
REVIEW
published: 21 August 2020

doi: 10.3389/fmed.2020.00441

Frontiers in Medicine | www.frontiersin.org 1 August 2020 | Volume 7 | Article 441

Edited by:

Giuseppe Castellano,

University of Bari Aldo Moro, Italy

Reviewed by:

Hee-Seong Jang,

University of Nebraska Medical

Center, United States

Sergey Brodsky,

Ohio State University Hospital,

United States

*Correspondence:

Rahul Sharma

rs3wn@virginia.edu

Specialty section:

This article was submitted to

Nephrology,

a section of the journal

Frontiers in Medicine

Received: 23 April 2020

Accepted: 06 July 2020

Published: 21 August 2020

Citation:

Sabapathy V, Venkatadri R, Dogan M

and Sharma R (2020) The Yin and

Yang of Alarmins in Regulation of

Acute Kidney Injury.

Front. Med. 7:441.

doi: 10.3389/fmed.2020.00441

The Yin and Yang of Alarmins in
Regulation of Acute Kidney Injury
Vikram Sabapathy, Rajkumar Venkatadri, Murat Dogan and Rahul Sharma*

Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation, and Regenerative Medicine (CIIR),

University of Virginia, Charlottesville, VA, United States

Acute kidney injury (AKI) is a major clinical burden affecting 20 to 50% of hospitalized and

intensive care patients. Irrespective of the initiating factors, the immune system plays a

major role in amplifying the disease pathogenesis with certain immune cells contributing

to renal damage, whereas others offer protection and facilitate recovery. Alarmins are

small molecules and proteins that include granulysins, high-mobility group box 1 protein,

interleukin (IL)-1α, IL-16, IL-33, heat shock proteins, the Ca++ binding S100 proteins,

adenosine triphosphate, and uric acid. Alarmins are mostly intracellular molecules, and

their release to the extracellular milieu signals cellular stress or damage, generally leading

to the recruitment of the cells of the immune system. Early studies indicated a pro-

inflammatory role for the alarmins by contributing to immune-system dysregulation

and worsening of AKI. However, recent developments demonstrate anti-inflammatory

mechanisms of certain alarmins or alarmin-sensing receptors, which may participate in

the prevention, resolution, and repair of AKI. This dual function of alarmins is intriguing

and has confounded the role of alarmins in AKI. In this study, we review the contribution

of various alarmins to the pathogenesis of AKI in experimental and clinical studies. We

also analyze the approaches for the therapeutic utilization of alarmins for AKI.
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INTRODUCTION

Acute kidney injury (AKI) is a global problem associated with high mortality, morbidity,
and clinical burden (1). AKI is defined as an abrupt deterioration of kidney function
indicated by an increase in circulating levels of creatinine and blood urea nitrogen (BUN)
and a decline in urine output and glomerular filtration rate (GFR) (1). Several factors
can result in AKI including ischemia/reperfusion injury (IRI), sepsis, hemodynamic changes,
systemic inflammation, muscle wasting, and nephrotoxicity (2, 3). The pathophysiology
of AKI is multifaceted, exhibiting inflammation, tubular injury, and vascular damage (4),
and can cause damages to the brain, heart, and lungs in the long run. There is no
approved drug for treating AKI patients, and current clinical care involves renal replacement
therapy (RRT) (1).

With the ever-changing definitions of damage-associated molecular patterns (DAMPs)
and alarmins, newer criteria were established during the International DAMP &
Alarmins meeting held in Japan in November 2019 (5). “Alarmins” are a class
of endogenous immunomodulatory molecules released or expressed by living cells
upon cell injury, death, stress, or infection that triggers activation of the immune
system (5, 6). In February 2006 in an European Molecular Biology Organization
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workshop on innate danger signal held in Milano, Italy, Dr. Joost
Oppenheim coined the term “alarmin” to designate endogenous
molecules that signal tissue and cellular damage (7). Originally
proposed by Dr. Polly Matzinger, DAMPs are endogenous
molecules released upon non-programmed cell death that
triggers inflammatory and immune responses (8), whereas
pathogen-associated molecular patterns (PAMPs) are derived
from invading microbes, for example, lipopolysaccharides (LPSs)
that exhibit distinct biochemical property such that they alert
intrusion of the pathogens (9). The PAMPs and DAMPs
were shown to trigger specific pattern recognition receptors
(PRRs), for example, Toll-like receptors (TLRs) for immune
activation (10, 11). Although DAMPs may now be recognized
as molecules that are released or secreted from dead cells,
and alarmins constitute molecules that are secreted by living

TABLE 1 | Classification of alarmins.

Origin Types Receptors Preclinical Clinical

Nuclear HMGB1 CXCR4, RAGE, TLR2,4,9 (12) (13) (14)

IL-1α IL-1R (15) (15) (16)

IL-33 IL-1RL1 (ST2) (17) (17, 18) (19)

Histones TLR2,4 (20) (20) —

Cytosolic Heat shock proteins TLR2,4, CD91 (21) (22) (23)

S100 proteins RAGE, TLR4 (24) (24) (25)

Uric acid P2X7 (26) (27) (28, 29)

Haptoglobin CD163 (30) (31) (32)

Heme TLR4, CD91, CD163 (33) (34) (35)

Mitochondrial Mitochondrial fragments — (36) (37)

ATP P1, P2Y2,6,12, P2X1,3,7 (38) (39) (40)

Mitochondrial DNA cGAS, endosomal TLR9, AIM2, NLRP3 (41) (42) (42–44)

N-formyl peptides FPR (45) (46) (45)

TFAM — (47, 48) —

Succinate GPR91 (49) (50) (51)

Cardiolipin CD1d (52), NLRP3 (53) (54) —

Cell membrane HAVCR1 — (55) (56–58)

Uromodulin TLR4 (59) (60, 61)

Extracellular matrix Heparin sulfate FGFRs (62) (62) (63)

Hyaluronan TLR2,4, NLRP3 (64) (65) (66)

Biglycan TLR2,4 (67) (68) (69)

Secreted/granule-derived Defensins (α,β) TLR4, CCR6 (70) (70) (71)

