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Histological images present high appearance variability due to inconsistent latent

parameters related to the preparation and scanning procedure of histological slides, as

well as the inherent biological variability of tissues. Machine-learning models are trained

with images from a limited set of domains, and are expected to generalize to images

from unseen domains. Methodological design choices have to be made in order to yield

domain invariance and proper generalization. In digital pathology, standard approaches

focus either on ad-hoc normalization of the latent parameters based on prior knowledge,

such as staining normalization, or aim at anticipating new variations of these parameters

via data augmentation. Since every histological image originates from a unique data

distribution, we propose to consider every histological slide of the training data as

a domain and investigated the alternative approach of domain-adversarial training to

learn features that are invariant to this available domain information. We carried out a

comparative analysis with staining normalization and data augmentation on two different

tasks: generalization to images acquired in unseen pathology labs for mitosis detection

and generalization to unseen organs for nuclei segmentation. We report that the utility of

each method depends on the type of task and type of data variability present at training

and test time. The proposed framework for domain-adversarial training is able to improve

generalization performances on top of conventional methods.

Keywords: histopathology image analysis, domain-invariant representation, domain-adversarial convolutional

network, mitosis detection, nuclei segmentation

1. INTRODUCTION

The traditional microscopy-based workflow of pathology labs is undergoing a rapid transformation
since the introduction of whole-slide scanning. This new technology allows viewing of digitized
histological slides on computer monitors and integration of advanced image analysis algorithms,
which can enable pathologists to perform more accurate and objective analysis of tissue.

The process of producing a digital slide consists of several successive procedures: formalin
fixation and paraffin embedding of the tissue, sectioning, staining and scanning. Each procedure
has a multitude of parameters that vary between pathology labs and within the same lab over
time. This results in significant tissue appearance variation in the digital slides, that adds to the
underlying biological variability that can occur, for example, due to differences in tissue type
or pathology.
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In a real-world scenario, histological images are made
available in pair with ground-truth annotations for the
development of a predictive model to solve and automate a
given task. Very often, these images were acquired in specific
conditions (via the same scanner, following a lab-specific
preparation process or from a small cohort for example) resulting
in a narrower range of appearances than what could be observed
in other conditions (different scanner, lab or cohort).

The discrepancy between the restricted data distribution
available at training time and the higher variability of possible
histological images on which a model is expected to perform,
often limits the generalization of image analysis techniques,
including deep learning-based methods.

This problem is typically addressed with ad-hoc methods
based on known priors. For instance, one might correct for the
known staining variability via a staining normalization approach.
However, relying on such specifically chosen priors raises the
risk to leave out or enhance domain-specific noise in the learned
representation. For example, staining normalization methods
will not handle other sources of variability such as specific
tissue pleomorphism.

Deep learning methods learn abstract representations directly
from the image data and have achieved state-of-the-art results
in many computer vision and medical image analysis tasks
including histopathology. Every histological slide results from a
given set of latent parameters (corresponding to a specific case,
hospital or tissue type for instance) and thus can be considered
an individual domain. As such, all the image patches extracted
from a given whole slide image (WSI) are samples of the same
data distribution, and so, the same domain. We hypothesize
that learning a representation that is explicitly invariant to the
domains of the training data is likely to be also invariant, to some
extent, to new unseen domains.

This hypothesis is motivated by the fact that regular
Convolutional Neural Networks (CNNs) preserve domain
information in their representation that is not useful for the
task at hand. This phenomenon is illustrated in Figure 1A:
the appearance features present in some digital slides form
separated clusters in the space of the learned representation,
even if the slides share a known variability factor (patches
from different liver tissue images, in blue, are distributed apart
when represented by a baseline model). In the example of
Figure 1A, image patches that originate from an unseen domain
(colon tissue represented in gray), form a disjoint cluster, in
a region that the model was not trained to process, and that
is likely to lead to poor performances. However, this internal
distribution can become smoother when strategies are employed
to make the representation domain-invariant. The distribution
of the embeddings shown in Figure 1B, illustrates how the
representation of seen domains that was disjoint among the same
organ now overlaps, and how unseen domains align with this
smooth distribution: the gray cluster representing an unseen
organ tissue type is now connected to the rest of the embeddings,
and is more likely to lead to better generalization performances.

