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Research has shown that HMGB1 can activate dendritic cells (DCs), but its molecular

mechanisms are not clear. In this study, we reported that the myeloid dendritic cells

(mDCs) were activated in the peripheral blood of SLE patients, and the activation of

mDCs was associated with the up-regulation of HMGB1 and mTOR. After stimulated by

HMGB1, expression of mTOR and its substrates P70S6K and 4EBP1 in dendritic cells

increased considerably (P < 0.01). The expression of HLA-DR, CD40, and CD86 on

dendritic cells also significantly increased following these stimuli (P < 0.01). In addition,

stimulation with HMGB1 enhanced cytokine (IL-1β, IL-6, and TNF-a) production in

dendritic cells. In contrast, the HMGB1-mediated expression of HLA-DR, CD40, and

CD86 on dendritic cells and production of IL-1β, IL-6, and TNF-α were reduced by

rapamycin. Rapamycin can inhibit HMGB1-induced activation of mDCs and secretion

of pro-inflammatory cytokines. These findings indicated that HMGB1activates mDCs by

up-regulating the mTOR pathway in SLE.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a severe, debilitating autoimmune disease that affects
multiple organs and body systems. The prevalence of SLE worldwide is estimated to be as high
as 150 per 100,000 individuals (1). The disease is characterized by autoantibodies against nuclear
antigens (ANA), which result from immune system deregulation (2). Although research has been
done, the pathogenesis of SLE is not yet fully understood.

Dendritic cells (DCs) play an essential role in bridging the innate and adaptive immune
systems. DCs are antigen-presenting cells displaying the unique capability to activate naïve T cells.
DCs can also respond to encounter pathogens by producing inflammatory mediators, including
proinflammatory cytokines (3). Because of these complex roles, an imbalance in DC functions
can cause a defective or exaggerated immune response and tissue damage. Research has shown
that HMGB1, a non-histone nuclear protein, can induce immune responses and inflammatory
responses that are relevant for the pathogenesis of SLE (4). For example, recent evidence indicates
that HMGB1 is responsible for producing proinflammatory cytokines, which is a well-established
damage associated molecular pattern (DAMP) (5–7). HMGB1 is likely to be released from
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activated immune cells such as dendritic cells (DCs) in
inflammation or injury (8). When released, HMGB1 participates
in the secretion of downstream proinflammatory cytokines via
binding to cell surface receptors such as receptor of advanced
glycation end products (RAGE), TLR2, and TLR4, contributing
to the occurrence and development of diverse inflammatory
diseases and autoimmune diseases (9–14).

One signaling pathway that has been the subject of current
research in SLE is the mechanistic target of rapamycin (mTOR).
Recent studies have found that activation of mTOR in both the
immune system (15, 16) and non-traditional parenchymal organs
(e.g., the liver) precedes the onset of disease and represents early
manifestations of pathogenesis (17). A common finding in T
cells, B cells, macrophages, hepatocytes, and renovascular cells is
mTOR activation (18). But little research has been done onmTOR
activation in dendritic cells in SLE. Therefore, this study aimed
to assess the potential role of mTOR in the activation of myeloid
dendritic cells (mDCs) triggered byHMGB1 in patients with SLE.

MATERIALS AND METHODS

Design
The study used a case-control design to examine whether
HMGB1 can contribute to the up-regulation of the mTOR
pathway of dendritic cells in patients with SLE. We collected
peripheral blood samples from patients with SLE and healthy
controls (HCs). We quantified the level of HMGB1 with ELISA
and analyzed mDCs from peripheral blood with flow cytometry.
Next, we stimulated mDCs from SLE with HMGB1. The
expression of mTOR and its substrates, HLA-DR, costimulatory
molecules of dendritic cells, and cytokine synthesis were
measured. These indexes were measured again after blocking the
mTOR pathway with rapamycin.