Cathelicidin (LL37/CRAMP) TLR7,8,9, FPRL1, FPR2, P2X7 (72) (72) (72)

EDG TLR2 (73) (74) (73)

Granulysin TLR4 (75) — (76, 77)

TIMP-2 MT1-MMP, integrins, AGTR2 (78) (78) (79)

IGFBP7 IGF1R (80) (78) (79)

TSLP TSLPR-IL-7Rα (81) (81) (81)

This table represents the majority of alarmins and DAMPs that are reportedly involved in AKI for the purpose of this review. For a more extensive understanding of DAMPS outside

of AKI purview, refer to Gong et al. (11). AIM2, absent in melanoma 2; ATP, adenosine triphosphate; AGTR2, angiotensin II receptor type 2; CCR6, C-C motif chemokine receptor 6;

CXCR4, C-X-C motif chemokine receptor 4; CRAMP, cathelicidin-related antimicrobial peptide; cGAS, cyclic GMP-AMP synthase; EDG, eosinophil-derived granules; FGFRs, fibroblast

growth factor receptors; FPR, formyl peptide receptor; FPRL1, formyl peptide receptor like 1; GPR91, G protein–coupled receptor 91; HAVcr-1, hepatitis A virus cellular receptor 1;

HMGB1, high mobility group box 1; IGF1R, insulin-like growth factor 1 receptor; IGFBP7, insulin-like growth factor–binding protein 7; IL-1α, interleukin 1α; IL-33, interleukin 33; IL-1R,

interleukin 1 receptor; IL-1RL1, interleukin 1 receptor like 1 receptor; MT1-MMP, membrane type 1-matrix metalloproteinase; TFAM, mitochondrial transcription factor A; NFP, N-formyl

peptides; NLRP3, NOD-, LRR-, and pyrin domain-containing protein 3; RAGE, receptor for advanced glycation end-products; TSLP, thymic stromal lymphopoietin; TSLPR, thymic

stromal lymphopoietin receptor; TIMP2, TIMP metallopeptidase inhibitor 2; TLR, Toll-like receptor.

cells (5), there is still a lot of overlap and ambiguity in
the literature. Nevertheless, to our understanding and for
the purpose of this review, all DAMPs are alarmins, but
not all alarmins are DAMPs. Several types of alarmins have
now been recognized and are classified as nuclear, cytosolic,
mitochondrial, extracellular matrix, and secreted (granule-
derived) (Table 1). Recent evidences suggest that alarmins
are pleiotropic factors that promote both inflammatory and
regulatory responses (6). Both alarmins and their receptors
are emerging as important biomarkers in a variety of disease
conditions (6). Here, we review and discuss the inflammatory,
regulatory, and regenerative capabilities of alarmin as it
relates to AKI (Figure 1). Based on the available literary
evidence, we classify the “yin” and “yang” of alarmins
(Figure 2).
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FIGURE 1 | Convoluted mechanism of action of alarmins. An overview depicting complex but critical mechanisms of action of alarmins. During AKI, various

biomolecules, termed alarmins, are triggered that include various proteins, non-protein small molecules, metabolites, and cellular organelles. Alarmins have been

implicated in both pro-inflammatory activity, promoting inflammatory cells, and mounting anti-inflammatory effects and facilitating repair. The alarmins are classified as

nuclear, cytosolic, cell membrane, extracellular matrix, and secreted (granule-derived). Most of the alarmins exert their pathological effects through cell surface

receptors such as TLRs, IL-1Rs family, or RAGE triggering activation of various downstream targets such as NF-κB and interferon responsive factors (IRFs).

Adenosine triphosphate (ATP), cathelicidins, defensins act through ionotropic, metabolic, and purinergic receptors, which facilitate the organization of NLRP3

inflammasome complex. Alarmins such as heparin sulfate (HS) and insulin-like growth factor–binding protein 7 (IGFBP7) binds to growth factor receptors activating

immunomodulatory and prosurvival signals. Fragmented mitochondria released from the damaged cells could trigger inflammatory milieu. Thus, various alarmins

activated during cellular injury not only induce inflammatory cells but act as a source of biomarkers and recruit regulatory cells to resolve the inflammation and initiate

tissue repair. The specific role of alarmins in tissue injury, inflammation, and repair is underexplored but slowly evolving. For details refer to manuscript text. TLRs,

Toll-like receptors; IL-1R, interleukin 1 receptor; IL-1RL1, interleukin-1 receptor-like 1 receptor; RAGE, receptor for advanced glycation end products; interleukin 33

(IL-33); interleukin 1α/β (IL-1α/β); HMGB1, high mobility group box 1; HAVcr-1, hepatitis A virus cellular receptor 1; HSPs, heat shock proteins; NFP, N-formyl peptides.

PRO-INFLAMMATORY ROLE OF
ALARMINS IN AKI

Nuclear Alarmins
IL-1 family cytokines consisting of IL-1α, IL-1β, IL-18, IL-
33, IL-36α, IL-36β, IL-36γ, IL-36Rα, IL-37, IL-38, and IL1Ra
are nuclear proteins that are produced as pro-proteins and
are matured by proteases (82). Interleukin 1α and IL-1β
promote pro-inflammatory cytokine production by multiple
immune cells in toxin-induced AKI (83). Interleukin 1α-
deficient mice were protected from cisplatin-induced AKI
(15). However, there was no difference in inflammatory cell

infiltration between wild-type and IL-1α−/− mice. The IL-1
family cytokine IL-33 has emerged as a critical factor in
controlling the type 1 cytokine production. IL-33 is a nuclear
protein that is typically released from the damaged cell and
promotes inflammatory response (84). Increased expression of
IL-33 was observed in kidneys of cisplatin and IRI-induced
AKI models (17, 18). In the IRI model, IL-33 was postulated
to amplify the recruitment of myeloid cells through secretion
of chemokines monocyte chemoattractant protein 1 (MCP-
1) and macrophage inflammatory protein 2 by the epithelial
cells early after injury and promoted activation of invariant
natural killer (NK) T cells in later stages (18). Following
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renal transplantation in patients, increased levels of IL-33 were
observed in serum and urine and may contribute to renal
IRI (19).

