEP levels were conducted by using analysis of variance
with repeated measures or paired t-test, when appropriate.
Comparisons between two groups (separated by PaO2/FIO2)
were conducted by using independent t-test. p < 0.05 was
considered statistically significant. SPSS 20.0 (Statistical
Product and Service Solutions, Chicago, IL, USA) was used for
statistical analysis.

TABLE 1 | Characteristics of COVID-19 patients with mechanical ventilation.

Characteristics Overall (n = 20) Mild ARDS (n = 8) Moderate/severe ARDS (n = 12) P*

Males—n (%) 12 (60) 6 (75) 6 (50) 0.26

Age (years) 64 ± 7 63 ± 9 65 ± 6 0.38

Height (cm) 170 ± 9 174 ± 8 167 ± 8 0.07

SOFA 11 ± 2 11 ± 1 11 ± 3 0.59

IMV (days) 11 ± 6 10 ± 8 11 ± 4 0.77

VT (ml/kg) 5.6 ± 0.8 5.6 ± 0.7 5.6 ± 0.9 0.88

FiO2 0.66 ± 0.30 0.53 ± 0.22 0.74 ± 0.30 0.09

pH 7.36 ± 0.08 7.37 ± 0.05 7.35 ± 0.10 0.54

PaO2 (mm Hg) 108 ± 53 138 ± 57 88 ± 41 0.03

PaO2/FiO2 (mm Hg) 180 ± 75 259 ± 25 126 ± 39 <0.001

PaCO2 (mm Hg) 60 ± 18 62 ± 20 58 ± 17 0.67

Pplat (cm H2O) 23 ± 6 22 ± 7 24 ± 5 0.50

PEEP (cm H2O) 6 ± 2 6 ± 2 6 ± 2 0.97

1P (cm H2O) 17 ± 5 16 ± 7 17 ± 4 0.50

Crs (ml/cm H2O) 23 ± 8 27 ± 9 20 ± 6 0.05

MAP (mm Hg) 84 ± 12 88 ± 13 81 ± 10 0.22

HR (bpm) 95 ± 18 93 ± 15 97 ± 20 0.62

COVID-19, Coronavirus disease 2019; SOFA, sequential organ failure assessment; IMV, invasive mechanical ventilation; VT, tidal volume; Pplat, plateau pressure; PEEP, positive

end-expiratory pressure; 1P, driving pressure; Crs, respiratory system compliance; MAP, mean arterial pressure; HR, heart rate.

*Patients with mild ARDS vs. patients with moderate or severe ARDS. Compared by t-test.
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RESULTS

Twenty subjects (12 men and eight women, aged 64 ± 7 years,
SOFA score 11 ± 2) were enrolled. The subjects received various
durations of invasivemechanical ventilation beforemeasurement
(11 ± 6 days). ICU mortality was 60% (12/20). The detailed
characteristics including the baseline respiratory mechanics at
clinical PEEP level are reported in Table 1.

Responses to 15, 10, and 5cm H2O of
PEEP
As shown in Figure 2, Pplat, driving pressure, and mechanical
power were significantly decreased when PEEP was reduced from
15 to 10 cm H2O and from 10 to 5 cm H2O. We failed to obtain
ABG at PEEP 15 cm H2O in three subjects because of extremely
high Pplat (>50 cm H2O) at high PEEP. After the recruitment
maneuver, PaO2/FIO2 was similar at 15 and 10 cm H2O of PEEP
but dropped at 5 cm H2O of PEEP (p = 0.005). PaCO2 was
significantly higher at 15 cm H2O of PEEP than at 10 and 5 cm
H2O of PEEP (p = 0.018). Heart rate was similar at three PEEP
levels, but mean arterial pressure (MAP) was lower at 15 cmH2O
of PEEP (p= 0.012).

Comparisons of Three PEEP Strategies
As shown in Figure 2, the PEEP guided by best compliance was
lower than the PEEP guided by best oxygenation and the PEEP
guided by ARDSnet low PEEP/FIO2 table (6± 2 vs. 11± 4 and 11
± 6 cm H2O, p= 0.001). Pplat, driving pressure, and mechanical
power by best-compliance strategy were lower than those by best-
oxygenation strategy and ARDSnet low PEEP–FIO2 table (Pplat:
21 ± 6 vs. 31 ± 11 and 32 ± 15 cm H2O, p < 0.001; driving
pressure: 15 ± 6 vs. 20 ± 9 and 21 ± 10 cm H2O, p < 0.001;
mechanical power: 15.9 ± 4.5 vs. 23.5 ± 9.6 and 22.9 ± 10.9
J/min, p = 0.001). Crs by best-compliance strategy were higher
than those by best-oxygenation strategy and ARDSnet low PEEP–
FIO2 table (26.8± 11.8 vs. 20.6± 8.0 and 20.3± 9.3 mL/cmH2O,
p < 0.01). PaO2 by ARDSnet low PEEP–FIO2 table was lower
than those by best-compliance strategy and best-oxygenation
strategy (93.3± 40.0 vs. 229.7± 159.8 and 187.4± 146.2mmHg,
p < 0.01). Best-oxygenation PEEP provided highest PaO2/FIO2

(293 ± 137.8mm Hg), whereas best-compliance PEEP provided
higher PaO2/FIO2 than the ARDSnet low PEEP–FIO2 table (252
± 130 vs. 204 ± 103mm Hg). PaCO2 was similar among
the three strategies (p = 0.58). MAP was significantly higher
with the PEEP guided by best compliance than MAP with the

FIGURE 2 | Reponses to PEEP in all subjects (n = 20). *vs. PEEP 5 cm H2O, p < 0.05; †vs. PEEP 10 cm H2O, p < 0.05; ‡vs. oxygenation PEEP, p < 0.05; §vs.

