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Background: The aging population is increasingly affected by periodontal
disease, a condition often overlooked due to its asymptomatic nature. Despite
its silent onset, periodontitis is linked to various systemic conditions,
contributing to severe complications and a reduced quality of life. With over a
billion people globally affected, periodontal diseases present a significant
public health challenge. Current diagnostic methods, including clinical exams
and radiographs, have limitations, emphasizing the need for more accurate
detection methods. This study aims to develop AI-driven models to enhance
diagnostic precision and consistency in detecting periodontal disease.
Methods: We analyzed 2,000 panoramic radiographs using image processing
techniques. The YOLOv8 model segmented teeth, identified the cemento-
enamel junction (CEJ), and quantified alveolar bone loss to assess stages
of periodontitis.
Results: The teeth segmentation model achieved an accuracy of 97%, while the
CEJ and alveolar bone segmentation models reached 98%. The AI system
demonstrated outstanding performance, with 94.4% accuracy and perfect
sensitivity (100%), surpassing periodontists who achieved 91.1% accuracy and
90.6% sensitivity. General practitioners (GPs) benefitted from AI assistance,
reaching 86.7% accuracy and 85.9% sensitivity, further improving
diagnostic outcomes.
Conclusions: This study highlights that AI models can effectively detect
periodontal bone loss from panoramic radiographs, outperforming current
diagnostic methods. The integration of AI into periodontal care offers faster,
more accurate, and comprehensive treatment, ultimately improving patient
outcomes and alleviating healthcare burdens.

KEYWORDS

artificial intelligence, periodontal disease, periodontitis diagnosis, panoramic
radiographs, convolutional neural networks (CNNs)

1 Introduction

Periodontal diseases affect over a billion people worldwide and pose a significant

public health challenge due to their high prevalence and potential to cause serious oral

health issues if untreated (1). These conditions are primarily caused by bacterial

infections, particularly from gram-negative anaerobes such as Porphyromonas gingivalis,
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Treponema denticola, and Tannerella forsythia. These bacteria

trigger chronic inflammation and damage to the structures

supporting the teeth, potentially leading to tooth loss.

Additionally, periodontal diseases have been associated with

systemic health conditions, including cardiovascular disease,

diabetes, and respiratory disorders (2). Accurate and early

diagnosis is essential for effective treatment; however, current

diagnostic approaches, which rely heavily on clinical

examinations and radiographic interpretation, have significant

limitations (3). These methods are often time-consuming,

subjective, and prone to variability due to factors such as

practitioner experience and the complexity of periodontal

structures (4, 5). As a result, diagnostic errors and inconsistencies

are common, highlighting the need for more objective and

efficient diagnostic tools.

Artificial intelligence (AI) has recently brought transformative

changes to medicine, including the field of dentistry (6). Machine

learning and deep learning algorithms, particularly convolutional

neural networks (CNNs), have shown considerable promise in

automating and improving diagnostic accuracy in medical

imaging (7). In dental radiography, AI can provide rapid,

accurate, and automated assessments of periodontal health,

potentially overcoming the limitations of current methods (8).

The integration of AI in dental diagnostics could revolutionize

clinical practice by enabling early and precise diagnoses,

improving patient outcomes, and streamlining treatment

interventions (9). This shift toward AI-enhanced diagnostics

aligns with broader trends in digital health and personalized

medicine, offering a more efficient, cost-effective, and patient-

centered approach to dental care. In addition, recent studies have

successfully employed these techniques for periodontal diagnosis.

For instance, CNNs, which excel in image processing, have been

widely used for detecting periodontal bone loss from panoramic

radiographs, showing high accuracy and sensitivity in classifying

different stages of periodontitis (10). Support vector machines

(SVM) and Decision trees (DT) models have also been explored

for classifying periodontal disease, with SVM demonstrating solid

performance in distinguishing between healthy and diseased

tissues based on radiographic features (11). Furthermore, hybrid

approaches combining CNNs with SVM or DT have shown

promise in improving the precision of periodontal disease

detection, as demonstrated by several studies in the field (12, 13).

While this study utilizes YOLOv8, a state-of-the-art object

detection model, it is essential to compare its performance with

these traditional and hybrid AI techniques to assess its relative

strengths and weaknesses. YOLOv8’s ability to process images in

real-time offers advantages in speed, but its performance in

early-stage detection still requires improvement when compared

to the more established CNN-based models, as noted in prior

research (14). Additionally, methods such as Faster-RNN, which

focus on sequence learning and pattern recognition, could

potentially enhance the detection of periodontal disease

progression in longitudinal studies (15). Thus, comparing

YOLOv8 with these techniques would provide valuable insights

into its applicability and potential for integration into

clinical practice.
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In recent years, the use of AI in periodontal disease detection

