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A prototype
photoplethysmography-based
cuffless device shows
promising results in tracking
changes in blood pressure
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Kasper Gade Bøtker-Rasmussen4, Trine M. Seeberg4,
Espen Westgaard4, Sondre Heimark1,2, Bård Waldum-Grevbo1,2,
Jonny Hisdal1,3‡ and Anne Cecilie K. Larstorp1,5,6‡

1Institute of Clinical Medicine, University of Oslo, Oslo, Norway, 2Department of Nephrology, Oslo
University Hospital, Oslo, Norway, 3Department of Vascular Surgery, Oslo University Hospital, Oslo,
Norway, 4Aidee Health AS, Bærum, Norway, 5Section for Cardiovascular and Renal Research, Oslo
University Hospital, Oslo, Norway, 6Department of Medical Biochemistry, Oslo University Hospital,
Oslo, Norway
Introduction: Non-invasive cuffless blood pressure devices have shown
promising results in accurately estimating blood pressure when comparing
measurements at rest. However, none of commercially available or prototype
cuffless devices have yet been validated according to the appropriate standards.
The aim of the present study was to bridge this gap and evaluate the ability of a
prototype cuffless device, developed by Aidee Health AS, to track changes in
blood pressure compared to a non-invasive, continuous blood pressure monitor
(Human NIBP or Nexfin) in a laboratory set up. The performance was evaluated
according to the metrics and statistical methodology described in the ISO
81060-3:2022 standard. However, the present study is not a validation study
and thus the study was not conducted according to the ISO 81060-3:2022
protocol, e.g., non-invasive reference and distribution of age not fulfilled.
Method: Data were sampled continuously, beat-to-beat, from both the cuffless
and the reference device. The cuffless device was calibrated once using the
reference BP measurement. Three different techniques (isometric exercise,
mental stress, and cold pressor test) were used to induce blood pressure
changes in 38 healthy adults.
Results: The mean difference (standard deviation) was 0.3 (8.7) mmHg for
systolic blood pressure, 0.04 (6.6) mmHg for diastolic blood pressure, and 0.8
(7.9) mmHg for mean arterial pressure, meeting the Accuracy requirement of
ISO 81060-3:2022 (≤6.0 (10.0) mmHg). The corresponding results for the
Stability criteria were 1.9 (9.2) mmHg, 2.9 (8.1) mmHg and 2.5 (9.5) mmHg. The
acceptance criteria for the Change requirement were achieved for the 85th
percentile of ≤50% error for diastolic blood pressure and mean arterial
pressure but were higher than the limit for systolic blood pressure (56% vs.
≤50%) and for all parameters for the 50th percentile (32%–39% vs. ≤25%).
Conclusions: The present study demonstrated that the cuffless device could track
blood pressure changes in healthy adults across different activities and showed
promising results in achieving the acceptance criteria from ISO 81060-3:2022.
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1 Introduction

Cuffless, wearable blood pressure (BP) measurement devices

(cuffless devices) have the potential to provide continuous, beat-

to-beat BP estimations during daily routines, without significant

discomfort to the user (1, 2). Despite considerable research in

this field, the accuracy of cuffless devices remains uncertain (3).

In these devices BP is estimated by device specific models, using

the input from physiological variables and signals that are related

to changes in BP. Most of them use pulse wave analysis of

photoplethysmographic (PPG) signals, pulse arrival time (PAT)

or a combination of both (4).

Several cuffless devices have been shown to accurately predict

BP in subjects at rest under controlled conditions in the

laboratory (5–8). Some cuffless devices are even commercialized

as validated according to the European Society of Hypertension

International Protocol Revision 2010 (5) and/or ISO 81060-

2:2019 protocol (6, 9, 10), which are not intended for cuffless

devices. There are several issues with validation of cuffless

devices using these protocols.

First, they are designed to test intermittent automated cuff-

based BP devices during static conditions over a short period of

time. In contrast to the cuff-based devices which aim to measure

the actual pressure, the cuffless BP devices provide surrogate BP

estimations from non-pressure signals and are prone to

fluctuations in these signals which are not related to BP (3, 11, 12).

