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Background: Prosthetic joint infections (PJI) are difficult to treat complications of joint

arthroplasty. Debridement with implant retention is a common treatment strategy and

frequently involves the use of pulsed lavage (PL). However, PL effects on biofilms

and antibiotic activity have been scarcely studied in-vitro. We report the effects

of PL, vancomycin or flucloxacillin used independently or in combination against

Staphylococcus aureus biofilms.

Methods: Biofilms of 3 methicillin-susceptible (MSSA) and of 3 methicillin-resistant

(MRSA) S. aureus were grown on Ti6Al4V coupons in TGN (TSB + 1%glucose +

2%NaCl). After 24 h, PL was applied to half of the samples (50mL saline from 5cm).

Samples were either reincubated for 24 h in TGN or TGN + flucloxacillin or vancomycin.

Analyses included CFUs counts, biomass assays or fluorescence microscopy.

Results: PL transiently reduced bacterial counts by 3–4 Log10 CFU/coupon, but

bacterial regrowth to baseline levels was seen after 24 h. At 20 mg/L, flucloxacillin

reduced both the CFU counts (3 Log10 CFU/coupon) and biomass (−70%) in one

MSSA only, while vancomycin had no effects against MRSA. PL combined with a 24 h

reincubation with vancomycin or flucloxacillin at 20 mg/L was synergistic (−5 to 6.5

Log10 CFU/coupon; 81–100% biomass reduction). Fluorescence microscopy confirmed

that PL removed most of the biofilm and that subsequent antibiotic treatment partially

killed bacteria.

Conclusions: While PL only transiently reduces the bacterial load and antibiotics at

clinically relevant concentrations show no or limited activity on biofilms, their combination

is synergistic against MRSA and MSSA biofilms. These results highlight the need for

thorough PL before antibiotic administration in PJI.
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INTRODUCTION

Prosthetic Joint Infections (PJI), defined as infections involving
joint replacement implants and the surrounding articular
tissues, are devastating complications, affecting 0.5 to 2%
of patients benefiting from hip or knee replacement (1, 2)
and are among the most common causes of arthroplasty
failures (3, 4).

These infections result from either a peri-operative
contamination of the joint, generating acute (less than 4 weeks
from the index surgery) or late infections, or an hematogenous
seeding of bacteria to the joint following a bacteremia (2). The
prevalence of the causative micro-organisms varies depending
on the origin and interval from the index surgery, with
Staphylococcus aureus being the most frequently isolated in
cases of acute PJI, whereas coagulase-negative staphylococci and
Streptococci spp. predominate late infections and hematogenous
infections, respectively (5–8).

Infections by S. aureus are characterized by the rapid
adhesion of bacterial cells to the implant surface, followed
by the development of a self-produced extracellular matrix
composed of poly-N-acetylglucosamine, extracellular DNA,
proteins, and lipids, forming complex communities known
as biofilms (6). The development of the biofilm induces
phenotypic changes of the bacteria, which, combined with
the isolating effects of the matrix, make bacteria tolerant to
antibiotics at up to 1000x the minimal inhibitory concentration
(MIC) observed in a planktonic state (9). This explains the
limited success of antimicrobial therapy and the necessity
for surgical strategies aiming to disrupt or remove the
biofilm (2).

The Debridement, Antibiotics and Implant Retention (DAIR)
strategy is often recommended for the treatment of acute
PJI due to lower morbidity and costs than staged implant
replacement. The surgical procedure consists in the open
debridement of the infected joint, with the excision of necrotic
tissues and a synovectomy, replacement of bearing surfaces
if possible, followed by a thorough lavage of the joint
space usually performed with a pulsed-lavage device which
projects normal saline intermittently at pressures between 30
and 350 kPa (10, 11). However, DAIR presents a relatively
high failure rate (16–57.4%), with a worse prognosis for
patients infected with S. aureus (12–16). These failures may be
partly explained by an inadequate removal of biofilms during
the debridement surgery and their tolerance to antibiotics.
However, only a few studies have looked into the effects
of irrigation performed using standard pulsed lavage devices
against S. aureus biofilms grown on metallic substrates, and
none of these investigated the effects of its combination
with antibiotics at clinically relevant dosages for systemic
administration (17–20). The purpose of this study was to describe
the effects of pulsed lavage and clinically relevant antibiotics
used at recommended concentrations for systemic use, (i) in
combination or (ii) independently, on the amount of cultivable
cells, the biomass, and the microscopic aspects of MRSA and
methicillin-susceptible S. aureus (MSSA) biofilms on titanium
alloy coupons.