In this paper, we propose a domain-adversarial framework
to constrain CNN models to learn domain-invariant
representations (section 3.2.2), and compare it with staining

normalization (section 3.3.2), augmentation methods (sections
3.3.1 and 3.3.3) and combinations of these methods.

Domain-adversarial training differs from conventional
methods in the sense it does not rely on defined hard priors:
the proposed framework leverages the domain information that
is available in most histopathology datasets in order to achieve
domain invariance, whereas this information is usually left aside
by conventional methods.

This work is an extension of the comparative analysis
presented at the 2017 MICCAI-DLMIA workshop (2).
In addition to an extended set of experiments, we also
make a novel technical contribution that enables the use of
batch normalization when training a single network with
different input data distributions, as is required with domain
adversarial networks.

We show experiments for two different tasks: (1) mitosis
detection with a testing set originating from pathology labs
that were unseen during training and (2) nuclei segmentation
with a testing set consisting of tissue types that were unseen
during training.

2. RELATED WORK

Machine learning models for histopathology image analysis that
directly tackle the appearance variability can be grouped in two
main categories: (1) methods that rely on pre-processing of the
image data and (2) methods that directly modify the machine
learning model and/or training procedure.

The first group of methods includes a variety of staining
normalization techniques (3, 4). Some image processing pipelines
handle the variability problem via extensive data augmentation
strategies, often involving color transformations (2, 5–8).
Hybrid strategies that perturb the staining distributions on
top of a staining normalization procedure have also been
investigated (9–12).

The second group of methods is dominated by domain
adaptation approaches. Domain adaptation assumes the model
representation learned from a source domain can be adapted to a
new target domain. Fine-tuning and domain-transfer solutions
were proposed for deep learning models (13–16), and with
applications to digital pathology (17–19). Another approach
consists in considering the convolutional filters of the CNN
as domain-invariant parameters whereas the domain variability
can be captured with the Batch Normalization (BN) parameters
(20, 21). Adaptation to new domains can be achieved by fine-
tuning a new set of BN parameters dedicated to these new
domains (21).

Adversarial training of CNNswas proposed to achieve domain
adaptation from a source domain of annotated data to a single
target domain from which unlabeled data is available (22).
Adversarial approaches aim at learning a shared representation
that is invariant to the source and target domains via a
discriminator CNN, that is used to penalize the model from
learning domain-specific features (22–26). This type of method
has been successfully applied and adapted to the field of
medical image analysis (27). These methods, however, require
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FIGURE 1 | Illustration of the domain distribution of the internal representation of convolutional neural networks (CNN) trained for the task of nuclei segmentation. The

scatter plots are t-SNE embeddings (1) of a random selection of 64 image patches for each of 12 digital slides, for which a representative patch is displayed on the left

and framed with matching colors. Each image patch is represented by the concatenated means and standard deviations of its activations after the second

convolutional layer of the CNNs. Two models are compared: (A) shows the representation learned by a baseline CNN model and (B) a model that uses

stain-normalized inputs and domain-adversarial training. The models were trained with image patches from these 12 slides, and image patches from two hold-out

slides (colon tissue type) were embedded the same way and are shown in gray. The baseline model induces domain clusters in the embedding space whereas the

domain-invariant model produces a smoother distribution of the domains.

that data from the target domains is available at training
time, which is not a constraint of our approach and were
not investigated on tasks involving histological images. Finally,
we proposed in Lafarge et al. (2) a similar approach that
enforces the model to learn a domain-agnostic representation
for a given extensive domain variability present within the
training data and we investigated its ability to perform on new
unseen domains.

3. MATERIALS AND METHODS

We evaluate the different approaches for achieving domain
invariance on two relevant histopathology image analysis tasks:
nuclei segmentation and mitosis detection. Automated nuclei
segmentation is an important tool for many downstream
analyses of histopathological images, such as assessment of
nuclear pleomorphism. Mitosis detection is the first step toward
assessment of the tumor proliferation activity, and is therefore
an important biomarker for breast cancer prognostication
and part of the widely used Bloom-Richardson-Elston grading
system (28).