High mobility group box 1 (HMGB1) is a nuclear protein
that acts as a cotranscription factor and plays an important
role in DNA repair, differentiation, and development (12). Upon
release from the damaged cells, HMGB1 plays an active role
in pro-inflammatory responses. HMGB1 exerts its pathogenic
effects on kidneys through receptor for advanced glycation end
products (RAGE) and TLRs including TLR2/TLR4/TLR5/TLR9
(12, 85). A cross-section clinical study demonstrated a rise
in serum HMGB1 levels in patients with AKI (14). In
experimental studies too, the administration of rHMGB1 after
IRI exacerbated injury (13). Sepsis-induced AKI in mice with
chronic kidney disease (CKD) increased the expression of
vascular endothelial growth factor (VEGF) and HMGB1 levels;
however, inhibition of HMGB1, but not VEGF, was found to be
protective (86).

Mice with a deficiency in TLR4, one of the receptors
for HMGB1, were protected against kidney IRI. Moreover,
neither the anti-HMGB1 antibody nor rHMGB1 administration
affected the renoprotection in TLR4−/− mice (13). The results
indicate that HMGB1 might promote kidney injury through
TLR4 signaling. Glycyrrhizic acid could also attenuate renal
IRI by inhibiting the interactions of HMGB1 with tubular
epithelial cells (TECs) (87). Treatment with mycophenolate
mofetil (MMF), a commonly used immunosuppressant, resulted
in the improvement of renal function in IRI along with
reduced levels of plasma creatinine and cytokines, as well as
lower TLR4 expression (88). However, there was no change
in HMGB1 levels, thus implying that MMF reduces TLR4
expression directly. Interestingly, pretreatment with carbon
monoxide-releasing molecule-2 prevented the nuclear histone
acetyltransferase activity by inhibiting HMGB1 release (89).
This resulted in a reduction in the pathological damage
to the kidney and was accompanied by downregulation
of TLR4, RAGE, tumor necrosis factor α (TNF-α), IL-
1β, IL-6, and MCP-1 and protection from IRI, indicating
HMGB1 as one of the mechanisms of MMF treatment.
Elevated levels of circulating HMGB1 were found in patients
with AKI (14) and were independently associated with
leukocyte count and correlated negatively with proteinuria in
AKI settings.

Histones are highly basic proteins, rich in arginine and
lysine, and highly conserved across species. They provide
structural stability to chromatin and regulate gene expression
(90). Histones in extracellular space may appear either due to
release from damaged cells, by pro-inflammatory cells through
active secretion, or as a component of neutrophil extracellular
traps from infiltrating neutrophils (91). Extracellular histones
released from dying tubular cells were associated with AKI,
and were found not only to exhibit direct toxicity to renal
cells but to induce pro-inflammatory cytokine and activate
the innate immune response in a TLR2/TLR4-dependent
manner (20).

FIGURE 2 | “Yin and yang” classification of alarmins. The concept of yin and

yang is dualism. It shows how apparently opposing or contrary powers can

really be similar, intertwined, and interdependent in the natural universe and

how they can give rise to each other as they are engaged during AKI. Here,

based on the available evidence, we have classified the alarmins, which have a

negative influence as “yin” as represented in “blue,” alarmins with positive

influence as “yang” represented in “gold” and alarmins with both “yin”/“yang”

qualities are placed in the center represented in contrast between “blue” and

“gold.” Refer to Figure 1 and Table 1 for abbreviations and the text for details.

Cytosolic Alarmins
Heat shock proteins (HSPs) play an important role in a variety of
cellular processes such as cryoprotection, intracellular assembly,
protein folding, and translocation of oligomeric proteins (23).
AKI increases the expression of HSP27, HSP72, and HSP73
in kidney tissues (21, 92–94). HSP27, HSP72, and HSP73
prevent apoptosis by decreasing intracellular reactive oxygen
species (ROS) and by targetingmitochondrial caspase-dependent
apoptotic pathways (92, 93, 95). They may also help with
the stabilization and refolding of aggregated cellular proteins
in an adenosine triphosphate (ATP)–dependent fashion (93).
HSP90, on the other hand, participates in regeneration and
differentiation of injured tubules (96). In a clinical study, the
urinary level of HSP72 did not increase significantly in kidney
transplant recipients with prerenal AKI, and a small increase in
HSP70 level was noted at patients with other factors of AKI,
namely, obstructive uropathy, calcineurin inhibitor drug toxicity,
recurrence of primary glomerular disease, and non-steroidal
anti-inflammatory drug use (97). Additionally, in the pediatric
patient group, it was shown that HSP60 could be used as a
diagnostic tool for AKI secondary to septic shock (98).

S100 proteins are a family of cytosolic calcium-binding
proteins of ∼25 known members that are involved in
controlling apoptosis, proliferation, differentiation, migration,
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energy metabolism, calcium balance, protein phosphorylation,
and inflammation (99). S100A8 and S100A9 are secretory
proteins that can form both heterodimers and homodimers.
S100A8/A9 derived from neutrophils and monocytes acts as an
activator of the innate immune system through TLR4 (24). Based
on the observations that levels of S100A8/A9 were proportionally
elevated with increasing severity of experimental kidney injury
(24), their serum levels were utilized as an early prognostic
marker of AKI associated with cardiac surgery in a clinical
study (25).

Uric acid crystallization has long been associated with gouty
arthritis and kidney stones. However, a strong correlation of
serum uric acid and AKI is emerging with multiple chronic
conditions including hypertension, CKD, cardiovascular
diseases, stroke, diabetic nephropathy, and metabolic syndrome
(26). Uric acid acts as an antioxidant in the extracellular
environment but exhibits pro-oxidant activity in the intracellular
environment (100). Hyperuricemia in AKI results in dilatation
of the collecting ducts leading to flattening of the epithelium, and
multiple downstream consequences that include intraluminal
crystal precipitation, increased intraluminal hydrostatic
pressures, decrease in GFR and renal plasma flow, activation of
inflammasome and necroptosis, crystal adhesion, granuloma
formation, interstitial inflammation, and tubular cell injury
(101, 102).