TABLE 1 | MIC (mg/L) values for the tested strainsa.

Strains Oxacillinb Flucloxacillin Vancomycin

CA-MHB CA-MHB TGN CA-MHB TGN

MSSA ATCC 25923 0.25 0.13 0.06 1 8

578 0.25 0.25 0.13 2 8

611 0.25 0.25 0.06 1 8

MRSA ATCC 33591 >64 >64 >64 1 4

749 >64 >64 >64 1 8

676 >64 64 64 1 8

aCLSI breakpoints values (in CA-MHB; mg/L): Flucloxacillin: N/A; Oxacillin: S≤2, R≥4;

Vancomycin: S≤2, R≥16.
bused to check the MRSA character of the strain, according to CLSI guidelines (21).

MATERIALS AND METHODS

Bacterial Strains
The laboratory strains ATCC 25923 and ATCC 33591 were used
as references for MSSA and MRSA biofilms, respectively. Two
MSSA clinical isolates (strains 578 and 611) and two MRSA
clinical isolates (strains 676 and 749), collected from orthopedic
device-related infections cases were also studied.

Antibiotics
Oxacillin (powder potency: 81.5%) was obtained as a
microbiological standard from Sigma-Aldrich (Sigma-Aldrich
Corp., Saint-Louis, MO, USA). Vancomycin (Vancomycin
Mylan, powder potency: 97.5%, Mylan Inc, Canonsburg, PA,
USA) and flucloxacillin (Floxapen, powder potency: 91.9%,
Actavis Group, Hafnarfjördur, Iceland) were used as a powder
for injection approved for human use in Belgium.

Susceptibility Testing
MICs were determined by broth microdilution in cation-
adjusted Mueller-Hinton broth (CA-MHB, Sigma-Aldrich Corp.,
Saint-Louis, MO, USA) as per the Clinical & Laboratory
Standards Institute protocol (21), and in Tryptic soy broth (VWR
Chemicals, Leuven, Belgium) supplemented with 1% glucose
(Sigma-Aldrich Co., Saint-Louis, MO, USA) and 2%NaCl (VWR
Chemicals, Leuven, Belgium) (TGN) (Table 1).

Biofilm Culture
Biofilms were grown on titanium alloy Ti6Al4V coupons
(Biosurface Inc., Bozeman, MT, USA) in order to mimic implant
surface characteristics. These coupons are unpolished cylinders
measuring 12.7mm in diameter and 3.175mm in height. The
initial inoculum was prepared from bacteria grown overnight on
Tryptic Soy Agar (VWR, Leuven, Belgium) (TSA), suspended
in Phosphate Buffer Saline (PBS), adjusted to an optical density
at 620 nm of 0.5 (CECIL 2021 spectrophotometer, CECIL,
United-Kingdom) and diluted 1:100 in TGN, reaching a bacterial
density of ∼6.5 log10 CFU/mL. Sterile coupons were incubated
for 24 h at 37◦C in 12 wells plates containing 2mL of bacterial
suspension in TGN per well, under a continuous orbital shaking
of 50 rpm in order to induce shear stress. Biofilms reached
maturity after 24 h (i.e., no meaningful change in biomass or

Frontiers in Medicine | www.frontiersin.org 2 September 2020 | Volume 7 | Article 527

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Poilvache et al. Synergy of Pulsed-Lavage and Antibiotics

bacterial counts was observed when prolonging the incubation
for 48 h, Supplementary Data Figure 1) and used for testing
the treatments.