has gained significant attention, particularly in analyzing

panoramic radiographs. Kong et al. (10) employed a deep

learning model with CNNs to detect periodontal disease,

demonstrating the growing role of AI in this field. However, our

study advances this by utilizing YOLOv8, a more sophisticated

object detection model, which offers real-time processing and

enhanced localization capabilities. Unlike Kong’s model, YOLOv8

not only detects bone loss but also accurately segments critical

anatomical landmarks, such as the cemento-enamel junction

(CEJ) and alveolar bone levels, enabling more precise

classification and staging of periodontitis (10). In comparison,

Zhang et al. (11) used SVM to classify periodontal disease from

radiographs, which showed good performance but was limited in

processing the full complexity of radiographic images. Our

YOLOv8 model, in contrast, offers more sophisticated real-time

detection, including the quantification of bone loss per tooth—a

feature absent in Zhang’s approach (11). Similarly, Lee et al. (9)

focused on hybrid AI models, combining CNNs with other

machine learning algorithms, to detect periodontal disease. Their

approach showed promise but relied heavily on manual feature

extraction, which can be prone to error. Our use of YOLOv8

streamlines this process by eliminating manual extraction and

providing end-to-end detection, increasing both speed and

accuracy. Additionally, our model’s ability to quantify bone loss

and stage periodontitis sets it apart, providing a more robust

diagnostic solution (9). Furthermore, the work of Li et al.

(16, 17) also contributed to AI-driven periodontitis diagnosis,

emphasizing interpretable models (16, 17). However, our study

builds on their foundation by integrating real-time detection and

classification, enabling more detailed analysis and improving

clinical decision-making. This combination of advanced

segmentation, real-time processing, and interpretability positions

YOLOv8 as a powerful tool for enhancing periodontal disease

diagnosis in clinical practice.

This study employs state-of-the-art AI technologies to address

the critical challenges inherent in current periodontal diagnostics.

Utilizing a dataset of 2,000 panoramic radiographs, we developed

advanced CNNs and implemented the YOLOv8 model to

precisely identify periodontal bone loss and assess the stages of

periodontitis. The study aims to develop and validate AI-driven

models to enhance diagnostic accuracy and efficiency, providing

a more objective and consistent approach to periodontal

disease detection.
2 Materials and methods

2.1 Study design

This retrospective study analyzed 2,000 panoramic radiographs

from the Dental Department at Fang Hospital in Chiang Mai,

Thailand. No intraoral examinations were performed as part of

this study. The radiographs were collected between January 2015

and December 2023, using diagnostic codes from the HOSxP

program (Bangkok Medical Software, Bangkok, Thailand). All
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images were captured using a consistent device and stored in the

SIDEXIS Next Generation Program (Sirona, Bensheim,

Germany). To maintain the quality and accuracy of the dataset,

radiographs were excluded if they showed improper patient

positioning, poor quality due to movement, rare bone

morphologies, or if the alveolar bone loss in the affected area

could not be accurately assessed. The study was approved by the

Ethical Review Board of Fang Hospital (COA No. 03/2566) and

the Ethics Committee for Research Involving Human Subjects at

Mahasarakham University (No. 533-589/2023). Additionally,

permission for data collection was granted by the director of

Fang Hospital in Chiang Mai, Thailand (No. 0033.306/3674).
2.2 Inclusion and exclusion criteria

Inclusion Criteria:

1. Age: Participants aged 18 years and older to ensure that only

fully erupted molars are included, while excluding erupting

or unerupted molar teeth.

2. Diagnosis: Individuals diagnosed with periodontitis, as

identified through diagnosis codes from the HOSxP Program

(Bangkok Medical Software, Bangkok, Thailand).

3. Radiograph Quality: High-quality panoramic radiographs

obtained from the SIDEXIS Next Generation Program (Sirona,

Bensheim, Germany) and captured using a consistent device.

4. Periodontal Classification (18): The severity score reflects the

attachment loss attributed solely to periodontitis, based on the

most affected tooth.

Severity of periodontitis (Table 1):

1.1 Stage I: Interdental CAL of 1–2 mm and <15% radiographic

bone loss.

1.2 Stage II: Interdental CAL of 3–4 mm and 15%–33%

radiographic bone loss.

1.3 Stage III: Interdental CAL of ≥5 mm, bone loss to the middle

third of root and beyond, and ≤4 teeth lost due to periodontitis.
TABLE 1 Staging of periodontal disease according to the 2018 classification

Periodontitis stage Stage I Stage
Severity Interdental CAL at site of

greatest loss
1 to 2 mm 3 to 4 mm

Radiographic bone loss Coronal third (<15%) Coronal third
33%)

Tooth loss No tooth loss due to periodontitis

Complexity Local Maximum probing
depth ≤4 mm
Mostly horizontal
bone loss

Maximum pro
depth ≤5 mm
Mostly horizo
bone loss

Extent and
distribution

Add to stage as descriptor For each stage, describe extent as locali
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1.4 Stage IV: Interdental CAL of ≥5 mm, bone loss to the middle

third of root and beyond, and ≥5 teeth lost due to periodontitis.

Exclusion Criteria:

1. Missing Radiographs: Absence of panoramic radiographs in

the SIDEXIS Next Generation Program.

2. Image Quality: Radiographs were excluded if they exhibited

improper patient positioning, poor quality due to movement,

uncommon bone morphologies, or if the alveolar bone loss in

the affected area could not be accurately assessed.