In this section, we first describe the datasets used for the two
image analysis tasks, and specify the domain shift under which
the generalization of trained models on new domains will be
assessed. Then, we describe the baseline convolutional neural
network model, the domain-adversarial framework, the staining
normalization and the data augmentation approaches that will be
used in the comparative analysis.

3.1. Datasets
The proposed comparative analysis was made on two datasets
which expose two different types of domain variability. These
datasets correspond to different tasks, enabling to study the
framework viability in multiple analysis settings.

3.1.1. Inter-lab Mitosis Dataset
We used the TUPAC16 dataset (29) that includes 73 breast cancer
cases with histological slides stained with Hematoxylin-Eosin
(H&E). The dataset consists of a selection of high power field
images (HPF) that were annotated with mitotic figure locations,
derived from the consensus of at least two pathologists.

The cases come from three different pathology labs (PLA, PLB
and PLC with 23, 25, and 25 cases, respectively) and were scanned
with two different whole-slide image scanners (the slides from
PLB and PLC were scanned with the same scanner). We split the
dataset as follows:

• A training set of eight cases from PLA (458 mitoses).
• A validation set with four other cases from PLA (92 mitoses).
• A test set with the remaining 11 cases from PLA (533 mitoses),

in order to measure the intra-lab performance of the trained
models in the same condition as the AMIDA13 challenge (30).
• A test set using the 50 cases from PLB and PLC (469 mitoses),

in order to evaluate inter-lab generalization performance.

3.1.2. Multi-Organ Nuclei Dataset
We used the multi-organ dataset created in (4): a subset of 30
HPF images, selected from single WSIs of H&E-stained tissue
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FIGURE 2 | Flowchart of the domain-adversarial model. The model is trained using batches balanced across classes or domains. The intermediate representation is

learned to optimize the classifier, while the discriminator is trained to identify domains of origin from this representation. Gradient back-propagations are shown with

right-to-left arrows, adversarial back-propagation is shown with a sinuous arrow. The domain-invariant representation is illustrated as a selection of three activation

maps that are output by the feature extractor, all assigned to RGB channels.

slices, prepared in 18 different hospitals, and provided by The
Cancer Genome Atlas (31). These 30 images consist of seven
different tissue types with nuclei mask annotations publicly
available (4).

To be in conditions similar to (4), we split the dataset in
two groups of tissue types TA={Breast, Liver, Kidney, Prostate}
and TB={Bladder, Colon, Stomach}. For experimental purpose, we
split the dataset in the conditions of (4) as follows:

• A training set of 12 HPF images with three images for each
tissue type of TA (7337 nuclei).
• A validation set of 4 other HPF images with one images for

each tissue type of TA (1474 nuclei).
• A test set of 8 other HPF images with 2 images for each tissue

type of TA (4130 nuclei).
• A test set using the 6 HPF images of TB with 2 images of

each type (4025 nuclei), in order to evaluate cross-tissue-type
generalization performance.

3.2. Domain-Adversarial Framework
The framework we propose is designed for classification tasks
given images x that are associated with class labels y.

3.2.1. The Underlying Convolutional Network
The proposed framework is applicable to any baseline CNN
architecture that can be decomposed in two parts: a feature
extractor CNN F and a classifier CNN C, parameterized by θF

and θC, respectively, as illustrated in Figure 2.
F takes images x as input and outputs an intermediate

representation F(x; θF), whereas C takes F(x; θF) as input and
outputs a classification probability C(F(x; θF); θC). The (F , C)
pipeline can be trained by minimizing the cross-entropy loss
LC(x, y; θF , θC). θF and θC are optimized by stochastic gradient
descent using mini-batches of image-label pairs (x, y).

3.2.2. Domain-Adversarial Training
The goal of the framework is to make the intermediate
representation F(x, θF) invariant to the domains of the training
data. We make the assumption that by making F(x, θF) domain-
agnostic, this will improve the cross-domain generalization of the
classifier C. By making the representation invariant to the known
domain variability of the training data, we can expect, in some
extent, it will also be invariant to unseen variability factors.