ARDSnet PEEP, p < 0.05.
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other two strategies (p < 0.001), whereas heart rate was similar
(p= 0.96).

Subgroup Analysis
We divided subjects into two subgroups (mild ARDS and
moderate/severe ARDS) according to PaO2/FIO2 at study
enrollment based on Berlin Definition (27). Characteristics of
the subjects, including gender, age, SOFA score, and duration
of mechanical ventilation were similar between two subgroups.
PaO2 and PaO2/FIO2 were higher in the mild ARDS group than
those in the moderate/severe ARDS group. VT, FIO2, PaCO2,
Pplat, PEEP, driving pressure, Crs, MAP, and heart rate at baseline
(before initiation of the protocol) were not different between the
two groups (Table 1).

There were eight subjects in the study with mild ARDS at
study enrollment. Pplat, driving pressure, and mechanical power
decreased significantly from PEEP 15 to 5 cm H2O (Figure 3).
PEEP levels were not significantly different among the three
PEEP strategies. PaO2, Pplat, Crs, andmechanical power were not
different among the three PEEP strategies (Figure 3). However,
driving pressure at best-oxygenation PEEP and that at ARDSnet
PEEP were higher than driving pressure at best-compliance
PEEP (16 ± 8 and 18 ± 11 vs. 14 ± 7 cm H2O, p = 0.03).
There was one subject with missing ABG results. PaCO2, MAP,

and HR at PEEP guided by the three strategies were similar
(Figure 3).

There were 12 subjects with moderate/severe ARDS at study
enrollment. Pplat, driving pressure, and mechanical power
decreased significantly from PEEP 15 to 5 cm H2O (Figure 4),
whereas MAP increased significantly at lower PEEP (Figure 4).
ARDSnet PEEP and best-oxygenation PEEP were higher than the
best-compliance PEEP (12 ± 7 and 12 ± 4 vs. 6 ± 2 cm H2O, p
= 0.007). Pplat, driving pressure, and mechanical power at best-
oxygenation PEEP and ARDSnet PEEP were higher than at best-
compliance PEEP (Pplat: 35 ± 12 and 36 ± 15 vs. 22 ± 14 cm
H2O, p = 0.002; driving pressure: 23 ± 10 and 24 ± 10 vs. 16 ±
5 cmH2O, p= 0.002; mechanical power: 26± 11 and 25± 11 vs.
16± 5 J/min, p= 0.004) (Figure 4). Crs at best-compliance PEEP
was higher than those at best-oxygenation PEEP and ARDSnet
PEEP (23.0 ± 7.8 vs. 16.6 ± 4.8 and 16.7 ± 7.5 ml/cm H2O, p <

0.01). There were three subjects without ABG measurements at
PEEP 15 cm H2O as previously mentioned. PaO2 and PaO2/FIO2

were lower with ARDSnet PEEP. pH, PaCO2, MAP, and HR
between the three strategies were similar.

Potential Risk of VILI
In mild ARDS subjects, the potential risks of lung injury
induced by three PEEP strategies were similar and relatively

FIGURE 3 | Reponses to PEEP in subjects with mild ARDS (n = 8). *vs. PEEP 5 cm H2O, p < 0.05; †vs. PEEP 10 cm H2O, p < 0.05; ‡vs. oxygenation PEEP,

p < 0.05; §vs. ARDSnet PEEP, p < 0.05.
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FIGURE 4 | Reponses to PEEP in subjects with moderate or severe ARDS (n = 12). *vs. PEEP 5 cm H2O, p < 0.05; †vs. PEEP 10 cm H2O, p < 0.05; ‡vs.

oxygenation PEEP, p < 0.05; §vs. ARDSnet PEEP, p < 0.05.

TABLE 2 | Incidence of potentially high risk of ventilator-induced lung injury.

Mild ARDS (n = 8) Moderate or severe ARDS (n = 12)

Best-oxygenation Best-compliance ARDSnet low

PEEP table

Best-oxygenation Best-compliance ARDSnet low

PEEP table

Pplat > 30 cm H2O

n (%)

1 (12.5%) 1 (12.5%) 2 (25.0%) 8 (66.7%)* 1 (8.3%) 8 (66.7%)†

1P > 15 cm H2O

n (%)

3 (27.5%) 2 (25.0%) 3 (27.5%) 10 (83.3%) 5 (41.7%) 8 (66.7%)

Mechanical Power

> 25 J/min n (%)

2 (25.0%) 0 1 (12.5%) 6 (50.0%)* 0 7 (58.3%)†

Pplat, plateau pressure; 1P, driving pressure.