3. Panoramic radiographs of patients with craniofacial

anomalies, as these conditions may affect bone morphology.

2.3 Data collection

The dataset consisted of 2,000 panoramic radiographs from

patients diagnosed with periodontitis, identified through diagnosis

codes from the HOSxP Program (Bangkok Medical Software, Bangkok,

Thailand). Radiographs were excluded if they exhibited improper

positioning, suboptimal image quality, or rare bone morphologies.
2.4 Data handling and ethical
considerations

Data were anonymized to protect patient confidentiality.

Ethical guidelines were strictly followed throughout the study to

ensure compliance with institutional and regulatory standards.
2.5 Image enhancement

Image preprocessing involved several enhancement techniques to

improve the clarity and quality of the radiographs. This included (19):

1. Image Sharpening: Enhancing edges to make pixel boundaries

more distinct and improve visual interpretability (Figure 1).
criteria (18).

II Stage III Stage IV
≥5 mm ≥5 mm

(15% to Extending to middle or apical
third of the root

Extending to middle or apical third of
the root

Tooth loss due to periodontitis
of ≤4 teeth

Tooth toss due to periodontitis of ≥5
teeth

bing

ntal

In addition to stage II
complexity:
Probing depth ≥6 mm
Vertical bone loss ≥3 mm
Furcation involvement Class II
or III
Moderate ridge defect

In addition to sage III complexity:
Need for complex rehabilitation due to:
Masticatory dysfunction
Secondary occlusal trauma (tooth
mobility degree ≥2)
Severe ridge defect
Bite collapse, drifting.
flaring
Less than 20 remaining teeth
(10 opposing pairs)

zed (<30% of teeth involved), generalized, or molar/incisor pattern
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2. Contrast Adjustment: Using histogram equalization to balance

brightness levels and distinguish target areas from the

background (Figure 2).

3. Gaussian Filtering: Applying a 3 × 3 kernel matrix to reduce

noise and smooth the images (Figure 3).

2.6 Data labeling

Labeling of the images was performed using the LabelMe tool

for object segmentation and Labelme2yolo for data conversion.

Annotations focused on the cemento-enamel junction (CEJ) and

the alveolar bone crest (20) (Figure 4). Recognizing the critical

role of labeled data in supervised machine learning, this research
FIGURE 1

An illustration of image sharpening: (A) represents original image, and (B) re

FIGURE 2

An illustrative of image contrast adjustment using histogram equilibrium.

Frontiers in Medical Technology 04
utilized LabelMe for object segmentation and Labelme2yolo to

convert the data into a format ready for training.
2.7 AI model development

A CNN model was developed utilizing YOLOv8 (You Only

Look Once version 8) for identifying regions of interest within

the radiographs (21, 22). The development process followed a

structured workflow:

1. Data Segmentation: The dataset was divided into training,

validation, and test sets in a 70:10:20 ratio to ensure balanced

model evaluation.
presents sharpened image.
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FIGURE 3

An illustration of Gaussian filtering: (A) represents original image, and (B) represents the image after preprocessing.

FIGURE 4

Image showing the distance between the CEJ and the alveolar bone crest (A) and teeth (B), labeled using LabelMe.

Jundaeng et al. 10.3389/fmedt.2024.1469852
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2. Training Setup: The model was trained on an Intel Core

i7–8,700 K CPU with 16 GB RAM, a Nvidia GeForce

RTX2080 GPU equipped with 8 GB of video memory, and

implemented using CUDA Toolkit 9.0, CUDNN V11.7, and

Python 3.11.5. The primary hyperparameters used were the

learning rate (set at 0.001), batch size (64), and the number

of epochs (100). The evaluation metrics included accuracy,

sensitivity, specificity, precision, and F1-score, with mAP50

(mean average precision at a 50% intersection-over-union

threshold) also being calculated to assess model performance.

3. Localization and Classification: The model was trained

to identify and localize the region between the

cemento-enamel junction (CEJ) and the alveolar bone

crest, producing bounding boxes or heat maps for further

analysis (Figure 5).

4. Thresholding for Abnormality Detection (Severity of

Periodontitis): A thresholding mechanism will be devised

to determine the extent of abnormality based on the width

of the gap between the CEJ and the bone structure

(Figure 6). Teeth with gaps exceeding the predefined

threshold (e.g., >2 mm) will be flagged as abnormally

positioned. To calculate the percentage of bone loss, use the
FIGURE 5

Image showing the predicted area between the CEJ and the alveolar
bone crest (A), and teeth segmentation (B).
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formula (18):

Percentage of bone loss ¼ (CEJ� Alveolar bone crest)� 2mm
(CEJ� Root apex)� 2mm

� 100

For periodontal diagnosis, the assessments involved

calculating the percentage of alveolar bone loss for

each tooth in the radiographs. The stage of periodontitis for

each patient was determined based on the greatest bone loss

observed across all teeth, which was then used to assign the

appropriate periodontitis stage as follows (Figure 7):

• Stage I: Bone loss of less than 15% visible in x-rays.

• Stage II: Bone loss ranging between 15% and 33% visible

in x-rays.