Toward this goal, we turned the baseline CNN to a
domain-adversarial neural network (DANN) (22) by involving
a discriminator CNN D with parameters θD. D takes the
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FIGURE 3 | Illustration of different types of pre-processing augmentations: (A) original images, (B) RGB color augmentation, (C) staining normalization, (D) staining

augmentation.

representation F(x; θF) as input and predicts the domain
probability D(F(x; θF), θD) of the input training images x via
softmax activation. We define LD(x, d; θF , θD) as the cross-
entropy loss of the domain discriminator given an input of
image-domain pair (x, d), with d a domain identifier, unique to
each slide of the training dataset.

The minimization of LD(x, d; θF , θD) during training implies
that domain-specific features get extracted from the shared
representation that we want to make domain-invariant. Such
domain identification is possible since regular models naturally
distribute domains apart in the representation as shown
in Figure 1A. In order to obtain domain-invariance, the
weights θF are jointly optimized by stochastic gradient
ascent, to maximize LD(x, d; θF , θD). This process aims at
removing domain-specific features from the representation
that are useless for the task at hand, as it is illustrated
in Figure 1B, while still being optimized to improve the
performances of C.

3.2.3. Handling Classification-Related and

Domain-Related Input Distributions
Batch Normalization (BN) (32) is used throughout the networks
F , C, and D as it is an efficient method that allows fast and
stable training, in particular with adversarial components (33).
By normalizing every batch with computed mean and variance
at every convolutional layer, BN implies that the distribution of
the feature maps is a function of the distribution of the input
batch. As a consequence, the distribution of the feature maps will
vary with the balance of the batch associated with every pass (see
section 3.2.2).

It is necessary for the domain-adversarial update to be
computed with a forward-pass in the same conditions as for
the classification pass. Therefore, we propose to apply BN
during the adversarial pass using the accumulated moments
of F , while keeping a regular BN computation and regular
moment accumulation during the classification pass. To this
end, we adjusted the adversarial update (4) to update only the
convolutional weights ϑF ⊂ θF , so as not to interfere with the
BN weights, updated according to (1) of the classification pass,
with a similar motivation as in Karani et al. (21).

The domain-adversarial training procedure consists in
alternating between four update rules:

Optimization of the feature extractor with learning rate λC :

θF ← θF − λC
∂LC

∂θF
(1)

Optimization of the classifier :

θC ← θC − λC
∂LC

∂θC
(2)

Optimization of the domain discriminator with learning rate λD :

θD ← θD − λD
∂LD

∂θD
(3)

Adversarial update of the feature extractor :

ϑF ← ϑF + αλD
∂LD

∂ϑF
(4)

The update rules (1) and (4) work in an adversarial way: with
(1), the parameters θF are updated for the classification task (by
minimizingLC), and with (4), a subset of the same parameters are
updated to prevent the domains of origin to be recovered from
the representation F(·; θF) (by maximizing LD). The parameter
α ∈ [0, 1] controls the influence of the adversarial component.

3.3. Comparison of Methods
For comparison purpose, we chose to study three different
well-established standard methods that aim at improving the
generalization of deep learning models in the context of
histopathology image analysis and that do not require additional
data. A visual overview of these methods is presented in
Figure 3. We also analyzed combinations of these individual
approaches together with the proposed domain-adversarial
training framework.

3.3.1. Color Augmentation
Since the most prominent source of variability in histology
images is the staining color appearance, one alternative to
artificially produce new training samples consists in randomly
perturbing the color distribution of sampled image patches. By
increasing the amount of different color distributions in the
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training set, the model is expected to learn a representation that
better generalize to this type of variability.

We performed color augmentation (CA) by transforming the
contrast and shifting the intensities of every color channel Ic ←
ac · (Ic − µ(Ic)) + µ(Ic) + bc, where ac and bc are drawn from
uniform distributions ac ∼ U [0.9, 1.1] and bc ∼ U [−13,+13]
and where µ(Ic) is the mean intensity of Ic.

3.3.2. Staining Normalization
The opposite strategy is to reduce the appearance variability of all
the images as a pre-processing step before training and evaluating
a trained CNNmodel. For hematoxylin and eosin (H&E) stained
slides, staining normalization (SN) methods can be used (34, 35).