Haptoglobin is a protein produced exclusively in the liver that
can bind to hemoglobulin and myoglobulin (103). Interestingly,
it was observed that renal cells start expressing haptoglobin in
AKI (31). Paradoxically, haptoglobin was reported to participate
in both pro-inflammatory and anti-inflammatory responses.
On the one hand, haptoglobin could prevent respiratory
burst in stimulated neutrophils, blunt endotoxin-stimulated
T-lymphocyte proliferation, and modulate macrophage and
dendritic cell function; on the other hand, it could also activate
TLR signaling and contribute to inflammation. Furthermore,
haptoglobin abruptly released from kidneys could also exert
adverse pathophysiological effects in acute transplant rejection,
which is also caused by AKI (30). An increase in haptoglobin
levels in cardiac surgery patients has been associated with
postoperative AKI indicating a direct role in ischemic AKI (32).

Heme is an iron-containing, tetrapyrrole ring that is
an essential prosthetic group in an array of proteins and
influences cellular and metabolic functions (33). Free
heme at higher than physiological levels can be cytotoxic
because of its bioreactivity and pro-oxidative effects. Higher
levels of heme were observed following ischemia-induced
AKI (104). Mechanistically, heme contributed toward
cellular toxicity by oxidizing lipids, denaturing proteins,
cytoskeletal rearrangement, inhibiting enzyme activity,
denaturing DNA, and affecting mitochondrial metabolism
(105). It also induced pro-inflammatory response by inducing
chemokines such as MCP-1 by the action of nuclear factor
κB (NF-κB) signaling, increased leukocyte recruitment, and
vascular permeability (34). Pigment nephropathy due to
rhabdomyolysis and hemolysis accounts for ∼10% of all cases of
AKI (35).

Mitochondrial Alarmins
Considered to be the powerhouse of the cell and critical
for maintaining the cellular functions, mitochondria are also
a source of factors that can induce cell apoptosis (106).
Fragmentation of mitochondria is an important early event in
the manifestation of AKI of both chemical and ischemic etiology
(36). The release of cytochrome C from mitochondria into
the cytoplasm is an endogenous signal for the cell to undergo
apoptosis. Swollen mitochondria were observed in renal tissues
in mice treated with LPS, a model of sepsis-associated AKI
(107). These mitochondria stained poorly for cytochrome c
oxidase, an indication of underlying reduced electron transport
chain activity. The mitochondria are fast becoming a critical
target, and mitochondrial DAMPs that include mitochondrial
DNA (mtDNA), ATP, N-formyl peptides, TFAM, succinate, and
cardiolipin [reviewed in (108, 109)] are also being identified
for their pathological roles in renal injury and dysfunction as
discussed below.

Mitochondrial DNA (mtDNA), identified as a DAMP, has
been suggested to also act as an alarmin that upon release
into the cytoplasm triggers an inflammatory response and has
been proposed to be used as a potential biomarker for kidney
injury (109, 110). Cellular stress results in leakage of mtDNA
leading to inflammation, likely through recognition by four
innate receptors: cytosolic cyclic GMP-AMP synthase (cGAS),
endosomal TLR9, and two inflammasomes: absent in melanoma
2 (AIM2), and NOD, LRR, and pyrin domain-containing protein
3 (NLRP3) (41). Levels of urinary mtDNA were elevated in mice
after IRI-induced AKI (42). Clinical studies have indicated an
association of urinary mtDNA with initiation and progression of
AKI in the surgical intensive care unit (43), cardiac surgery (42),
and sepsis (44) patients.

Adenosine triphosphate (ATP) is the vital source of energy
for cellular processes, and its intracellular level is regulated
by mitochondrial oxidative phosphorylation. However,
extracellular ATP is an indication of mechanical stress
and cellular damage (38). Binding of extracellular ATP
activates the membrane-anchored ionotropic P2X (P2XRs)
and metabolic P2Y (P2YRs) purinergic receptors. Activation
of these purinergic signals by ATP triggers a variety of
biological responses such as inflammation, tissue damage,
and cell proliferation in renal diseases (38). Inhibition of
purinergic receptors was protective in both ischemic and
sepsis-induced AKI (111, 112). ATP and selective agonists of
the P2X7 receptor were shown to activate peptidyl arginine
deaminase 4 (PAD4) in proximal tubular cells (PTCs) and
exacerbate IRI (113). Recently, the P2X4 receptor was shown
to exacerbate ischemic AKI through NLRP3 inflammasome
signaling in the renal proximal convoluted tubules (PCTs)
(114). CD39 and CD73 are two ectonucleotidases that break
down ATP to adenosine, which has anti-inflammatory
properties (115). The absence of CD73 in mice exacerbated
inflammation and worsened AKI outcomes (116), whereas
mice transgenic for overexpression of human CD39 were
protected against AKI (117). The release of ATP to the
extracellular milieu and its intracellular levels is also regulated
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by pannexin receptors (39). Panx1 was recently shown to
induce ferroptosis in renal IRI and its deletion protected from
IRI (118, 119).

Mitochondrial N-formyl peptides (FMIT, mtFPs, NFP, or

mitocryptides) are similar to bacterial DAMP peptides. The
evidence of the role of FMIT leading to AKI is rather
indirect through the progression of sepsis. It was reported that
mitochondrial N-formyl peptides induce sepsis-like syndrome,
which could further affect organs including kidneys, lungs,
and brain (46). It is known that a significant proportion
of trauma patients presents sepsis-like syndrome without
bacterial infections, and this condition is termed systemic
inflammatory response syndrome (SIRS). One of the most
common complications of SIRS is AKI, which is triggered by
FMIT through formyl peptide receptor activation leading to
hypotension and vascular collapse (45).

Mitochondrial transcription factor A (TFAM) is a member
of a high mobility group (HMG) box proteins (109). It is
an important regulator of the transcription and replication of
mtDNA, as well as a key regulator of mitochondrial dynamics
and function (47). The development of TFAM-deficient mice has
enhanced our understanding of the role of TFAM in renal injury.
It was recently reported using this versatile mouse model that
mitochondrial damage activates the widely investigated cGAS-
STING pathway leading to renal inflammation and fibrosis (47).
The role ofmitochondrial damage and the cGAS-STINGpathway
was also recapitulated recently in the cisplatin-induced AKI
mouse model (48).