Participants
We recruited 35 patients with SLE, who fulfilled the American
College of Rheumatology (ACR) revised criteria for the
classification of SLE (19), and 20 healthy controls. SLE disease
activity index 2000 (SLEDAI-2K) (20) was determined in the
blood sampling. Patients with SLE were recruited from the
Department of Rheumatism and Immunology, the First Affiliated
Hospital of Guangxi Medical University. All patients were
newly diagnosed and did not receive any corticosteroids or
immunosuppressive treatment at the time of the blood collection.
Healthy adults matched for age and sex were enrolled from
blood donors. The study was approved by the Medical Ethical
Committee of the First Affiliated Hospital of Guangxi Medical
University (NO.2017-KY-国基-111) and the Medical Ethical
Committee of the Fourth Affiliated Hospital of Guangxi Medical
University (NO. KY2018083), China. All subjects signed the
informed consent.

Abbreviations: DCs, dendritic cells; SLE, Systemic lupus erythematosus; mDCs,

myeloid dendritic cells; HMGB1, high-mobility group box protein-1; mTOR,

mechanistic target of rapamycin; HLA-DR, human leukocyte antigen DR; DAMP,

damage associated molecular pattern; RAGE, receptor of advanced glycation end

products; ACR, American College of Rheumatology; PBMC, Peripheral blood

mononuclear cells; Rapa, rapamycin; HCs, healthy controls.

Quantitation of HMGB1
HMGB1 in serum samples of 35 SLE patients and 20 healthy
controls were analyzed with ELISA kits (CUSABIO) according
to the manufactural protocol. Plates were read at an absorbance
of 450 nm (A450) using a Sunrise microplate reader. All
measurements were carried out in duplicate.

Analysis mDCs From Peripheral Blood of
SLE With Flow Cytometry
Peripheral blood mononuclear cells (PBMC) were isolated
from the peripheral blood samples of SLE patients by using
LymphoprepTM (STEMCELL). Freshly isolated PBMCs were
stained for surface marker FITC anti-human Lineage Cocktail
(CD3, CD14, CD19, CD20, CD56) (BD Pharmingen), PerCp
anti-human HLA-DR (BD Pharmingen), PE anti-human CD11c
(BD Pharmingen), APC anti-human CD40 (BD Pharmingen) or
APC anti-humanCD86 (BD Pharmingen). After surface staining,
cells were fixed/permeabilized with fixation/permeabilization
solution (Cytofix/CytopermTM; BD Pharmingen), and stained
with p-mTOR-Alexa 647 (BD Pharmingen) for 30min at 4◦C.
Cells were then washed with 1 × Perm/Wash Buffer (BD
Pharmingen) and resuspended in PBS + 2% FBS for flow
cytometric analysis. Flow cytometry was performed on a BD
FACS Canto II (BD Biosciences) and data were analyzed using
FCS Express 4 software (De Novo Software, Los Angeles, CA).

Preparation and Stimulation of mDCs
Whole blood samples from 20 patients with SLE were
collected using ACD tubes (BD Vacutainer). Peripheral blood
mononuclear cells (PBMCs) were isolated using LymphoprepTM

(STEMCELL). Cells were cultured in RPMI-1640 supplemented
with 10% FBS at a density of 2 × 106 cells/ml in 6-well tissue
culture plates. After PBMC were cultured for 3 h, the liquid
in the containers was discarded. Then RPMI-1640 was added
for further culture, supplemented with 10% FBS, recombinant
human GM-CSF (100 ng/ml; PeproTech), and recombinant
human IL-4 (100 ng/ml; PeproTech). On days 2 and 4 of
culture, the supernatant was removed and replaced with fresh
medium containing hGM-CSF and hIL-4. All cultures were
incubated at 37◦C in 5% humidified CO2. After seven days
of culture, more than 95% of the cells expressed CD11c +,
the characteristic DC-specific markers, as determined by FACS
(Supplementary Figure 1).

To determine the effect of HMGB1 on mDC activation,
primary mDCs were stimulated with HMGB1 (1 ug/ml;
Peprotech) on Day 6 of culture. Cells were then collected
after 24 h.

To block the mTOR pathway, we added different
concentrations of rapamycin (10, 20, and 40 ng/ml) to primary
mDCs on Day 5 of culture, and then stimulated with HMGB1 as
described above.

Measurement of Cytokine Production and
Surface Molecules of mDCs
Levels of various cytokines (IL-1β, IL-6, and TNF-α) in the
supernatant of mDCs cultures were quantified using ELISA
analysis (BD Biosciences).
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The surface molecules on dendritic cells were measured
by flow cytometry. Cultured mDCs were stained for surface
markers PerCp anti-human HLA-DR, PE anti-human CD11c,
APC anti-human CD40, or APC anti-human CD86. All
antibodies and isotype control were purchased from BD
Pharmingen. Cell surface staining was performed according to
the standard procedures.