Biofilm Treatments
Irrigation
Half of the biofilm samples (referred to as irrigation
samples) were irrigated with 50mL of sterile saline (Baxter
International Inc, Deerfield, IL, USA) from 5 cm, using
Interpulse battery-powered irrigation devices (Stryker Co.,
Kalamazoo, MI, USA). The Interpulse were fitted with soft tissue
tips, delivering the sterile saline at a flow rate of 700 ml/min
and a pressure of 68.95–82.74 kPa or 10–12 PSI (manufacturer’s
data). The samples were then rinsed twice in sterile PBS before
allocation to one of the subgroups. The other half of the samples
(referred to as control samples) were rinsed twice in sterile PBS
before being allocated to one of the subgroups.

Antibiotic Treatments
Control and irrigation coupons were allocated to one of the
subgroups: immediate analysis (T0); 24 h reincubation in TGN
(T24h—TGN); 24 h reincubation in TGN containing antibiotic
at MIC (T24h–MIC); 24 h reincubation in TGN containing
therapeutic concentration of antibiotic (T24h–ThC) according
to the flowchart shown in Figure 1. Reincubations were done
at 37◦C, under a continuous rotating movement at 50 rpm.
As antibiotics, flucloxacillin was used for MSSA biofilms,
considering as therapeutic concentration 20 mg/L, an estimate
of the serum concentration 3 h after injection when administered
2 g IV four times daily, as inferred from pharmacokinetic data
(22). MRSA biofilms were reincubated with vancomycin at a
therapeutic concentration of 20 mg/L, corresponding to target
trough serum concentration for bone and joint infections (23).

Biofilm Analysis
CFU Counts
Coupons were individually placed in 15mL conical tubes
(Greiner Bio-One International GmbH, Kremsmünster, Austria)
containing 2mL of sterile PBS. The tubes were vortexed
for 30 s, sonicated for 5min (Branson 5510 Ultrasonic bath,
Emerson Electric, Saint-Louis, MO, USA) and vortexed 30 s
again. Aliquots of the supernatant were serially diluted, plated
on TSA and incubated for 24 h at 37◦C. CFU counts were
performed using an automated method [image acquisition using
Gel Doc XR+ and image processing usingQuantity One (BioRad,
Hercules, CA, USA)].

Biomass Quantification
After drying overnight at 60◦C, coupons were stained with
1mL of 1% crystal violet (Sigma-Aldrich Corp., Saint-Louis,
MO, USA). After eliminating the excess of dye by rinsing
the samples with deionized water, biofilm-bound crystal violet
was resolubilized in 1mL of a 66% acetic acid (Merck KGaA,
Darmstadt, Germany). The coupons were then removed from
the solution and the absorbance was read at 570 nm using a
SpectramaxM3 spectrophotometer (Molecular Devices, San Jose,
CA, USA).

Fluorescence Microscopy
Samples were stained using the FilmTracer LIVE/DEAD biofilm
viability kit (ThermoFisher, Waltham, MA, USA) following
the manufacturer’s instructions. DAKO fluorescence mounting
medium (Agilent, Santa Clara, CA, USA) was added after
staining and a coverslip was placed. Images were acquired as
Z-stacks using an AxioImager.Z1 microscope fitted with an
ApoTome1 attachment (Zeiss, Oberkochen, Germany) at a 20x
magnification using the structured light illumination technique.
Image post-processing was performed using FIJI (24, 25). Images
were reconstructed using Maximum Intensity Projection (MIP)
and were further post-processed by increasing the brightness of
each channel separately to the maximum value.

Statistical Analysis
CFU counts were transformed to logarithmic values before
statistical analysis. Biomass values were normalized as the
percentage of positive controls after subtracting the average
value of negative controls (coupons incubated in sterile TGN).
Statistical analysis was performed using the mean of each
repetition (n = 4, with n = 3 per replicate) using GraphPad
7.01 (GraphPad Software, San Diego, CA, USA). Means were
compared using 2-way ANOVA, followed by Holm-Sidàk
post-hoc test. Differences were considered statistically significant
when p < 0.05. Synergy was defined as a significant interaction
factor (26).