Succinate is an intermediate of the tricarboxylic acid cycle,
which reaches extracellular milieu upon injury or ischemic
conditions in the tissue (109). Succinate receptor GPR91
expressed in immature DCs and macrophages binds to the
extracellular succinate and gets activated, resulting in either
initiation or exacerbation of immune response (49). Plasma
succinate levels were shown to be upregulated in studies on the
changes in the metabolic profiles in murine AKI (50).

Cardiolipin is a class of phospholipids that account for∼20%
of lipids in the inner mitochondrial membrane (120). It is
critical for manymitochondrial processes such as protein import,
dynamics, respiratory chain functionally, and metabolism.
Extracellular cardiolipin release due to mitochondrial stress or
injury is sensed by T cells through the presentation on the
major histocompatibility complex–like molecule CD1d (52).
Cardiolipin can also bind to NLRP3 directly, eliciting, and
inflammasome-mediated immune response (53). Peroxidation
and loss of cardiolipin have been shown to contribute to
pathogenesis in experimental AKI (54).

Extracellular Matrix Associated Alarmins
The epithelial injury and inflammation in AKI also lead
to disruption of the glycocalyx, an endothelial surface layer
consisting of lectin and proteoglycan (62).

Heparin sulfate (HS) is a major component of glycocalyx that
helps in the organization of ∼50% of the glycocalyx. Heparanase
is an endoglycosidase enzyme that functions to cleave HS.
Increased expression of heparanase has been observed in AKI,
suggesting it could be used as an early biomarker (62). Shedding

of glycocalyx is accompanied by reduction of endothelial nitric
oxide synthase and an increase in inflammation (121). Activation
of heparanase was also observed early in the sepsis-induced
AKI in mice and correlated with higher pro-inflammatory
cytokine levels (122). Detectability of heparanase in the urine also
supported its potential as an important biomarker in sepsis–AKI
(63). Further, inhibitors of heparanase activation attenuated the
renal transcription of the pro-inflammatory mediators (122).

Hyaluronic acid (HA) is also an important component of
the extracellular matrix. It is mainly composed of N-acetyl
glucosamine and glucuronic acid (64). HA synthesis has been
shown to increase during fibrosis and inflammatory conditions.
Endothelial cells and TECs express abnormally high levels of
CD44 and HA receptor during AKI (64). Further, the uptake of
HA by these cells resulted in cellular dysfunction. In a pioneering
study, urinary HA was correlated with AKI in patients, also
suggesting that it could be used as a biomarker to differentiate
AKI from CKD in patients. Additionally, an increase in HA
has been attributed to T-cell and macrophage infiltration and
formation fibrosis in AKI (65).

Biglycan is expressed as a component of ECM in all
organs and belongs to the small leucine-rich proteoglycan
(SLRP) family that is released from the extracellular matrix
(68). Overexpression of biglycan is a common clinical feature
in many renal pathologies. Overexpressing biglycan triggered
activation of TLR2 and TLR4 to exacerbate pathophysiology
of experimental AKI (67). More recently, it was reported that
biglycan activates autophagy in macrophages through a novel
CD44–TLR4 signaling axis in the setting of IRI (123). Both
preclinical and human studies have identified soluble biglycan
as biomarkers in inflammatory renal diseases [detailed specific
review in (69)].

Cell Membrane–Bound Alarmins
Hepatitis A virus cellular receptor 1 (HAVCR1), initially
identified as a receptor for several viruses, is also known as T-cell
immunoglobulin and mucin domain 1 (TIM-1) or kidney injury
molecule 1 (KIM-1). KIM-1, although expressed in multiple
tissues, is not expressed in normal kidneys; however, it gets
rapidly upregulated in PCT of the kidney in AKI (55). KIM-1
was the first non-myeloid phosphatidylserine receptor identified
that could transform epithelial cells into “semiprofessional”
phagocytes; thus, playing a role in the removal of apoptotic
cells and necrotic tissue fragments (124). Recently, KIM-1 has
also been attributed to the resolution of kidney inflammation,
suggesting additional possible roles for this alarmin molecule
or receptor (55). KIM-1 was shown to activate the ERK/MAPK
signaling to promote the migration and proliferation of renal
TECs (125). KIM-1 is detected in the urine of kidney injury
patients and is being evaluated as a prominent biomarkers for
AKI [extensively reviewed in (56–58)].

Uromodulin or Tamm–Horsfall protein (THP) is a
glycoprotein expressed in the thick ascending limb of the
kidney and is the highest excreted protein in the urine following
proteolytic cleavage (60). Although the function of uromodulin
is not completely understood, it is proposed as a biomarker of
kidney injury (60), polycystic kidney disease (126), and acute
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transplant rejection (127). Uromodulin was shown to promote
immune cell activation via activating TLR4 in experimental
studies (128). Clinical studies suggested that uromodulin
may also be involved in the progression of CKD with its
serum levels positively correlating with serum levels of pro-
inflammatory cytokines (129). Paradoxically, uromodulin also
has a protective effect in AKI. Uromodulin was shown to exhibit
anti-inflammatory effects through reducing TLR4 expression in
the thick ascending limb as kidneys from THP-deficient mice
exhibited more inflammation and injury in the outer medulla
(59). In cardiac surgery–associated AKI, a lower uromodulin-to-
creatinine ratio correlated with higher odds of AKI and higher
peak serum creatinine levels (130). In another clinical study in
acute pancreatitis related AKI, serum uromodulin concentration
had a positive correlation with GFR, and patients with AKI had
lower serum uromodulin (131). Lower serum uromodulin levels
were thus predictors of AKI in pediatric cardiac surgery (132),
patients with cirrhosis (61), or renal cancer patients with partial
nephrectomy (133).

Secreted/Granule-Derived Alarmins
Many granule-derived alarmins were initially identified as
antimicrobial products secreted by cells, but their role in sterile
inflammation is now increasingly recognized (134).