Second, most cuffless BP devices rely on an initial, individual

calibration that is usually performed at rest using a standard

cuff-based BP device. Essentially these devices track changes in

BP relative to the calibration value (13). In a stable, resting

condition BP variations are small, and might be almost

negligible, especially when the duration of protocol is short. In

these cases, the device would seem to track BP accurately, but

this does not guarantee the same performance over longer

periods of time or under substantial BP changes (14).

Third, various situations commonly encountered in daily life,

such as physical activity, mental stress, and perception of

physical pain, produce changes in BP through different

physiological mechanisms. Thus, devices used in clinical

evaluation of BP must be able to accurately estimate BP changes

from a variety of activities (3).

To address these issues, several standards and recommendations

have been published recently. The ISO 81060-3:2022 standard (15)

focuses on validation of cuffless, noninvasive BP devices that

provide continuous, beat-to-beat or high-resolution BP estimations.

On the other hand, the ESH 2023 recommendations (3) describe

the validation procedure for intermittent cuffless devices for use

in ambulatory settings. To the best of our knowledge, no

cuffless device has yet been validated according to either the ISO

81060-3:2022 standard or to the ESH 2023 recommendations (3).

In contrast to most studies which evaluated the performance of

cuffless devices at rest, the aim of the present study was to address

these limitations and use three well-known techniques to alter BP

by different physiological mechanisms [isometric exercise (16),

mental stress (17, 18), and cold pressor test (19–21)] to investigate

the ability of a prototype, PPG-based cuffless device, placed on the
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upper arm, to track BP compared to a non-invasive, continuous

BP monitor in healthy adults. The present pilot study was

designed as part of the development of the cuffless device (Aidee

Health AS, Norway), towards a future validation. Thus, the

performance of the cuffless device was evaluated according to the

metrics from the ISO 81060-3:2022 standard (ISO 3).
2 Materials and methods

2.1 Participants

Healthy volunteers ≥18 years of age, free of any

chronic or cardiovascular disease, were eligible for inclusion.

Potential participants were screened with a short interview, BP

measurements (inclusion BP) and a 12-lead electrocardiogram

(ECG). Candidates with pregnancy, inclusion BP≥ 180/120 mmHg

or any contraindication to standard cardiac stress testing (22) were

excluded. In line with the Helsinki declaration (23), all participants

were informed about the test procedure and signed a written

informed consent form before inclusion. The participants were

instructed to avoid intake of any food during the two hours prior to

the test, as well as caffeine drinks and nicotine during the four hours

before the test and alcohol at any time on the day of the test. During

the test the participants were dressed in comfortable clothes to

minimally interfere with the experimental conditions.

The study was approved by the Regional committees for

medical and health research ethics (REK, Norway, project

number 65844) prior to the inclusion of the first participant.
2.2 Reference blood pressure

Reference BP was measured continuously and non-invasively by

the volume-clamp method using either Human NIBP Nano System

(AD Instruments, Sydney, Australia) or Nexfin (24–30) (Bmeye,

Amsterdam, The Netherlands). Two different reference BP devices

were used as the Nexfin device malfunctioned during the study

and was replaced with the Human NIBP, which uses the same

measurement principle. The parent technology, Finapres (FMS

Finapres, Medical systems BV, Amsterdam) has been validated for

research use (31–33) and is commonly accepted for non-invasive

BP measurements in non-critically ill patients (17, 34, 35). The

finger pressure cuff was placed on the left middle finger. A laptop

was connected to the reference device, and the raw data was

sampled at 1,000 Hz, and continuously recorded during the

experiments using Lab Chart 8.1.9 software (AD Instruments,

Sydney, Australia). During each activity, the hand with the

reference device was maintained in a steady position to minimize

possible noise and artifacts. Between each activity there was a

pause where the reference device recording was stopped.