RESULTS

Antimicrobial Susceptibility
Minimal inhibitory concentrations (MIC) for the MSSA and
MRSA strains are shown in Table 1. MSSA strains exhibited
low MICs to flucloxacillin in either media, with MICs in TGN
one to two dilutions lower than in CA-MHB. MRSA strains
were resistant to flucloxacillin in both media. All strains were
susceptible to vancomycin in CA-MHB, but their MIC was 2 to 3
dilutions higher when tested in TGN.

Antimicrobial Activity in Biofilms
Bacterial counts (CFU) are shown in Figure 2A for MRSA
strains and in Figure 3A for MSSA strains. The CFU counts
of control coupons of all strains did not change between
T0 and T24, indicating biofilm maturity at T0. Incubation
of control MRSA coupons with vancomycin at either MIC
or 20 mg/L concentrations did not result in reductions in
CFU counts when compared to the T0 control samples. A
similar observation was made for MSSA biofilms exposed to
flucloxacillin at MIC. However, exposure to flucloxacillin at 20
mg/L resulted in a statistically significant decrease of the CFU
counts in strains ATCC 25923 (-2.98log10) and 611 (−1.49log10).
The results of biomass assays are shown in Figure 2B for MRSA
strains and Figure 3B for MSSA strains. As we observed with
CFU counts, no statistically significant differences in biomass
were observed between controls at T0 and T24, except for
strain 578 (+29.6%, p < 0.001). Twenty-four hours exposure
to vancomycin at MIC did not reduce biomass in control
coupons of all MRSA strains. Exposure to a concentration
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FIGURE 1 | Flowchart describing the experimental design.

of 20 mg/L did not affect the biomass, except for strain 676
(−27.5%, p = 0.03). The biomass of control MSSA samples
was not modified in a statistically significant manner after a
24 h incubation with flucloxacillin at MIC. The diminutions
of biomass of ATCC 25923 samples observed after a 24 h
exposure to flucloxacillin at MIC and 20 mg/L did not reach

statistical significance (-30.3%, p = 0.79 and −69.9%, p = 0.05

respectively). The incubation with a 20 mg/L concentration of
flucloxacillin caused a significant biomass reduction for biofilms

of strain 611 (−24.1%, p = 0.04). Fluorescence microscopy

maximum intensity projection images of the Z-stacks at 20x
magnification are shown in Figure 2C for strain ATCC 33591
and in Figure 3C for strain ATCC 25923. ATCC 33591 control
biofilms uniformly covered the surface of the coupons. Live
(green) cells were the most prevalent, but a small proportion
of dead (red) cells was observed. Re-incubated controls were
comparable without or with vancomycin. ATCC 25923 control
biofilms appeared to have a looser aspect than those of ATCC

33591. The proportion of dead cells remained stable after
re-incubation without flucloxacillin but appeared to increase
when the samples were reincubated with flucloxacillin at MIC or
20 mg/L.

Antimicrobial Effects of Pulsed Lavage
With and Without Sequential Antibiotics
The use of pulsed lavage significantly reduced the CFU counts
in all MRSA and MSSA strains by 2.74 to 4.04 log10 when
compared to T0 controls (Figures 2A, 3A). The remaining
bacterial load was found to be sufficient to promote the regrowth
of bacteria within the biofilms to baseline (T0) levels after 24 h.
The addition of vancomycin at MIC inhibited the regrowth of
the biofilms of strains ATCC 33591 and 749 and reduced the
CFU counts of strain 676 (−1.29log10). Flucloxacillin at MIC
inhibited the regrowth of strains 578 and 611 and reduced
the CFU counts of strain ATCC 25923 (−2.11log10). Sequential
treatment with pulsed lavage and then 24 h exposure to either
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FIGURE 2 | Effects of irrigation and vancomycin on MRSA biofilms grown for 24 h in TGN. (A) CFU counts; (B) biomass expressed in percentage of T0 controls;

(C) MIP of Z-stack acquired at 20x magnification following Live (green fluorescence, Syto 9) /Dead (red fluorescence, Propidium Iodide) staining. Scale bar: 50µm.