• Stage III: Bone loss extending beyond the middle third of

the root, with up to 20 teeth remaining.

• Stage IV: Similar to Stage III, with bone loss extending

beyond the middle third of the root, but with fewer

than 20 teeth remaining.

5. Comprehensive Workflow (Figure 8)
2.8 Model evaluation and validation

A confusion matrix was employed to evaluate the model’s

predictive accuracy, detailing True Positives (TP), True Negatives

(TN), False Positives (FP), and False Negatives (FN). Key

performance metrics such as Sensitivity (Recall), Specificity,

F1-Score, Accuracy, and Precision were calculated to assess the

model’s overall effectiveness.
2.9 Clinical implementation

Based on the research conducted by Lee et al. (9), the

agreement values between the convolutional neural network

(CNN) and periodontists were reported. For premolars, the

agreement values were 0.828 and 0.797, respectively, and for

molars, the values were 0.734 and 0.766, respectively. When

calculating the sample size, the researcher set d, the deviation of

the agreement values from previous studies at 25%. The results

are shown in Table 2:

The sample size calculation is as follows (23, 24);

n ¼
z1 � a

2

ffiffiffiffiffiffi
Q0

p
þ z1 � b

ffiffiffiffiffiffi
Q1

p

k1 � k0

2
4

3
5
2

Q ¼ (1� pe)
�4 P

i pii[(1� pe)� (p�i þ pi�)(1� p0)]
2�

þ (1� p0)]
2 PP

i=j pij(p�i þ p j�)2 � (p0pe � 2pe þ p0)
2
o

When n is the sample size for estimating agreement:

k1 is the alternative hypothesis value of the Kappa statistic.
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FIGURE 6

This figure illustrates an example of radiographic bone loss. The color coding for the lines is as follows: yellow denotes the distance from the
cemento-enamel junction (CEJ) (A) to the alveolar bone crest level (B), green represents the distance from the CEJ to the root apex (C), and red
boxes highlight the distance from the CEJ to the alveolar bone crest level.

FIGURE 7

Panoramic x-ray images illustrating the threshold percentages for periodontitis severity: (A) represents stage I, (B) represents stage II, (C) represents
stage III, and (D) represents stage IV.

Jundaeng et al. 10.3389/fmedt.2024.1469852
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FIGURE 8

Comprehensive workflow for a hybrid framework utilizing deep learning architecture to detect and classify the stages of periodontitis.

TABLE 2 Sample size calculation for molar cases with adjusted error rates (25%).

Formula P (CNN) P (periodontists) ko Deviation (%) k1 Sample Size (n)
1. 0.734 0.766 0.766 25 0.9575 83

Jundaeng et al. 10.3389/fmedt.2024.1469852
k0 is the null hypothesis value of the Kappa statistic.

pe is the probability that Rater 1 gives a positive result.

p0 is the probability that Rater 2 gives a positive result.

In the clinical phase of this study, we initially calculated a

sample size of 83 panoramic x-ray images, considering a 25%
Frontiers in Medical Technology 08
adjusted error rate. Ultimately, 90 images were used to assess

diagnostic agreement between the AI, periodontist, general

practitioner (GP), and an expert. Moreover, the panoramic

radiographs used in this study were not accompanied by

definitive clinical diagnoses. Instead, they served as an initial

diagnostic tool for periodontitis, based on screening conducted
frontiersin.org
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during clinical exams and the analysis of the panoramic

radiographs. These findings were subsequently recorded in the

periodontal diagnosis code within the HOSxP program at the

hospital. The expert periodontist, with over 10 years of

experience in Periodontology, was regarded as the gold standard.

One periodontist, one GP, and one periodontitis expert evaluated

the same set of radiographs to compare their assessments,

enabling us to measure diagnostic agreement using the weighted

Cohen’s Kappa statistic. Statistical analysis was conducted using

Stata 17.0 software (StataCorp, College Station, TX, USA), with a

p-value of 0.05 considered statistically significant.
3 Results

The demographic characteristics of the patients, as outlined in

Table 3, provide a foundation for understanding the study’s cohort.

Table 4 then showcases the performance of the AI models, with the

teeth segmentation model achieving a notable 0.97 accuracy, 0.90
TABLE 3 The demographic data of the patients.

Sex Numbers of patients Mean age (years)
Male 823 47.04

Female 1,177 45.27

TABLE 4 The AI models developed achieved the following scores (25).

Teeth segmentation model
Precision 0.80

F1 0.80

Frontiers in Medical Technology 09
sensitivity, and 0.96 specificity, effectively distinguishing between

true positives and negatives. Its precision and F1-score, both at

0.80, reflect a balanced capacity for accurate predictions and

recall. In comparison, the CEJ and alveolar bone crest level

segmentation model demonstrated superior performance, with

0.98 accuracy, 1.0 sensitivity, 0.90 precision, 0.90 F1-score, and

0.98 specificity. The model also achieved a mAP50 of 0.995,

underscoring its enhanced precision and overall effectiveness.