The RBG pixel intensities of H&E-stained histopathology
images can be modeled with the Beer-Lambert law of light
absorption: Ic = I0 exp

(

−Ac,∗ · C
)

. In this expression c =
1, 2, 3 is the color-channel index, A ∈ [0,+∞]3×2 is the matrix

of absorbance coefficients and C ∈ [0,+∞]2 are the stain
concentrations (34). We perform staining normalization with
the method described in (35). This is an unsupervised method
that decomposes any image with estimates of its underlying A

and C. The appearance variability over the dataset can then
be reduced by recomposing all the images using some fixed
reference absorbance coefficients Aref .

3.3.3. Staining Augmentation
An approach between CA and SN consists in artificially
perturbing the distribution of the concentrations estimated in the
unmixing step of SN before applying the recomposing step with
constant Aref (9–12).

We experimented with Staining Augmentation (SNA)
for comparison, by randomly perturbing each estimated
concentration map Ci linearly with Ci ← gi · Ci + hi, where gi

TABLE 1 | Architecture of the mitosis detection model.

Feature extractor and mitosis classifier Domain classifier

Layer Size Filter Rec. F. Layer Output Filter Rec. F.

F

Input 64× 64× 3 1× 1

Conv 60× 60× 16 5× 5 5× 5

Max pool 30× 30× 16 2× 2 6× 6

Conv 28× 28× 16 3× 3 10× 10

Max pool 14× 14× 16 2× 2 12× 12 Bifurcation 14× 14× 16 12× 12

C

Conv 12× 12× 16 3× 3 20× 20 Conv 12× 12× 32 3× 3 20× 20

DMax pool 6× 6× 16 2× 2 24× 24 Conv 10× 10× 64 3× 3 24× 24

Conv 4× 4× 16 3× 3 40× 40 Softmax 10× 10× 8 1× 1 24× 24

Max pool 2× 2× 16 2× 2 48× 48

Conv 1× 1× 64 2× 2 64× 64

Sigmoid 1× 1× 1 1× 1 64× 64

The feature extractor F and mitosis classifier C form a 10-layer CNN with a single class-probability output. The domain classifier D is a 3-layer network bifurcated at the second

max-pooling layer of F and outputs a 8-domain probability vector.

TABLE 2 | Architecture of the nuclei segmentation model.

Feature extractor and nuclei classifier Domain classifier

Layer Size Filter Rec. F. Layer Output Filter Rec. F.

F

Input 52× 52× 3 1× 1

Conv 48× 48× 24 5× 5 5× 5

Max pool 24× 24× 24 2× 2 6× 6

Conv 20× 20× 24 5× 5 14× 14

Max pool 10× 10× 24 2× 2 16× 16 Bifurcation 10× 10× 24 16× 16

C

Conv 8× 8× 24 3× 3 24× 24 Conv 8× 8× 32 3× 3 24× 24

DMax pool 4× 4× 24 2× 2 28× 28 Conv 6× 6× 64 3× 3 28× 28

Conv 2× 2× 24 3× 3 44× 44 Softmax 6× 6× 12 1× 1 28× 28

Conv 1× 1× 96 2× 2 52× 52

Softmax 1× 1× 3 1× 1 52× 52

The feature extractor F and nuclei classifier C form a 9-layer CNN with a 3-class probability output. The domain classifier D is a 3-layer network bifurcated at the second max-pooling

layer of F and outputs a 12-domain probability vector.
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and hi are drawn from uniform distributions gi ∼ U [0.9, 1.1]
and hi ∼ U [−0.1,+0.1].

4. EXPERIMENTS

We implemented two DANN models (22), one for the mitosis
detection task and one for the nuclei segmentation task. Both
problems are approached with a patch-based classification setup.
In the case of mitosis detection, C outputs the probability for the
input patches to be centered on mitotic figures. In the case of
nuclei segmentation, C outputs the 3-class probability vectors for
the center of the image patches: nuclei foreground, nuclei edge,
or background.

4.1. Architectures
For both problems, we chose straightforward convolutional
networks, similar to the related literature (2, 4, 29, 30, 36). We

chose to investigate DANN models with a single bifurcation at
the second max-pooling layer, corresponding to receptive fields
of size 12 × 12 for the mitosis classifier and 16 × 16 for the
nuclei classifier.