*p < 0.05 by Fisher’s exact tests in best-oxygenation PEEP vs. best-compliance PEEP.
†
p < 0.05 by Fisher’s exact tests in ARDSnet low PEEP table vs. best-compliance PEEP.

low (Table 2). In moderate/severe ARDS subjects, however,
both best-oxygenation PEEP and ARDSnet PEEP generated
“injurious” Pplat (>30 cm H2O) and mechanical power (>25
J/min) more frequently than best-compliance PEEP (Table 2).

DISCUSSION

The main findings of the present study are that in COVID-
19–induced ARDS subjects mechanically ventilated in Wuhan,

China, most of the subjects had a poor response to high
PEEP. The PEEP/FIO2 table and best-oxygenation PEEP had
similar effects to best-compliance PEEP on gas exchanges and
hemodynamics, but there was an increased risk of lung injury
due to high PEEP levels particularly for the subjects with
moderate/severe ARDS.

Lung recruitability of COVID-19–induced ARDS is highly
variable. Our previous study assessed the potential for lung
recruitment through the recruitment-to-inflation ratio (28),
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showing that the majority of the cohort had poor recruitability
to high PEEP in subjects with COVID-19–induced ARDS (19).
In two recent studies by Beloncle et al. and Mauri et al., however,
the potential for lung recruitment (assessed by the recruitment-
to-inflation ratio) of subjects with COVID-19–induced ARDS
in Italy and France was much higher than what we found in
Wuhan, with larger intersubject variability (17, 18). Gattinoni
and Marini proposed a hypothesis that COVID-19 pneumonia
subjects should be divided into different phenotypes to offer
different respiratory support (20–22, 29, 30). Subjects in the
present study had poor response to high PEEP (dramatic increase
in Pplat, driving pressure, mechanical power with reduction
in MAP). These poor responses to high PEEP suggest poor
lung recruitability in these subjects, which is consistent with
our previous study in which lung recruitability was directly
measured (19) and other studies (31–35). However, subjects in
our study also presented with low baseline compliance, which
were not the proposed “type H phenotype” patients and differ
from other studies.

We suspect that the differences in lung recruitability and
compliance among studiesmight be caused by different durations
of invasive ventilation prior to study enrollment. The subjects
in our study received relatively long durations of invasive
mechanical ventilation before measurement (11 ± 6 days),
which can generate progressive lung fibrosis and thus worsen
the compliance and lower the lung recruitability. The time
course of changes in mechanics has been well-illustrated by (29).
Alternatively, these differences might be related to the different
lineages of coronavirus (36–39).

Limiting the risk of hyperinflation of the “baby lung” when
applying high PEEP to promote the recruitment of the collapsed
lung is essential. The present study showed that the PEEP selected
by ARDSnet low PEEP–FIO2 table or the best-oxygenation
methods was significantly higher than the PEEP selected by
the best-compliance method. As a consequence, both ARDSnet
low PEEP–FIO2 table and the best-oxygenation strategies led to
higher Pplat, driving pressure, and mechanical power. Although
the thresholds of the limits of these parameters can be debatable,
the present study showed that the incidences of “injurious” Pplat
(>30 cm H2O) and mechanical power (>25 J/min) were higher
in ARDSnet low PEEP–FIO2 table and the best-oxygenation
strategy in subjects with moderate or severe ARDS. Although we
did not test the ARDSnet high PEEP–FIO2 table in our study,
it obviously would have increased the risk of overdistension in
our subjects. By contrast, the best-compliance strategy did not
bring notable risk of overdistension in mild or moderate/severe
ARDS subjects.

There are some limitations in our study. (1) Although it is a
multicenter study, the sample size is less than expected because
of a dramatic reduction in the number of newly admitted ICU
subjects during the study. (2) Duration of mechanical ventilation
of subjects involved after intubation was 11 ± 6 days in this
study. Caution is required for comparing our results with other
studies, which enrolled subjects in an earlier phase of mechanical

ventilation. (3) We did not assess lung recruitability directly.
Instead, we assessed the change in respiratory mechanics, gas
exchange, and hemodynamic effects during the PEEP trial, which
reflect the subjects’ response to PEEP. (4)We simplified the PEEP
trial compared to other studies, which used a decremental PEEP
trial by 2 cm H2O after a recruitment maneuver. (5) We did not
measure biomarkers at different PEEP settings, which can help us
better assess the risk of VILI.

In our cohort with COVID-19–induced ARDS from Wuhan,
the ARDSnet low PEEP/FIO2 table and the best-oxygenation
strategies provide higher PEEP than the best-compliance
strategy. Our subjects had poor responses to high PEEP as high
PEEP often led to excessive Pplat, driving pressure mechanical
power, and worse MAP. Further studies on the effects of PEEP on
COVID-19–induced ARDS are needed to confirm our findings.
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