These findings highlight the high efficacy of both AI models,

particularly in detecting periodontal bone loss, with the CEJ and

alveolar bone crest level model excelling in sensitivity and

accuracy, positioning it as a highly effective tool for precise

periodontal diagnosis. This underscores the transformative

potential of AI models in automating and enhancing the

accuracy of periodontal disease detection.

Both the CEJ and bone level segmentation model (Table 5) and

the teeth segmentation model (Table 6) demonstrated strong

performance in accurately classifying relevant areas in panoramic

radiographs. In Table 5, the CEJ and bone level model correctly

predicted 18,385 instances, with only 234 false positives,

indicating high precision. The model also exhibited strong recall,

with minimal false negatives (11). Similarly, the teeth

segmentation model (Table 6) performed well, accurately

identifying 983 teeth instances and 18,687 true negatives.

However, it had a slightly higher false positive rate (589), where
CEJ and alveolar bone crest level segmentation model
0.90

0.90

(Continued)
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TABLE 4 Continued

Teeth segmentation model CEJ and alveolar bone crest level segmentation model
Sensitivity 0.90 1.0

Specificity 0.96 0.98

Accuracy 0.97 0.98

mAP50 0.92 0.995

Confusion matrix

Jundaeng et al. 10.3389/fmedt.2024.1469852
non-teeth areas were incorrectly classified as teeth. Despite the

higher false positive rate in the teeth model, both models

exhibited high accuracy and efficiency in their respective tasks,

with low false negative rates and a strong ability to differentiate

between positive and negative classes in their predictions.

Moreover, the training results from the CEJ and bone level
Frontiers in Medical Technology 10
segmentation model and the teeth segmentation model are

presented in Figures 9, 10, respectively.

In the clinical implementation, we calculated a sample size of

83 panoramic x-ray images with an adjusted error rate of 25%,

but we used 90 images to compare the accuracy of the AI model,

general practitioner (GP), and periodontist against expert
frontiersin.org
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periodontist. The demographic data of the patients are presented in

Table 7. Table 8 reveals the AI model achieved the highest accuracy

(94.4%) and perfect sensitivity (100%), indicating its ability to

detect all positive cases but struggled with specificity (0%),

meaning it had difficulty ruling out false positives. Periodontist

demonstrated strong overall performance with 91.1% accuracy,

90.6% sensitivity, and perfect specificity (100%), while GP

showed slightly lower accuracy (86.7%) and sensitivity (85.9%)

but also achieved perfect specificity (100%). The AI model’s high

sensitivity makes it effective at identifying true positives, though

it requires human oversight for confirming negatives, as both

periodontist and GP performed more consistently in terms of

both sensitivity and specificity. The distribution of results among

expert periodontist, periodontist, GP, and the AI model is

illustrated in Table 9.
TABLE 5 Confusion matrix for the CEJ and bone level
segmentation model.

Actual value
Predicted value Positive Negative

Positive TP:508 FP:234

Negative FN:11 TN:17877

True Positive (TP): Correctly identified areas indicating bone loss.

True Negative (TN): Correctly identified areas without bone loss.

False Positive (FP): Areas incorrectly labeled as having bone loss when none is present.
False Negative (FN): Areas with bone loss that were incorrectly identified as normal.

TABLE 6 Confusion matrix for the teeth segmentation model.

Actual value
Predicted value Positive Negative

Positive TP:983 FP:589

Negative FN:11 TN:18687

True Positive (TP): Correctly identified areas indicating bone loss.

True Negative (TN): Correctly identified areas without bone loss.

False Positive (FP): Areas incorrectly labeled as having bone loss when none is present.
False Negative (FN): Areas with bone loss that were incorrectly identified as normal.

FIGURE 9

Results from the CEJ and bone level segmentation model. This figure display
the cemento-enamel junction (CEJ) and alveolar bone levels from panoram
landmarks for the assessment of periodontal disease stages. The segmenta
a key indicator in diagnosing periodontitis.
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Furthermore, we evaluated the diagnostic agreement between

three different raters—AI, periodontist, and general practitioner

(GP)—and an expert, considered the gold standard. We used the

weighted Cohen’s kappa statistic to measure the level of

agreement beyond chance. The statistical significance of these

weighted kappa coefficients was tested at an alpha level of 0.05.

The weighted Cohen’s kappa coefficients are presented in Table 10.

From Table 10, the study reveals that the evaluations made by

periodontist showed a high level of agreement with those of the

expert, evidenced by a Cohen’s kappa coefficient of 0.634 (95%

CI: 0.621–0.694, p-value <0.001). The assessments by general

practitioner (GP) demonstrated a moderate level of agreement

with the expert, with a Cohen’s kappa coefficient of 0.429 (95%

CI: 0.298–0.542, p-value <0.001). Similarly, the AI model’s

evaluations also exhibited a moderate level of agreement with the

expert, reflected by a Cohen’s kappa coefficient of 0.445 (95% CI:

0.398–0.471, p-value <0.001). These results underscore the AI

model’s potential in achieving diagnostic consistency comparable

to that of human practitioners, albeit at a moderate

agreement level.
4 Discussions

The periodontology field updated its classification system in

2018, focusing now on the percentage of alveolar bone loss to

assess disease severity (26). Challenges in current periodontitis

diagnosis include error risks due to a scarcity of experienced

clinicians, limited analysis time for radiographs, and mandatory

reporting, affecting care quality, cost, and efficiency (27). These

issues have led to discussions on creating supportive diagnostic

tools. This study highlights the challenges of existing diagnostic

methods and explores future technological solutions and research

directions to address these limitations. In recent years, AI has

begun to flourish in dentistry, offering a range of applications

from diagnostics and decision-making to treatment planning and
s the performance of the model in accurately identifying and segmenting
ic radiographs, demonstrating its ability to delineate critical anatomical

tion results provide valuable data for evaluating the extent of bone loss,
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FIGURE 10

The results of the teeth segmentation model, showing the performance of the AI model across various metrics, including loss and precision-recall.
The figure demonstrates the accuracy of the model in segmenting individual teeth from the panoramic radiographs during training, validation, and
evaluation, with the corresponding metrics presented for each phase of the process.

TABLE 7 Demographic data of patients used to compare the accuracy
percentage of the AI model, general practitioners (GP), and
periodontists with expert periodontist.

Sex Numbers of patients Mean age (years)
Male 42 44.29

Female 48 43.56
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predicting outcomes. Additionally, AI tools for dental applications

are becoming increasingly sophisticated, precise, and dependable,

with research extending across all dental disciplines (28).

The present study found that the teeth segmentation model

achieved sensitivity, specificity, F1, precision, and accuracy scores

of 0.9, 0.96, 0.8, 0.8, and 0.97, respectively. In contrast, the CEJ

and alveolar bone crest level segmentation model attained scores

of 1, 0.98, 0.9, 0.9, and 0.98, respectively.

These results indicate that both AI models are highly effective,

particularly in detecting periodontal bone loss. The CEJ and

alveolar bone crest level segmentation model outperformed the

teeth segmentation model, especially in terms of sensitivity and

accuracy, making it an excellent tool for precise periodontal

diagnosis. This demonstrates the potential of AI models in

automating and improving the accuracy of periodontal

disease detection.

In recent years, artificial intelligence (AI) has emerged as a

promising tool in the field of periodontal disease detection,

offering significant advancements over current diagnostic

methods (28, 29). In the present study, the YOLOv8 model was

used to analyze panoramic radiographs and segment crucial

areas such as the teeth, cemento-enamel junction (CEJ), and

alveolar bone levels, demonstrating superior performance in

detecting periodontal bone loss compared to human experts,

including periodontists and general practitioners (GPs). The

accuracy of the AI model (94.4%) and its perfect sensitivity

(100%) highlight its potential as a powerful diagnostic aid.

However, to ensure comprehensive assessment and further

validation, a broader comparison with other AI techniques and
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methods is essential. Previous research has demonstrated the

use of various machine learning techniques such as

convolutional neural networks (CNNs), support vector

machines (SVM), decision trees (DT), and hybrid approaches

in periodontal disease detection. For instance, CNNs have

shown great potential in image processing and detecting

periodontal bone loss with high sensitivity and accuracy, often

outperforming current methods in classifying periodontal

stages (10, 11). Additionally, hybrid models combining CNNs

with SVM or DT have shown improved precision and accuracy

by leveraging the strengths of each technique (12, 13).

Furthermore, methods such as Faster RNN, which focus on

sequence learning, can potentially enhance the detection of

periodontal disease progression by capturing temporal patterns

in longitudinal datasets (15). While the YOLOv8 model used in

this study demonstrated excellent real-time processing

capabilities, it requires further refinement in early-stage

detection compared to CNN-based models, which have shown

greater sensitivity in identifying mild stages of periodontitis

(14, 30). Overall, comparing YOLOv8 with these established AI

techniques, such as CNN and hybrid models, could provide

valuable insights into the strengths and weaknesses of each

approach, ensuring a more robust and versatile tool for clinical

practice in periodontal diagnostics.

Despite the recent surge in publications on dental AI,

comparing these studies is challenging due to discrepancies in

study design, data distribution (training, testing, and validation

sets), and performance metrics (accuracy, sensitivity, specificity,

F1 score, precision). Many articles do not fully report these

critical details. However, accuracy emerged as the most

commonly referenced indicator of model performance in the

studies, with detection rates for periodontal bone loss ranging

between 0.76 and 0.93 (31–34). This is consistent with the

findings of this study, which reported accuracy scores of 0.97 for

the teeth segmentation model and 0.98 for the CEJ and alveolar

bone crest level segmentation model. These accuracy scores are

higher than those reported in all previous studies. The dataset of
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TABLE 8 The diagnostic performances of the AI model, general practitioner (GP), and periodontist with expert periodontist.

Test Accuracy % Sensitivity % Specificity% PPV % NPV %

(95% CI) (95% CI) (95% CI) (95% CI) (95% CI)
Periodontist 91.1 90.6 100 100 38.5

(83.2–96.1) (82.–95.8) (47.8–100) (95.3–100) (13.9–68.4)

GP 86.7 85.9 100 100 29.4

(77.9–92.9) (76.6–92.5) (47.8–100) (95.1–100) (10.3–56)

AI 94.4 100 0 94.4 0

(87.5–98.2) N/A N/A N/A N/A

PPV, positive predictive value; NPV, negative predictive value; CI, confident interval.