The Expression of mTOR in mDCs by
RT-PCR
Total cellular RNAs were isolated from DCs using AxyPrep
Multisource Total RNA Miniprep Kit (Axygen), and RNA
samples were transformed into complementary DNA (cDNA)
using RevertAid First-strand cDNA Synthesis kit (Thermo)
according to the manufacturer’s instructions. Quantitative PCR
was performed on selected targets (mTOR, P70S6K, and 4EBP1)
using pre-developed primers and probes (Sangon Biotech) on the
QuantStudio (TM) real-time PCR software System. β-actin was
used as an internal control. Primer sequences were the following:
β-ACTIN, 5′-CCT GGC ACC CAG CAC AAT-3′ and 5′ -GGG
CCG GAC TCG TCA TAC-3′; mTOR, 5′-ACT GGA GGC TGA
TGG ACA CA-3′ and 5′-GGC TCT CCA AGT TCC ACA CC-3′;
P70S6K, 5′-CAT CGG CAC CAC TTC CAA TA-3′ and 5′-TTC
ATA CGC AGG TGC TCT GG-3′; 4EBP1, 5′-TCG GAA CTC
ACC TGT GAC CA-3′ and 5′-GCT CAT CAC TGG AAG GGC
TG-3′. Expression of mTOR, P70S6K, and 4EBP1 were calculated
as described by the manufacturer.

Statistical Analysis
Graph Pad Prism version 7 (GraphPad Software Inc., San Diego,
CA, USA) was used to perform comparisons between different
groups and to generate figures. Calculations were based on a
95% confidence interval (CI). P-values <0.05 were considered
significant. All data were expressed as the mean ± SD. Student’s
t-test was used for continuous variables that were normally
distributed. The Mann–Whitney U-test was used for continuous
variables that were not normally distributed.

RESULT

We included 35 subjects with SLE and 20 healthy controls. All
patients were newly diagnosed with SLE and did not receive any
corticosteroids or immunosuppressive treatment at the time of
the blood draw. Most patients with SLE were women (29/35,
83%), with a mean age of 40 ± 13.27 years. They had a SLEDAI
score of 9.9± 4. Common disease activity at the time of inclusion
was renal (66%). Healthy controls (HCs) consisted of 20 healthy
individuals matched for sex and age. Other characteristics of the
patients are summarized in Supplementary Table 1.

mDCs Were Activated in the Peripheral
Blood of SLE Patients, and the mDCs
Activation Was Associated With the
Up-Regulation of HMGB1 and mTOR
Compared to healthy controls (HCs), mDC in the peripheral
blood of SLE patients expressed more CD40 and CD86

(Figures 1A–C). The levels of CD40 and CD86 were positively
correlated with levels of HMGB1 and p-mTOR in mDCs
(Figure 1D).

Mean serum level of HMGB1 in SLE patients was significantly
higher than that in healthy controls (HCs) (66.570 ± 17.995
pg/ml vs. 53.265 ± 8.727 pg/ml, p < 0.001). HMGB1 levels were
positively correlated with SLEDAI scores (r = 0.817, p < 0.001,
Figure 2E).

The expression of p-mTOR in mDCs increased significantly
in SLE patients (Figures 2A–D). The levels of p-mTOR in mDCs
were positively correlated with SLEDAI scores (r = 0.943, p <

0.001, Figure 2F) and the levels of HMGB1 in peripheral blood (r
= 0.805, p < 0.001, Figure 2G), respectively.

HMGB1 Activated Myeloid Dendritic Cells
and Up-Regulated mTOR Pathways in
mDCs From SLE Patients
The mDCs from 20 SLE patients were isolated and induced to
mature with cytokines, then stimulated with HMGB1. Compared
to the healthy control group, mDCs stimulated by HMGB1
expressed more HLA-DR, CD40, and CD86 in SLE patients
(Figure 3) and produced significantly more TNF-α, IL-6, and
IL-1β (Figure 4). Moreover, HMGB1 induced up-regulation of
mTOR and its substrates (P70S6K, 4EBP1) in mDCs (Figure 5).
Therefore, HMGB1 can induce activation of mDCs from patients
with SLE and up-regulate mTOR pathway in mDCs.