Therefore, the finger cuff device was calibrated at the start of each

activity by using a brachial cuff-based BP, which was measured on

the right upper arm with a validated automated oscillometric

device (Watch BP O3, Microlife Health Management Ltd.,

Cambridge, UK). Three readings separated by 1 min intervals were
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taken during the 4-minute resting period at the beginning of each of

the three activities.

A 3-lead ECG was recorded continuously using Bio Amp/

PowerLab (AD Instruments) during the tests and the data were

exported to Lab Chart to calculate heart rate (HR).

Inclusion BP was measured on the right upper arm with the

participant in the supine position before the first activity using

the validated automated oscillometric device. Three consecutive

measurements were taken with 1 min intervals between

measurements. The first measurement was discarded, and the

average of the two remaining measurements were used to

calculate inclusion BP.
2.3 Cuffless blood pressure device

A prototype cuffless device, developed by Aidee Health AS

(Bærum, Norway), was used in the present study (Figure 1). The

device is the evolution of the technology that has been previously

described in several studies (2, 36–39). It is a wearable device

with a PPG and an inertial measurement unit (consisting of 3D

accelerometer and gyroscope). Raw signals from the PPG sensor

were sampled at 1,000 Hz while accelerometer data was sampled

at 208 Hz and gyroscope data at 28 Hz. During the study the

device was placed on the left upper arm.
2.4 Study protocol

The study was conducted at the Department of Vascular

Surgery at Oslo University Hospital, Aker (Norway) from April
FIGURE 1

Illustration of the cuffless blood pressure device.
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to October 2023. The protocol (Figure 2) consisted of three test

periods with three different activities to induce BP changes. Each

period consisted of a four-minute rest followed by the test

activity and 1-minute recovery. There was a longer rest of

5–10 min between each period.

Participants wore the cuffless device and the reference BP

device simultaneously. The first activity, isometric handgrip, was

performed by gripping the right hand around a custom-made

handgrip apparatus displaying the force applied by the

participant (16). Prior to the isometric handgrip, the maximal

voluntary contraction (MVC) force was measured. The

participants were instructed to keep 30% of MVC by looking at

the display during the two minutes of isometric handgrip, avoid

the Valsalva maneuver and relax all the muscles not primarily

involved in contraction. This was repeated three times with two-

minute pauses between each session of handgrip.

The second activity was a mental stress test where participants

subtracted 13 repetitively for five minutes starting with 1,079

(17, 18). They were informed of any miscalculation in a direct

and stressful manner. A metronome at a frequency of two Hz

was used to distract and stress the participants.

The third activity was a cold pressor test (19–21) where the

right hand of the participant was completely immersed in ice

water (2–5°C) for two minutes.

Some of the participants wore the cuffless device for 24 h after

the laboratory tests in order to test the stability of the cuffless BP

estimations. The participants did not wear the reference device

outside of the laboratory. On the following day, we repeated the

isometric handgrip test with the participant wearing both the

cuffless device and the reference device.
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FIGURE 2

Illustration of the test protocol with activities and rest periods. Created in BioRender. Sæter, F. (2024) BioRender.com/r16m233.
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2.5 Data processing

Filtering and processing of the data was performed post-hoc by

using Python programming language.
2.5.1 Reference blood pressure
Reference BP values were calculated from the recorded raw BP

waveforms and calibrated using brachial systolic BP (SBP)

measurement. The brachial measurement was the mean of the

last two of three measurements measured in the rest period

before each activity. The raw BP waveforms were then shifted to

align the peaks with the calibration measurement.

The raw waveform signals were automatically filtered to

remove artefacts, such as periods of automatic calibration

(AutoCal/Physiocal) and high frequency noise. Then for each

cardiac cycle, defined by R-peaks in the ECG signal, the systolic,

diastolic (DBP), and mean arterial pressure (MAP) were

computed using maximum, minimum and time-weighted integral

correspondingly. Then, all data was controlled manually for

artefacts by comparing systolic and diastolic values with peaks

and by reviewing actual BP waves for every subject. Finally,

mean SBP, DBP and MAP were calculated per non-overlapping

15-second segments.