Defensins are a class of antimicrobial peptides, present in
the granules of many cell types, and have a broad range of
antimicrobial activity in both Gram-negative and Gram-positive
bacteria (135). Defensins can be categorized into two families, the
α-defensins and β-defensins (136). Although Paneth cells in the
intestine are the main source of α-defensins in mice, higher levels
of defensins were observed in the kidneys in glomerulonephritis
and CKD (137). Elevated levels of defensin were detected after
AKI and were shown to induce inflammation, injury, and
impaired barrier functions in the gut (70). As a result, the delivery
of defensins and other pro-inflammatory molecules such as IL-
17A from intestinal macrophages to the liver resulted in hepatic
inflammation and apoptosis. In turn, overproduction of hepatic
IL-6 and TNF-α led to systemic inflammation and enhancement
of renal dysfunction in a feed-forward loop (70, 138). Urinary
β-defensins were proposed to be a useful biomarker in early
prediction of contrast-induced nephropathy, which accounts for
∼10 to 15% of hospital-acquired AKI (71).

Cathelicidins are a family of antimicrobial and
immunomodulatory peptides expressed in epithelial and
immune cells under homeostasis and inflammation (139). A
single cathelicidin is found in humans—hcAP18/LL-37 and
rodents—cathelicidin-related antimicrobial peptide (CRAMP)
(140). Cathelicidin expression was significantly downregulated
in clinical AKI as well as in murine models (72). NLRP3
overactivation was discovered to be one of the major effects of
this deficiency in cathelicidin that causes elevated inflammatory
responses and apoptosis (141).

Tissue inhibitor of metalloproteinases 2 (TIMP-2) and

insulin-like growth factor-binding protein 7 (IGFBP7) have
gained recognition as clinical biomarkers of AKI, collectively
known as NephrocheckTM commercially (79). TIMP-2 is a
natural inhibitor of matrix metalloproteinases involved in the

degradation of the extracellular matrix (142). Under steady state,
TIMP-2 is expressed in monocytes, B cells, and T cells (142).
Increased levels of TIMP-2 were detected in urine immediately
following AKI (78). In the normal kidneys, TIMP-2 is localized
in PCT. However, there was an apparent reduction of TIMP-2
signals after AKI and directly correlated to the severity of AKI
(78). IGFBP-7 binds to the IGF and regulates its bioavailability
in body fluids and tissues. Following AKI, a massive increase in
IGFBP7 in urine was observed (78). Similar to TIMP-2 strong
cortical proximal tubular staining of IGFBP7 was observed in
normal under normal conditions. However, upon AKI, there was
a severe reduction of proximal tubular IGFBP7 (143). Insulin-
like growth factor–binding protein has been hypothesized to be
involved in cellular senescence (78) and immune cell function
(80). More detailed mechanistic studies are required to uncover
the molecular and cellular basis of IGFBP7 in the context
of inflammation.

Thymic stromal lymphopoietin (TSLP) is mainly produced
from stromal and epithelial cells, and its function to promote
T helper type2 (TH2) cell response has linked it to allergic
inflammation (144). The TSLP levels were elevated in sepsis-
associated AKI in both humans and rodent models (81). TSLP
was associated with NF-κB signaling to elicit the inflammatory
response. Other granule-derived peptides such as those produced
by eosinophils (73), and granulysins that are secreted by cytotoxic
T lymphocytes and NK cells (145), were reported in renal
allograft rejection (76, 77), and may also be linked with AKI and
mortality (75).

POTENTIAL THERAPEUTIC APPLICATION
OF TARGETING ALARMIN SIGNALING

Alarmins were initially identified as acute-phase molecules that
cause immune activation and were deemed pro-inflammatory.
Consequently, several approaches to inhibit alarmins and
their receptors have been explored for intervention in AKI.
Interestingly, several alarmins also have dual functions and can
promote protective pathways and thus are being explored for
therapeutic use. We review these two opposing approaches below
in the context of AKI.

Inhibiting Alarmin Signaling
Nuclear Alarmins
Administration of the soluble form of IL-33 receptor ST2 (sST2)
was shown to prevent the onset of acute inflammation (84). It is
believed that sST2 may act as a decoy receptor and neutralizes
the IL-33 activity. Treatment with sST2 in the cisplatin-induced
AKI model exhibited fewer CD4-infiltrating T cells, lower serum
creatinine, and decreased acute tubular necrosis (ATN) and
apoptosis as compared to the untreated controls (17). In contrast,
treatment with recombinant IL-33 (rIL-33) exacerbated the AKI
with an increase in CD4 T-cell infiltration, serum creatinine,
ATN, and apoptosis (17). Interestingly, it was observed that
the administration of rIL-33 did not exacerbate AKI in CD4-
deficient mice, suggesting a direct effect of IL-33 activity on
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CD4T cells (17). These data indicated that inhibiting the IL-
33 signaling has therapeutic potential in treating or preventing
AKI. Similarly, treatment with HMGB1 neutralizing antibody
after IRI led to attenuation of TNF-α and MCP-1 levels and
protected against kidney IRI, as evidenced by lower levels of
serum creatinine, tubulointerstitial neutrophil infiltration, and
tubular damage compared to the control mice (13). Various IL-
1β/IL-1α/IL-1R1–specific inhibitory molecules are currently in
different phases of clinical trials (16). Neutralization of histones
using targeted neutralizing antibody also led to the attenuating
pathogenic effect of histones, thus preventing AKI (20).

Cytosolic Alarmins
HSP90 transduces signals via binding to the transforming
growth factor β type I (TGFβI) and type II (TGFβII)
receptors (22). Blocking the interaction of HSP90 with TGFβII
receptor by using 17-allyamino-17-demethoxygeldanamycin
reduced fibrosis by promoting the ubiquitination of TGFβII.
S100A8/A9–TLR4–NLRP3 inflammasome pathway was shown
to trigger inflammation, apoptosis, and tissue injury during
AKI. Inhibition of this pathway through siRNA to TLR4–
NLRP3 ameliorated the kidney function in contrast-induced
acute kidney injury model (24). Inhibition of TSLP, a TH2-
inducing cytokine, with siRNA also resulted in lowering the
sepsis-associated organ dysfunction and inflammatory cytokine
levels (81).