Activation of mDCs Could Be Inhibited by
Blocking the mTOR Pathway With
Rapamycin
We inhibited the mTOR pathway with different concentrations
of rapamycin (Rapa). The mRNA expression of mTOR and
its substrate P70S6K and 4EBP1 in mDCs was considerably
decreased through Rapa intervention by RT-PCR (Figure 6
and Supplementary Table 2). These results suggested that
rapamycin can inhibit the activation of the mTOR pathway
in mDCs induced by HMGB1. Furthermore, rapamycin
can inhibit increased expression of HLA-DR, CD40, CD86
(Figure 7 and Supplementary Table 3) and increased secretion
of TNF-α, IL-6, and IL-1 induced by HMGB1 (Figure 8
and Supplementary Table 4), respectively. Overall, these results
suggested that HMGB1-induced activation of mDCs could be
affected by blocking the mTOR pathway with rapamycin.

DISCUSSION

SLE, a systemic autoimmune disease, is a potentially fatal
disease characterized by immune complex deposition and the
subsequent inflammation that contribute to severe tissue damage
(21). Recent reports show that HMGB1 might be involved in
autoimmune and inflammatory diseases, including SLE (22–24).
Previous studies and our results revealed that the level of HMGB1
was positively correlated with SLEDAI score in SLE patients,
implying that the critical role of HMGB1 in the pathogenesis
of SLE.
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FIGURE 1 | mDCs phenotype of SLE and healthy control group. (A) Gating strategy for flow cytometry analysis of mDCs. (B) The mDC in peripheral blood of SLE

patients to express more CD40 than HCs (26.79 ± 4.23% vs. 15.78 ± 5.68%, t = 8.185, p = 0.000). (C) The mDC in peripheral blood of SLE patients to express

more CD86 than HCs (64.27 ± 6.68% vs. 55.38 ± 7.01%, t = 4.664, p = 0.000). (D) The levels of CD40 and CD86 were positively correlated with the levels of

HMGB1 (CD40: r = 0.600, P = 0.001; CD86: r = 0.478, P = 0.004) and p-mTOR in mDCs (CD40: r = 0.812, P = 0.001; CD86: r = 0.640, P = 0.001).
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FIGURE 2 | HMGB1 was unregulated in SLE patients and positively correlated with levels of p-mTOR in mDCs. (A) The level of p-mTOR in DCs from SLE patients;

(B) The level of p-mTOR in DCs from healthy controls (HCs); (C) The merged figure of A with B; (D) The level of p-mTOR in DCs from SLE patients was higher than

HCs (50.35 ± 0.696% vs. 26.43 ± 0.565%, P = 0.027); *P < 0.05. (E) The correlation between serum HMGB1 concentrations and SLE disease activity index score

(SLEDAI) in SLE patients. In peripheral blood, HMGB1 levels were positively correlated with SLEDAI scores (r = 0.817, p < 0.001). (F) The correlation between the

SLEDAI and p-mTOR in mDCs in peripheral blood of SLE patients. Levels of p-mTOR in mDCs were positively correlated with the SLEDAI (r = 0.417, p < 0.0128). (G)

The correlation between the levels of HMGB1 and p-mTOR in mDCs in peripheral blood of SLE patients. Levels of p-mTOR in mDCs positively correlated with the

levels of HMGB1 in peripheral blood (r = 0.446, p < 0.0072).

Recent studies indicated that HMGB1, a well-established
DAMP, is responsible for triggering inflammatory responses (7).
HMGB1 is likely to be released from activated immune cells such
as macrophages in the area of inflammation or injury (12, 13).
In this study, we found that mDCs were activated in SLE. The
levels of CD40 and CD86 were positively correlated with SLEDAI
scores, and the activation of mDCs was associated with up-
regulation of HMGB1 and mTOR. The expression of mTOR
in mDCs increased in SLE, and the levels of mTOR in mDCs
were positively correlated with SLEDAI scores and the levels of
HMGB1 in peripheral blood, respectively. These findings implied

that HMGB1 might induce activation of mDCs in patients with
SLE and up-regulation of the mTOR pathway.