Control: control groups; Pulsed Lavage; groups treated with pulsed lavage; T0: samples analyzed after 24 h of growth; T24 TGN: T0 samples analyzed after 24 h of

reincubation in TGN; T24 MIC: samples analyzed after 24 h of reincubation in TGN with vancomycin at MIC; T24 ThC: samples analyzed after 24 h of reincubation in

TGN with vancomycin at 20 mg/L (therapeutic concentration). Data expressed as means of experiments and SEM. N experiments ≥ 3. Statistical analysis: two-way

ANOVA followed by Holm-Sidàk post-hoc test. Comparisons to T0 control samples: *p < 0.05; **p < 0.01; ***p < 0.001. Comparisons to T0 irrigation samples:
†
p < 0.05;

††
p < 0.01;

†††
p < 0.001.

vancomycin (MRSA strains) or flucloxacillin (MSSA strains) at
a 20 mg/L concentration reduced the CFU counts in all strains
by 1.90 to 2.54log10 when compared to coupons analyzed after

pulsed lavage alone. The two-way ANOVA revealed a highly
significant (p< 0.001) interaction parameters for all strains when
considering the exposure to pulsed lavage and the reincubation of
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FIGURE 3 | Effects of irrigation and flucloxacillin on MSSA biofilms grown for 24 h in TGN. (A) CFU counts; (B) biomass normalized as a percentage of T0 controls;

(C) MIP of Z-stack acquired at 20x magnification following Live (green fluorescence, Syto 9) /Dead (red fluorescence, Propidium Iodide) staining. Scale bar: 50µm.

Control: control groups; Pulsed Lavage; groups treated with pulsed lavage; T0: samples analyzed after 24 h of growth; T24 TGN: T0 samples analyzed after 24 h of

reincubation in TGN; T24 MIC: samples analyzed after 24 h of reincubation in TGN with flucloxacillin at MIC; T24 ThC: samples analyzed after 24 h of reincubation in

TGN with flucloxacillin at 20 mg/L (therapeutic concentration). Data expressed as means of experiments and SEM. N experiments ≥ 3. Statistical analysis: two-way

ANOVA followed by Holm-Sidàk post-hoc test. Comparisons to T0 control samples: *p < 0.05; **p < 0.01; ***p < 0.001. Comparisons to T0 irrigation samples:
†
p < 0.05;

††
p < 0.01;

†††
p < 0.001.

the samples as factors (Supplementary Data Tables 1, 2). These
significant interaction parameters indicate a synergy of pulsed
lavage and antibiotic therapy on CFU counts.

Pulsed lavage significantly reduced the biomass in all
strains of MRSA and MSSA by 81.7% to 98% (Figures 2B,
3B). As was observed for CFU counts, the remaining
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bacteria restored the biofilms to control levels after a 24 h
reincubation in medium. The successive exposure to pulsed
lavage and vancomycin or flucloxacillin at either MIC or
20 mg/L inhibited the restoration of the biofilms to control
levels. No subsequent reduction in biomass following
exposure to antibiotics was observed. Comparably to CFU
counts, the two-way ANOVA analysis showed a highly
significant (p = 0.005 to p < 0.001) interaction parameter
for all strains when considering the exposure to pulsed
lavage and the reincubation of the samples as factors
(Supplementary Data Tables 3, 4). Likewise, these results
point toward a synergy of pulsed lavage and antibiotic therapy
on biomass.

Microscopy was used to evaluate pulsed lavage samples
(Figures 2C, 3C). Pulsed lavage removed most of the cells
for both strains, leaving small clusters on the surface of
the coupons. The remaining cells appeared to be mostly
viable. As was observed for CFU counts and biomass
measurements, the incubation of samples treated with
pulsed lavage without antibiotics resulted in a complete
restoration of the biofilms, with images similar to those of the
controls (Figures 2C, 3C). The incubation with vancomycin
or flucloxacillin at MIC or 20 mg/L did not alter the density
of cell clusters of the samples. The proportion of dead cells
seemed to increase when the samples were exposed to a
therapeutic concentration of antibiotics when compared
to controls.