Every convolutional layer is activated by a leaky Rectified
Linear Unit (with coefficient 0.01), except for the output layers
that are activated by a softmax function. Architecture details are
presented in Tables 1, 2.

4.2. Training Procedures
We used the same training procedure for the models of both
the problems. For all experimental configurations, image patches
were transformed by a baseline augmentation pipeline consisting
of a random 90-degree rotation, random mirroring, −10/ +
10% spatial-scaling. Sampling of non-mitosis figures and nuclei
background classes were adjusted by hard-negative mining using
a first version of the baseline models to reject easy-to-classify

FIGURE 4 | Box-plot of the F1-score of the mitosis classification models. Points represent the mean ± standard deviation of the F1-score of each model across 3

repeats with random initialization and random patch sampling. DANN, Domain-Adversarial Neural Network; CA, Color Augmentation; SN, Staining Normalization;

SNA, Staining Augmentation.

FIGURE 5 | Box-plot of the F1-score of the nuclei segmentation models. Points represent the mean ± standard deviation of the F1-score of each model across 3

repeats with random initialization and random patch sampling. DANN, Domain-Adversarial Neural Network; CA, Color Augmentation; SN, Staining Normalization;

SNA, Staining Augmentation.
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image patches. The domain-balanced batches were built using
patches of size 24 × 24 for the mitosis detection model and
28×28 for the nuclei segmentationmodel in order for the domain
classifiers to output 1× 1 predictions.

The model weights were optimized with Stochastic Gradient
Descent with learning rates λC = 0.01 and λD = 0.001 and
momentum µ = 0.9. λC and λD were decayed by a factor of
0.9 every 5,000 iterations. L2-regularization was applied to all the
convolutional weights. For stability purposes and as proposed
in (27), we used a warm-up scheduling for the coefficient α, to
control the influence of the adversarial component, by following
a linear increase from 0.0 to 1.0 from the 5000th to the 10000th
training iteration.

5. RESULTS

This section presents quantitative and qualitative evaluations of
the ability of the developed models to generalize to a known
factor of variability of the test set that is absent from the
training data.

5.1. Mitosis Detection
The performances of themitosis detectionmodels were evaluated
with the F1-score as described in Veta et al. (29, 30), and Cireşan
et al. (36). We used the trained classifiers to produce dense
mitosis probability maps for all test images. All local maxima
above an operating point were considered detected mitotic

FIGURE 6 | Visualization of the raw predictions (background: white, foreground: black, border: red) and resulting segmentation maps of the baseline and

best-performing segmentation models. True positive, false positive and false negative are show in green, blue, and red, respectively.
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FIGURE 7 | Visualization of the predictions of the baseline and best-performing models (CA for seen-lab test set, and CA+DANN for unseen-lab test set).

Ground-truth mitotic figures are circled in green.

figures. This operating point was determined as the threshold that
maximizes the F1-score over the validation set.

On the test made of images acquired in the same labs as
the images of the training set, all methods and combinations
have relatively good performances, in line with previously
reported results (5, 29, 30, 36). The best performing method is
CA (F1-score of 0.62 ± 0.008, see Figure 4). Adding domain-
adversarial training does not improve performance of the
conventional methods.

On the other hand, on the test set of images acquired in
different labs than for the training set, the best performing
method is the combination of CA and DANN (F1-score of
0.609 ± 0.017). The baseline model does not generalize properly
to unseen labs, and domain-adversarial training improves the
performances except for the combination with SNA.

5.2. Nuclei Segmentation
We used the trained nuclei classifiers to produce segmented
nuclei objects. First we generated a set of object seeds using the
object foreground map prediction, thresholded by an operating
point selected based on a validation set. A set of background seeds
were generated using the background prediction, thresholded by
a constant of 0.5. Finally a set of segmented nuclei objects was
generated using the watershed algorithm given the computed
background and foreground seeds and the predicted edges as the
topographic relief.

All segmented objects with more than 50% overlap with
ground-truth annotations were considered as hits. The
performances of the nuclei segmentation models were evaluated

with the F1-score as described in (4), computed over a whole
test set.