Participants were excluded from the statistical analyses if

more than 50% of their reference data had to be removed due to

artefacts or noise.
2.5.2 Cuffless device
The raw PPG signals from the cuffless device were processed

and filtered using proprietary algorithms. The signals were

divided into cardiac cycles and averaged over non-overlapping
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15-second segments. Segments with unacceptable data quality,

i.e., artefacts or noise, were removed. For each 15-second

segments multiple standard features from the PPG signal

commonly presented in the literature (40–42) were extracted.

2.5.3 Cuffless blood pressure models and
calibration

The cuffless BP models were developed from the present study

cohort using 3-fold Cross-validation (43–45), a statistical method

to evaluate the performance of the model in case of limited

data (46). Separate models were made for each BP parameter

(i.e., SBP, DBP and MAP) using the following procedure: First,

the subjects were split into three subsets (“folds”), which were

then used to train three different regression models for each BP

parameter (Figure 3). Then a final model for each BP parameter

was derived (based on averaging the three regression models).

The final three models were then used to predict SBP, DBP and

MAP separately.

Contrary to the reference BP, the cuffless device was only

calibrated once to correct the offset between reference BP and

cuffless BP. This was done during the initial rest period before the

handgrip activity using the calibrated reference BP value.

Participants’ demographics were not used for additional calibration.
2.6 Statistical analyses

Statistical analysis was performed using Stata 18.0 (Statacorp.,

Texas, USA). Variables were assessed for normality by visual

inspection of histograms. Continuous data are presented as mean

(standard deviation; SD), or median (interquartile range; IQR) if

non-normally distributed. For each participant, within-subject
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FIGURE 3

Illustration of the 3-fold cross validation procedure.
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change in BP and HR was calculated by taking the highest reported

reference BP or HR measurement subtracted by the lowest reported

reference BP measurement during the entire test period day 1

(handgrip, mental stress test, cold pressor test) and for each

activity separately.

We chose to adopt, as closely as possible given the differences

in protocol, the same statistical methodology as described in ISO

3. The ISO 3 includes three requirements for evaluating

performance of cuffless devices: (1) the Accuracy criteria

[Chapter 5.1 (15)], (2) the Stability criteria [Chapter 5.2 (15)]

and (3) the Change criteria [Chapter 5.3 (15)]. We have

compared our results against the acceptance criteria for all three

tests. The acceptance criteria for the Accuracy and Stability

requirements from ISO 3 is a mean difference (SD) ≤6
(10) mmHg. The acceptance criterion for the Change

requirement is two-folded: averaged calculated (1) 50th percentile

of error rate between the reference device and the cuffless device

for the specified change evaluation interval ≤25%, and (2) 85th

percentile ≤50%. To evaluate the Accuracy and Change criteria,

we used the data collected from the whole test period of the first

day (handgrip, mental stress test and cold pressor test). For the

BP change parameters included in the Change analysis, the start/

end points for BP change were kept within the same activity

(either handgrip, mental stress test or cold pressor test). In the

data analysis for the Stability criteria, we used data from the

participants included in the 24 h test: the data collected during

the first day’s test period (handgrip, mental stress test and cold

pressor test) and during the test period of the following day

(handgrip day 2).

In addition, we evaluated the level of absolute agreement

between the reference BP device and the cuffless device for SBP,

DBP and MAP, during the entire first day, using Bland-Altman

plots with bias and 95% limits of agreement (LoA). We

acknowledge that aggregating all measurement pairs across all

patients may violate the assumption of independent measurements

in the Bland-Altman method (47). However, most cuffless studies

have adopted this approach in their analyses (48–52).
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3 Results

3.1 Participant selection, general
characteristics and blood pressure
distribution

A total of 67 participants were recruited, of whom 29 were

excluded due to unacceptable noise in the reference BP data.

Thus, 38 participants were included in the statistical analyses.

General characteristics for the cohort are presented in Table 1.