DISCUSSION

Our results show a synergistic effect of sequential pulsed-
lavage and antimicrobial therapy with either vancomycin
or flucloxacillin at clinically relevant concentrations against
Staphylococcus aureus biofilms grown on titanium coupons. This
combination of pulsed lavage with antibiotics at concentrations
compatible with a parenteral administration to simulate PJI has
not been previously reported. Knecht et al. published on the
combination of pulsed lavage and incubation with tobramycin-
and vancomycin-loaded calcium sulfate beads, showing a
strong synergy (20). However, the antibiotic concentrations
eluted in the culture medium were not determined, limiting
the extrapolation of the results. Wolcott et al. (27) studied
the combination of pulsed lavage and gentamicin against
S. aureus biofilms in a chronic wound model. A synergy
of the two treatments was observed, but the concentration
of gentamicin was far above the human Cmax after the
administration of a conventional dose, limiting the extrapolation
of the results to a clinical setting. Collectively, prior data
and the data herein underline the importance of surgical
irrigation of infected wound and implant surfaces prior to
the administration of adequate antibiotic doses to observe a
strong synergy and achieve maximal sustainable reduction in
bacterial inoculum.

The independent use of pulsed lavage against S. aureus
biofilms appeared to remove most of the biofilm cells and

biomass in our experiments. This contrasts with previous
studies that reported a 1 to 2 log10 reduction in cell
numbers following pulsed lavage (17, 18, 20). This discrepancy
between our results and previous studies may be due to
differences in strains, material surfaces or culture conditions.
However, the conditions used here likely closer simulate clinical
conditions, with a comparatively short distance between the
nozzle and the coupons, and a volume of fluid to sample
surface ratio of 40 mL/cm². Moreover, we studied a larger
variety of strains, limiting the confounding factor of strain-
dependent effects.

Despite a substantial reduction in CFU counts, we noted
that residual bacteria on the coupons after pulsed lavage were
sufficient to restore a biofilm after a 24 h incubation, consistent
with what was previously shown by other authors (18).

We observed that vancomycin at its recommended serum
trough concentration had no effect on reducing MRSA bacterial
inocula via CFU or biomass if the biofilms were not first disrupted
by pulsed lavage, consistent with previous data that vancomycin
activity within biofilms is poor. Several authors have described
that vastly supratherapeutic concentrations of vancomycin were
required to observe a significant reduction in CFU counts (28)
or in the metabolic activity (23, 29) of MRSA biofilms. The low
penetration of vancomycin in S. aureus biofilms may explain
these observations (30).

In contrast, a limited strain-dependent effect of flucloxacillin
was observed against MSSA biofilms in the absence of
pulse lavage. Flucloxacillin is a narrow spectrum β-lactam
antibiotic, directed against Staphylococci and Streptococci,
which is recommended in combination with rifampicin for
MSSA and methicillin-susceptible S. epidermidis prosthetic joint
infections, alongside nafcillin and oxacillin (31–33). Only a
few conflicting studies have been published about the in vitro
effect of flucloxacillin against S. aureus biofilms, pointing
toward a variable, strain-dependent effect (34–37), analogous to
our observations.

Our study presents several limitations. First, biofilms were
grown only on Ti6Al4V as a substrate. This decision was
based on the previous observation by Urish et al. (17)
that the differences between metallic substrates are tenuous
when considering the effect of pulsed lavage. Second, we
limited the growth period of the biofilms before treatment to
24 h. While the biofilms were mature from a microbiological
perspective, it could be argued that older biofilms would
develop a more complex structure that could change the effect
of the treatments we used. Third, we used antibiotics at set
concentrations. While vancomycin is often administered in
a continuous infusion, flucloxacillin is usually administered
on a 2 g, 4 times per day regimen and important variations
in serum concentrations are observed over time between 2
administrations. We decided to use, in addition to the MIC,
a concentration equivalent to the one observed 3 h after
administration of a 2 g dose in order to mitigate this limitation.
However, as this concentration remained constantly above
the MIC for 24 h, the observed effects of flucloxacillin may
be overestimated.
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CONCLUSION

A synergy of pulsed lavage and vancomycin or flucloxacillin
was observed against S. aureus biofilms grown on titanium
alloy coupons. This effect was never reported when considering
clinically relevant antibiotic concentrations. These results
confirm the need for thorough irrigation of the metallic surfaces
of implants during DAIR procedures to facilitate the subsequent
action of antibiotics.
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