In this study, the results indicated that HMGB1 can activate
dendritic cells and induce more proinflammatory cytokines
(TNF-α, IL-6, and IL-1β). These results were consistent with
previous studies (25). Persistent elevation of proinflammatory
cytokines could lead to immune deregulation followed by local
inflammatory processes and tissue damage (26, 27). In another
study (28), the surface level of CD86 on monocytes in SLE was
comparable with that in HCs. CD163 is an anti-inflammatory
marker, whereas HLA-DR is a proinflammatory marker. These
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FIGURE 3 | HMGB1 promoted activation of mDCs from SLE patients. Flow cytometry analysis of HLA-DR, CD40, and CD86, surface expression on each group

mDCs from SLE patients. The expression of HLA-DR (79.27 ± 10.78% vs. 50.77 ± 10.14%, t = 7.455, P = 0.00), CD40 (38.42 ± 5.10% vs. 21.41 ± 6.33%, t =

8.102, P = 0.000) and CD86 (75.63.42 ± 9.80% vs. 61.07 ± 11.48%, t = 3.735, P = 0.001) were up-regulated on mDCs after stimulation with HMGB1.**P < 0.001.

FIGURE 4 | Cytokine production following stimulation of HMGB1 measured by ELISA. When stimulated with HMGB1, the mDCs from systemic lupus erythematosus

(SLE) patients produced significantly more IL-1β (A), IL-6 (B), and TNF-α (C) than the Blank. Data are presented as the median and interquartile range (IL-1β: 21745 ±

1632.45pg/ml vs. 9282.6 ± 723.68 pg/ml, t = 6.979, P = 0.000; IL-6: 248.01 ± 5.81 pg/ml vs. 154.41 ± 8.39 pg/ml, t = 9.167, P = 0.000; TNF-α: 514.41 ± 23.90

pg/ml vs. 321.78 ± 10.09 pg/ml, t = 7.423, P = 0.000) **p < 0.001. IL, interleukin; TNF, tumor necrosis factor.

data demonstrated the downregulation of proinflammatory
surface markers but the upregulation of anti-inflammatory
markers in SLE, which was different from the presumptive
results. This discrepancy might be due to an existing negative
feedback to maintain monocyte homeostasis in SLE.

mTOR plays a crucial role in the relationship among
HMGB1, activation of mDCs, and autoimmunity in SLE. In
this study, when stimulated by HMGB1, mDCs expressed
increased mTOR and its substrates (P70S6K, 4EBP1) compared
to the healthy control group. When the mTOR pathway
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FIGURE 5 | mRNA expression of mTOR and its substrates P70S6K and 4EBP1 on mDCs measured by RT-PCR. Application of the 2−11CT method. The expression

of mTOR (A), P70S6K (B), and 4EBP1 (C) were up-regulated in mDCs after stimulation with HMGB1. (mTOR: 1.039 ± 0.0651 vs. 3.428 ± 0.2315, t = 9.935, P =

0.000; P70S6K: 1.042 ± 0.06223 vs. 1.763 ± 0.09726, t = 6.245, P = 0.000 4EBP1: 1.021 ± 0.066 vs. 2.078 ± 0.08861, t = 9.546, P < 0.000.) ***P < 0.001.

FIGURE 6 | mRNA expression of mTOR and its substrates P70S6K and 4EBP1 in mDCs under different concentrations of rapamycin (Rapa-10: 10 ng/ml; Rapa-20:

20 ng/ml; Rapa-40: 40 ng/ml) intervention by RT-PCR. Application of the 2−11CT method. The expression of mTOR (A), P70S6K (B), and 4EBP1 (C) were significantly

decreased in mDCs through Rapa intervention. *p < 0.05, **p < 0.01.

was blocked with different concentrations of rapamycin
(Rapa), HMGB1-induced mDC expression of HLA-DR,
CD40, and CD86, and proinflammatory cytokines secretion
was decreased. All these results implied that HMGB1
may induce activation of mDCs through the up-regulated
mTOR pathway, but further research is needed to confirm
this hypothesis.