On the test set of images of seen tissue types, the best
performing method is SN (F1-score of 0.821 ± 0.004, see
Figure 5). On the test set of unseen tissue types, the best
performing method is the combination of SN and domain-
adversarial training (F1-score of 0.851 ± 0.011). On both
test sets, domain-adversarial training produces a decrease in
generalization performance when combined with augmentation
methods (CA and SNA).

The baseline model generalizes properly due to the high
variability already present in the training set, and therefore is
in line with the results reported in Kumar et al. (4). We report
a difference of the range of performances between the two
test sets.

5.3. Qualitative Results
Qualitatively, we observe that the baseline models fail to
generalize with images that have unseen low-contrast appearance
(see Bladder and Colon examples in Figure 6). This limit is solved
by methods involving staining normalization. The addition of
domain-adversarial training tends to better separate touching
nuclei, improving the F1-score.

Likewise, low-contrast structures occurring in the images
from the unseen labs entail false positive detection of mitotic
figures (see Figure 7), whereas these do not occur for models
trained using CA. The addition of domain-adversarial training
tends to produce smoother distribution of the predictions,
resulting in a higher rate of true positives and higher F1-score.
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6. DISCUSSION AND CONCLUSIONS

The relative improvement of performances brought by the
analyzed methods depends on the data and task at hand. In the
case where the training data presents a high domain variability
(images frommultiple labs, multiple organ types), SN is the most
effective method when testing on the test set that consists of the
same tissue types, because the model can learn to be efficient to
the range of staining variability observed on these specific tissue
types. However, CA and SNA generalize better than SN on the test
set that consists of unseen tissue types as they allow to anticipate
the new color and staining variability that can occur in these
images. We assume this limit of SN is overcome when combined
with domain-adversarial training, as it enables the model to
improve the generalization of the learned representation beyond
the range of staining distributions seen in the training set.

In the case where the training data presents a low domain
variability (intra-lab variability only), CA and SNA, were the
most effective methods when testing on unseen images whether
they were obtained in the same lab as for the training data
or in different labs. This implies that augmentation methods
or domain-adversarial training can better anticipate unseen
color/staining distributions than SN in this situation. The failure
case of the baseline model indicates overfitting to the limited
variability of domains of the training data and is avoided
by CA, SNA or domain-adversarial training. The additional
improvement of performances shown when domain-adversarial
training is combined with CA indicates that this approach helps
the model to generalize to factors other than colors.

Two design choices need to be considered in the proposed
domain-adversarial framework as we assume they have an
influence on the task performances. These parameters depend on
the type of image, task at hand and type of domain variability,
and thus need to be carefully tuned.

First, the depth level of F has to be chosen: with an early
bifurcation, the low-level features can bemade invariant (with the
risk of over-fitting to the domains of the training data), whereas
a late bifurcation can make the high-level features invariant with
the risk that the early features do not get affected by the domain-
adversarial update, thus failing to extract features in unseen
domains. Fine-tuning this hyper-parameter is necessary to obtain
optimal performances. An alternative solution could consist in

using multiple bifurcations as it was proposed in Lafarge et al. (2)
and Kamnitsas et al. (27).

The receptive field of D on the input is another point to
consider. Depending on the task at hand, the receptive field of
D does not need to be necessarily the same as C, especially if the
source of domain variability can be captured in a field of view
smaller than the objects that are being classified. Using too large
a receptive field forD raises the risk of identifying, and removing
from the representation, some features specific to a domain that
might actually be relevant for the task at hand.

In conclusion, we proposed a domain-adversarial framework
for training CNN models on histopathology images, and
we made a comparative analysis against conventional pre-
processing methods. We showed that exploiting slide-level
domain information at training time, via an adversarial training
process, is thus a suitable additional approach toward domain-
invariant representation learning and to improve generalization
performances. Still, the performances of a trained model vary
with the type of normalization/augmentation method used and
the type of variability present in the data at training and
inference time. Analyzing these factors is therefore a critical
decision step when designing machine-learning models for
histology image analysis. Directions for further research include
adapting the framework to other model architectures, other
tasks, and exploiting known variability factors other than slide-
level information. The relative top-performances that domain-
adversarial training achieved, confirm it is a relevant research
direction toward a general method for consistent generalization
to any type of unseen variability of histological images.
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