TABLE 9 The distribution of result by expert periodontist, periodontist,
general practitioner (GP) and AI model.

Expert

0 1 2 3 4

n (%) n (%) n (%) n (%) n (%)

Periodontist
0 5 (5.6) 1 (1.1) 6 (6.7) 1 (1.1) 0 (0.0)

1 0 (0.0) 4 (4.4) 8 (8.9) 0 (0.0) 0 (0.0)

2 0 (0.0) 0 (0.0) 20 (22.2) 8 (8.9) 0 (0.0)

3 0 (0.0) 0 (0.0) 2 (2.2) 34 (37.8) 0 (0.0)

4 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (1.1)

GP
0 5 (5.6) 4 (4.4) 8 (8.9) 0 (0.0) 0 (0.0)

1 0 (0.0) 1 (1.1) 14 (15.6) 3 (3.3) 0 (0.0)

2 0 (0.0) 0 (0.0) 11 (12.2) 15 (16.7) 0 (0.0)

3 0 (0.0) 0 (0.0) 3 (3.3) 22 (24.4) 0 (0.0)

4 0 (0.0) 0 (0.0) 0 (0.0) 3 (3.3) 1 (1.1)

AI
1 0 (0.0) 1 (1.1) 0 (0.0) 0 (0.0) 0 (0.0)

2 4 (4.4) 0 (0.0) 29 (32.2) 6 (6.7) 0 (0.0)

3 1 (1.1) 4 (4.4) 6 (6.7) 35 (38.9) 1 (1.1)

4 0 (0.0) 0 (0.0) 1 (1.1) 2 (2.2) 0 (0.0)

0 represents non-periodontitis, 1 represents periodontitis stage I, 2 represents periodontitis
stage II, 3 represents periodontitis stage III, and 4 represents periodontitis stage IV.

TABLE 10 The weighted Cohen’s kappa coefficient for the comparisons of
the AI model, general practitioners (GP), and periodontist with
expert periodontist.

Agreement (%) Kappa (95% CI) p-value
Periodontist vs.
Expert

90.1 0.634 (0.621–0.694) <0.001

GP vs. Expert 83.1 0.429 (0.298–0.542) <0.001

AI vs. Expert 90.0 0.445 (0.398–0.471) <0.001
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dental panoramic x-ray images used in various studies ranged from

100 to 2,276 images (31–37), with only one study employing a

significantly larger dataset of 12,179 images (38). In this study, a

dataset of 2,000 dental panoramic x-ray images was used, yet the

accuracy rate remained high. Furthermore, many studies have

aimed to detect periodontal bone loss on dental panoramic x-ray

images. Specifically, Chang et al. (39) advanced study, which

sought to classify stages of periodontitis following the latest

periodontal classification, found that the automatic method had a
Frontiers in Medical Technology 13
Pearson correlation coefficient of 0.73 with radiologist diagnoses

for the entire jaw and an intraclass correlation of 0.91 for the

entire jaw (39). Similarly, Jiang et al. (33) revealed creating a

deep learning model to evaluate and categorize the stages of

periodontitis, achieving an overall model accuracy of 0.77 (33).

Additionally, our study uniquely detects periodontal bone loss,

classifies the stage of periodontitis, and identifies the percentage

of bone loss for each tooth, aiding in prognosis evaluation. This

novel innovation has not been previously achieved.

We evaluated the diagnostic agreement between three

different raters—AI, periodontist, and general practitioner

(GP)—and an expert periodontist, considered the gold

standard. We used the weighted Cohen’s kappa statistic to

measure the level of agreement beyond chance. The statistical

significance of these weighted kappa coefficients was tested at

an alpha level of 0.05. Studies in various medical fields have

shown similar trends in the performance of AI systems. For

instance, Esteva et al. (40) demonstrated that AI could classify

skin cancer with dermatologist-level accuracy, achieving a high

level of agreement with expert diagnoses (40). Similarly,

Mazurowski et al. (41) found that AI could significantly

enhance the accuracy of radiological image analysis, aligning

with our findings that AI can effectively support diagnostic

processes in dentistry (41).

In dental research, Lee et al. (9) reported that a CNN-based AI

system achieved high agreement values with periodontists for

diagnosing periodontally compromised teeth, with kappa values

of 0.828 and 0.797 for premolars and molars, respectively (9).

While our AI model’s kappa value of 0.445 is moderate, it

demonstrates significant potential for further refinement and

improvement. This analysis underscores the diagnostic capabilities

of periodontist, GP, and AI in comparison to an expert. While

periodontist shows the highest agreement, the AI system

demonstrates promising results, potentially serving as a valuable

diagnostic tool. GP, although showing lower agreement, still

provide a significant level of diagnostic accuracy. These findings

emphasize the importance of specialized training and the potential

of AI to augment diagnostic processes in periodontal care.