It is well-known that mTOR signaling senses extracellular
stimulations and regulates many biological processes including
inflammation (29). Activation of mTOR delivers an obligatory
signal for the proper activation and differentiation of mDCs in
our present study. Therefore, the activation of mTOR signaling
pathway is a potentially significant factor contributing to the
pathogenesis of SLE. A recent study found that mTOR signaling
activation caused hyperpolarization of mitochondria, resulting
in necrosis tendency of T cells, promoting the generation of
anti-nuclear antibodies, activation of dendritic cells, and the
occurrence of inflammation (30).

In the present study, we intended to study upstream
regulators of the mTOR pathway and its function in mDCs.
Our data showed that rapamycin can inhibit HMGB1-induced
activation of mDCs and secretion of pro-inflammatory cytokines.

The next question would be to clarify the pathophysiological
functions of mTOR in SLE and investigate targeted drugs.
Given the general importance of the mTOR signaling
pathway and considering the ubiquitous expression of
HMGB1, the newly uncovered regulation is expected to
have a broad impact. It includes an impact on metabolic
programs and cell fate decisions in other immune and
non-immune cells under homeostasis, when faced with an
environmental challenge, and during the development of the
autoimmune disease.

Therefore, blocking mTOR signaling pathway becomes a
new target for the treatment of SLE. Rapamycin, a widely
recognized blocker of the mTOR pathway, has a promising
prospect in treating SLE. Rapamycin can not only inhibit
the signal transduction downstream of mTOR, but also
negatively regulate the PI3K/AKT /mTOR pathway. The
monotherapy of rapamycin can completely prevent nephritis
in mice and significantly improve the condition. Gu’s
study (31) demonstrated that RAPA alleviated the clinical
symptoms of lupus nephritis and prolonged survival in
MRL/lpr mice. This result is consistent with our previous
research (32).
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FIGURE 7 | Rapamycin can inhibit HMGB1-induced mDC expression of HLA-DR, CD40 and CD86 increase. Different concentrations of rapamycin (Rapa-10:

10 ng/ml; Rapa-20: 20 ng/ml; Rapa-40: 40 ng/ml) were put into cultures of primary mDCs. Flow cytometry analysis of HLA-DR (A), CD40 (B) and CD86 (C), surface

expression on each group mDCs from SLE patients. The expression of HLA-DR (D), CD40 (E), and CD86 (F) were decreased on mDCs through Rapa intervention

compared with HMGB1 group. **P < 0.01.
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FIGURE 8 | Cytokine production through Rapa intervention. mDCs from systemic lupus erythematosus (SLE) patients were blocked by different concentrations of

rapamycin, and production of IL-1β (A), IL-6 (B), and TNF-α (C) were measured by ELISA. Different concentrations of rapamycin (Rapa-10: 10 ng/ml; Rapa-20:

20 ng/ml; Rapa-40: 40 ng/ml) were added into cultures of primary mDCs. Data are presented as the median and interrogative range. *p < 0.05, **p < 0.01. IL,

interleukin; TNF, tumor necrosis factor.

There are some limitations to our research. First, all
the patients in the study had moderate severity of SLE.
Thus, the findings may not be generalizable to patients with
mild SLE. Second, we used HMGB1 to stimulate myeloid-
derived dendritic cells (mDCs). However, mature mDCs
cannot be separated directly from peripheral blood. Instead,
PBMCs were isolated and induced to mature mDCs with
the cytokine. The mDCs in this study shared some similar
characteristics with those in peripheral blood. The degree
of similarity between these mDCs cultured in vitro and
those in vivo warrants further investigation. Lastly, the effect
of HMGB1- activated dendritic cells on T cells was not
evaluated, which is needed further investigation. However,
HLA-DR and costimulatory molecules of dendritic cells and
cytokine synthesis were measured to estimate the activation of
dendritic cells.

In summary, our study found that the mDCs were activated
in the peripheral blood of SLE. HMGB1 induces dendritic
cell activation and up-regulate the mTOR pathway in SLE.
Rapamycin can inhibit HMGB1-induced activation of mDCs and
secretion of pro-inflammatory cytokines. These findings indicate
that targeting mTOR pathway could be a novel therapeutic
approach to SLE.
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Supplementary Table 4 | Cytokines in dendritic cells supernatant through Rapa

intervention (pg/ml).
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