In a rat model of cisplatin-induced AKI, moderate
hyperuricemia was associated with the absence of intrarenal
crystals but correlated with greater tubular injury, significant
macrophage infiltration, and increased expression of MCP-1
(27). Treatment with rasburicase, a uric acid oxidase, reversed the
inflammation and tubular injury (28). Many clinical approaches
employed in AKI, including allopurinol, febuxostat, and Renal
Replacement Therapy (RRT), may act by decreasing circulating
urate to reduce its pro-inflammatory effects (29).

Mitochondrial Alarmins
Mitochondrial fragmentation has been thought to be one
of the possible mechanisms contributing to injury in AKI.
Inhibition of mitochondrial fragments was observed by
blocking fission protein Drp1 along with the reduction in
cytochrome c release and apoptosis (36). Similar results were
obtained by blocking Drp1 using a new pharmacological
inhibitor mdivi-1 (36). Targeting mitochondria by promoting
mitochondrial health for therapeutic effects on AKI includes
promoting metabolism by augmenting fatty acid oxidation
using peroxisome proliferator-activated receptor α (PPARα)
overexpression (146) or augmenting ETC using CoQ10
(ubiquinone) (147). Mitochondrial fragmentation induces
ROS, which was targeted using MitoQ and SS-31 to attenuate
AKI (148). Cyclosporine that is used in transplantation may
also counter AKI by regulating mitochondrial membrane
permeability by inhibiting cyclophilin D (149). Agents such as
temsirolimus (150) function by targeting mitophagy through
activating mTOR signaling. Finally, improving mitochondrial
biogenesis by enhancing nuclear transcription of mitochondrial
proteins using PPARγ-coactivator-1α (PGC1α) (107) or by

activating β-adrenergic receptors using formoterol (151)
may also contribute to protection from AKI by reducing
mitochondrial fragmentation. Compound SS-31, which
reenergizes mitochondria by preventing matrix swelling
and preserving cristae structure, thus restoring ATP, is being
clinically tested. SS-31 selectively binds to cardiolipin, preventing
its peroxidation and loss (37).

Depletion of extracellular ATP with apyrase, or blocking
of P2XR with pyridoxal phosphate-6-azophenyl-2′,4′-disulfonic
acid (PPADS), has been shown to prevent necrosis-related
inflammation (152). In the same study, treatment with A438079,
a selective P2X7 receptor inhibitor or knockdown of the P2X7

receptor with siRNA, reduced the apoptosis of PTCs. The
use of recombinant alkaline phosphatase has been tested both
experimentally (153) and clinically (40) in sepsis-associated
AKI. It is believed that the mechanism of action may involve
dephosphorylation of LPS for reduced TLR activation (154)
and of ATP for conversion to the anti-inflammatory adenosine
(155). Binding of adenosine or its synthetic analogs to adenosine
receptors protected mice from IRI in an IL-11–dependent
manner (156). Adenosine was also shown to induce immune
tolerance through dendritic cells (157) and T-regulatory cells
(Tregs) (158). Conversely, inhibition of adenosine kinase with
a small molecule (ABT-702) to prevent the conversion of
adenosine to ATP was protective in cisplatin nephrotoxicity
(159). Paradoxically, extracellular nucleotides including ATP
released from dying cells were also shown to promote wound
repair in renal tubular injury (160).

Secreted and Extracellular Alarmins
Blocking of glycans with doxycycline, a broad-spectrum matrix
metalloprotease inhibitor, was shown to restrict the secretion
of pro-inflammatory cytokines in cisplatin and IRI-induced
AKI (161, 162). Heparanase inhibitors such as PG545 was
found protective in experimental ischemic IRI (63) and is
currently in clinical testing. Mice receiving a diet containing
4-methylumbelliferone, a potent hyaluronic acid synthesis
inhibitor, resulted in attenuation of AKI (66). Pharmacological
treatment with a zinc chelator, dithizone, resulted in depletion
of Paneth cell granules in adult mice (163) and rats (164). These
mice exhibited less leukocyte infiltration, pro-inflammatory
cytokine generation, and reduced epithelial necrosis and
apoptosis. In contrast, studies have also indicated that a
chronic loss of Paneth cell α-defensin expression could also
skew toward a more pro-inflammatory phenotype (165). These
opposing outcomes warrant additional mechanistic studies to
fully understand the role of defensins in AKI.

Direct Application of Alarmins
Nuclear Alarmins
In contrast to the pro-inflammatory reports of IL-33, evidence
also suggests that IL-33 is a potential mediator of type 2 immunity
and a regulator of the protective immune response (166, 167).
We identified that ST2, the receptor for IL-33, is regulated by
IL-2 (168) and is expressed on a major subset of Tregs (169).
Based on our data that IL-2 and IL-33 by themselves increased
Tregs and partially protected from IRI and that these cytokines
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synergize to completely protect from AKI, we generated a novel
hybrid cytokine (termed IL233) bearing activities of IL-2 and IL-
33 in a single molecule (169). Treatment with IL233 robustly
increased Tregs and the group 2 innate lymphoid cells (ILC2)
and strongly protected kidneys from IRI, as well as cisplatin- and
doxorubicin-induced nephrotoxic injuries (169, 170). A similar
strategy of using exogenous IL-33 alone was demonstrated to
increase ILC2 to protect from IRI in T cell–independent manner
(171). Interestingly, reduction or depletion of ILC2 did not affect
the severity of IRI in a mouse model, suggesting that ILC2 may
be redundant for IRI (172), despite the finding that the adoptive
transfer of ex vivo–expanded ILC2 was protective in murine
IRI (169).

Cytoplasmic Alarmins
Preconditioning the mice with rHMGB1 prior to IRI protects the
kidney against IRI was indicated by low serum creatinine, tubular
damage, and tubulointerstitial neutrophil and macrophage
infiltration (173). Pretreatment with rHMGB1 resulted in the
upregulation of Siglec-G, which in turn negatively regulated
HMGB1-mediated TLR4 pathway activation. This indicated
significant protection from renal IRI from the activation of TLR4-
dependent inflammatory response. It was also observed that
lentivirus-mediated renal overexpression of HSP27 prevented
the loss of renal function and decreased necrosis, inflammation,
apoptosis, and F-actin cytoskeleton after IRI injury in mice (174).
In a retrospective observational study, it was found that the
intraoperative administration of haptoglobin administration was
independently associated with a lower risk of AKI incidence after
cardiovascular surgery (175).