The discrepancy between matrix performance and clinical

accuracy can be attributed to several factors. First, differences

between controlled environments and real-world variability

play a significant role. In experimental settings, data is often

curated and preprocessed to optimize model performance. In

contrast, clinical environments present numerous uncontrolled
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variables, such as varying patient positioning and inconsistent

imaging quality. These factors can adversely impact the

performance of AI models trained under controlled conditions

(42). Second, the preprocessing steps used in studies, such as

noise reduction, contrast enhancement, and normalization,

ensure high-quality inputs for AI models. However, in clinical

practice, such preprocessing may not be consistently applied,

leading to suboptimal inputs and consequently lower accuracy

(8). Third, AI models often perform well on the datasets they

were trained on but may struggle to generalize across diverse

patient populations with different demographic characteristics,

oral health conditions, and comorbidities. The training data

might not fully represent the variability encountered in real

clinical settings (43). Moreover, clinical diagnoses involve more

than just interpreting radiographs; they require a comprehensive

assessment of the patient’s medical history, symptoms, and

other diagnostic tests. While AI models are proficient at image

analysis, they lack the ability to integrate this holistic approach,

which can limit their effectiveness in real-world diagnostics (7).

The growing applications of machine learning (ML) and AI in

dentistry emphasize the potential for innovative diagnostic

approaches. Alharbi et al. (44) demonstrated the efficacy of

machine learning models in predicting dental implant success,

highlighting the role of AI in enhancing treatment outcomes

through predictive analytics and tailored solutions to individual

patients’ needs. This aligns with our study’s focus on using AI to

improve diagnostic accuracy in periodontitis by leveraging data-

driven insights (44). Similarly, Yadalam et al. (45) emphasized

the interplay between systemic conditions, such as diabetes,

dyslipidemia, and periodontitis, by predicting hub genes using

interactomic approaches. Their work underscores the value of

integrating systemic and periodontal diagnostics, providing a basis

for holistic care strategies (45). Furthermore, Srinivasan et al. (46)

successfully utilized lightweight CNN models, such as SqueezeNet,

to detect smoker melanosis in gingiva, demonstrating the viability

of computationally efficient models in resource-constrained

settings (46). These studies collectively support the premise that

AI technologies, ranging from predictive models to real-time

diagnostic tools, can transform periodontal care by improving

precision, efficiency, and accessibility while addressing systemic

health interconnections.

Moreover, one of the critical issues highlighted is the high

prevalence of periodontal disease in Thailand. The most recent

survey in 2023 revealed a significant increase in periodontitis among

older adults, with 48.7% of patients affected, compared to 36.3% in

the previous survey. This rate far exceeds the 19% prevalence

reported globally in the 2017 Global Burden of Disease Study (47,

48). These alarming statistics emphasize the urgent need for

improved prevention strategies and the importance of enhancing

periodontal health. The AI models developed in this study offer a

promising solution by providing faster, less labor-intensive, and more

accurate alternatives to current diagnostic methods. If the Ministry of

Public Health recognizes the importance of this issue and supports

the nationwide and global implementation of these AI models, it

could significantly reduce the prevalence of periodontal disease,

thereby improving public health and enhancing the quality of life.
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5 Limitations

The current study has several limitations. First, it focused on a

limited range of dental professionals, so future research should

include comparisons with general practitioners and specialists.

Second, the study used panoramic radiographs from a single imaging

device, which may restrict the generalizability of the findings. Testing

AI models on radiographs from various devices is necessary for

broader applicability. Additionally, excluding certain patient

demographics, such as those with rare bone morphologies or

improper positioning, limits the model’s scope. Future research

should include a more diverse patient population to improve AI

model robustness across clinical scenarios. Finally, while YOLOv8

excels in real-time object detection, it has limitations, including lower

performance with small or densely packed objects, which affects fine-

grained tasks such as early periodontal disease detection. It also

struggles with occlusions and may sacrifice precision in complex

environments, requiring fine-tuning with domain-specific data, such

as dental radiographs, to enhance performance (49).
6 Future research directions

Future research should enhance AI in periodontal diagnostics

by focusing on key areas: conducting comparative studies to

validate AI against various dental expertise levels, standardizing

imaging protocols to ensure consistent quality, incorporating

advanced CNN architectures and algorithms for better sensitivity

and accuracy, expanding datasets to include diverse

demographics and clinical scenarios for greater generalizability,

integrating AI with other diagnostic tools such as Cone Beam

Computed Tomography (CBCT) and intraoral scanners for

comprehensive assessments, and developing user-friendly,

patient-centric applications for early detection and intervention.
7 Conclusions

This study showed that AI models can effectively identify

periodontal bone loss from panoramic radiographs, offering clear

advantages over classical methods. However, further research is

needed to overcome existing limitations and expand AI

applications in this field.

The significant economic, social, and health impacts of

periodontal disease, particularly in the elderly, underscore the need

for innovative diagnostic solutions. Incorporating AI technologies

into periodontal care allows dental professionals to deliver faster,

more precise, and comprehensive treatment, enhancing patient

outcomes and reducing the burden on healthcare systems.
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