Studies in 1989 identified heme oxygenase 1 (HO-1) as a
protein induced in hypoxic cells. Protective responses of HO have
been confirmed in various AKI studies (176). HO-1 participates
in the dissipation of heme, thereby protecting the kidneys from
inflammation and cellular damage. Induction of HO-1 and
ferritin in the kidney protects against heme-induced kidney
injury (177). HO-1 induction by granulocyte colony-stimulating
factor has been shown to protect against AKI both in vivo and
in vitro (178). Adiponectin, a cytokine produced from white fat,
induces HO-1 in renal epithelial cells in vitro and prevents AKI
following IRI (179). Along with heme, ferrous iron (Fe) that is
found in heme also correlated with AKI (180). Administration of
the iron-regulating hormone hepcidin reduced inflammation and
decreased oxidative stress inmousemodels of AKI (181). Further,
the administration of a furin inhibitor to induce high levels of
hepcidin also reduced AKI in mouse models (182).

Extracellular Matrix and Cell-Surface Alarmins
The use of extracellular matrix-associated alarmins for protection
in AKI is largely understudied but is gaining attraction. In
an interesting study (183), an HA-curcumin prodrug targeting
the HA receptor-CD44 could assist in epithelial cell survival
from oxidative stress during AKI. CRAMP-deficient (Cnlp−/−)
mice exhibited exacerbated renal dysfunction accompanied
by aggravated inflammatory response and apoptosis (72).
Exogenous treatment with CRAMP markedly attenuated AKI
accompanied by reduced NLRP3 orchestrated inflammatory

response and apoptosis. In LPS-induced inflammatory settings, it
was observed that overexpression of TIMP-2, a major diagnostic
marker of AKI, significantly attenuated the production of nitric
oxide, TNF-α, IL-1β, and ROS with increased production of anti-
inflammatory cytokine (IL-10) (184). Future studies on the use of
TIMP-2 are likely to produce interesting results.

Implications of Alarmins in Repair Post-AKI
The renoprotective role of alarmins also suggests their potential
in repair after renal injury. Stem cells play an important role
in tissue homeostasis, as well as tissue repair following injury
(185). Researchers have used exogenous stem cells to improve
tissue regeneration using a variety of approaches. However,
still, there is a very limited clinical success than anticipated
especially for solid organ injuries (185). Alternatively, harnessing
the endogenous tissue-resident stem cells for mediating repair
could be promising. In a breakthrough study in 1970, it was
observed that priming injury at a distant site at the time of, or
before the second trauma, resulted in accelerated repair (186,
187). In a recent study, Lee et al. (188) have used the alarmin,
HMGB1, to accelerate repair using a bone fracture model.
Exogenous treatment with HMGB1 accelerated facture healing
through the formation of heterodimer complex between HMGB1
and chemokine, CXCL12 (stromal cell–derived factor1), which
then signals through CXCR4 receptor (188). Because remote
ischemic preconditioning was accompanied by an upregulation
of HMGB1 (189), preconditioning with recombinant HMGB1
was tested and found to be protective in AKI (173). Such an
approach may as well be investigated to promote repair in AKI.

Heat shock proteins, although identified as biomarkers for
AKI, are now being investigated for their beneficial role in AKI.
HSP73 and HSP90 were found to be induced in the injured
PTC and loop of Henle early on after injury and then were
upregulated again in the regenerating cells, suggesting these HSPs
may participate in repair post-IRI, andmay be exploited in future
studies (94). HSP70 was shown to interact with cytoskeletal
elements during the restoration of the cytoskeletal structure and
polarity of proximal tubules after ischemic injury, indicating the
role of HSP70 in renal repair (190). An interesting concept is that
T-cell reactivity to HSP may induce tolerogenic responses, which
may be beneficial for the resolution of inflammatory diseases
(21, 191, 192). Indeed, a recent study showed that, in a murine
model of IRI, heat preconditioning induced the release of HSP-
70, which in turn promoted the expansion of Tregs that was
renoprotective (193, 194).

A reparative role of Tregs in AKI was initially shown
in murine IRI through depletion studies (195). Recently, we
demonstrated that treatment with the fusion protein IL233
utilizes the synergy of IL-2 with the IL-33 alarmin in protection
when administered after the onset of injury (169). IL233
treatment, initiated 2 weeks after renal injury, induced near-
complete restoration of renal structure and function (170). IL233
treatment invoked the proliferation and renal recruitment of
Tregs and ILC2s. Antibody-mediated depletion of these cells
ameliorated the restoration of renal injury. Further, mobilization
of these cells near the site of injury promoted the recruitment
of progenitor cells in the kidneys. It remains to be evaluated
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whether this may be either a direct effect of these cells or
through inducing an anti-inflammatory milieu, which may be
conducive for progenitor cells to promote regenerative responses.
Treatment with IL233 after the onset of lupus nephritis and
diabetic nephropathy in animal models also induced persistent
remission, suggestive of a reparative role of IL-33 alarmin in
chronic renal injury (170, 196, 197). Current studies in our
group are addressing the role of the IL-33/ST2 and IL233 in
the repair of renal injury in both an immune-dependent and
independent manner.

CONCLUSION

The immunoregulatory potential of alarmins, as well as
their predictive value as a biomarker in a host of disease
conditions, renders the study of alarmins beneficial for clinical
applications. Despite all the advances in the understating of
the pathophysiology of kidney diseases, the dearth of treatment
strategies for AKI remains a major unmet clinical need. Novel
therapeutic options or perhaps a combination of those in a
concerted manner is required to solve this problem. Exploring

the role of alarmins as diagnostic markers, immunomodulators,
and harbingers of repair could be one of the strategies that may
lead to therapy of AKI.
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