The BP range for each individual during the entire test protocol

is presented in Figure 4. Reference BP and HR distribution

during the test protocol are presented in Table 2.
3.2 Performance of the cuffless blood
pressure model

To determine the minimum number of repeated paired

measurements and number of subjects, the intraclass correlation

coefficient (ICC) was estimated a priori as outlined in ISO

3. Post-hoc the ICC, that was calculated from the reference data

included in the analysis, was 0.2 for SBP, 0.3 for DBP and 0.2

for MAP for the Accuracy analysis, and 0.3 for SBP, 0.3 for DBP

and 0.3 for MAP for the Stability analysis.

Twenty-two randomly chosen pairwise comparisons between

reference and cuffless BP per subject, i.e., a total of 836

measurement pairs for each BP parameter, were used to evaluate

the Accuracy criteria. Forty-four randomly chosen pairwise

comparisons between reference and cuffless BP per subject, i.e., a

total of 484 measurement pairs for each BP parameter, were

included in the Stability analysis. A total of 3,549 measurement

pairs for SBP, 3,142 for DBP and 3,510 for MAP were included

in the Change analysis.

Table 3 summarizes the comparison between the cuffless device

and the reference BP device, with respect to the acceptance criteria
frontiersin.org
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FIGURE 4

Box plot of blood pressure distribution for each individual.

TABLE 1 General characteristics of the included participants (n = 38).

Number (%) 38 (100)

Handgrip (day 1) 38 (100)

Mental stress test (day 1) 36 (94.7)

Cold pressor test (day 1) 33 (86.8)

24 h test (handgrip day 2) 11 (28.9)

Age, median (IQR), years
Number (%)

33 (20)

• >50 years
• >60 years
• >70 years

5 (13.2)
2 (5.3)
0 (0)

Female sex, number (%) 22 (57.9)

Body mass index, mean (SD), kg/m2 23.4 (2.8)

Baseline Systolic Blood Pressure (supine position), mean (SD),
mmHg

119.3 (9.4)

Baseline Diastolic Blood Pressure (supine position), mean (SD),
mmHg

72.6 (7.1)

Fitzpatrick skin pigmentation, no (%)

1 5 (13.2)

2 27 (71.1)

3 4 (10.5)

4 1 (2.6)

5 1 (2.6)

6 0 (0)

7 0 (0)

IQR, interquartile range; SD, standard deviation.

Hove et al. 10.3389/fmedt.2024.1464473
outlined in ISO 3. The mean difference (SD) was 0.3 (8.7) mmHg

for SBP, 0.04 (6.6) mmHg for DBP, and 0.8 (7.9) mmHg for MAP

for the Accuracy requirement. The corresponding mean differences

for the Stability requirements were 1.9 (9.2), 2.9 (8.1), and 2.5

(9.5) mmHg for SBP, DBP and MAP, respectively. Thus, all BP

parameters were within acceptance criteria for the Accuracy and

Stability requirements (≤6.0 (10.0) mmHg).

The 50th and 85th percentile of error rate between the

reference device and the cuffless device was 39% and 56% for

SBP, 32% and 48% for DBP and 33% and 47% for MAP,

respectively. Thus, the cuffless device achieved the acceptance

criteria for the Change requirement for the 85th percentile of

≤50% error for DBP and MAP but were higher than acceptable

for SBP (55% vs. ≤50%) and for all parameters for the 50th

percentile of error rate (32%–39% vs. ≤25%).
To exemplify the results, we included time series plots from

six selected participants in Figure 5. Note that because the

reference device was calibrated for each activity, while the

cuffless device was calibrated only once, there is a notable

offset between BP readings for certain participants and

activities (see Figure 5). This does not influence results for

Change, but the Accuracy and Stability metrics could

potentially be improved if we had not recalibrated the

reference BP before each activity.

The degree of agreement between the cuffless device and

reference device during the entire test protocol day 1 is presented

with Bland Altman plots with bias and 95% LoA (Figure 6). Bias

[95% LoA] was close to zero for all BP parameters over the

entire test period day 1 (all activities); 0.24 mmHg [−8.7,
9.2 mmHg], 0.63 mmHg [−7.3, 8.5 mmHg] and 0.77 mmHg

[−7.2, 8.7 mmHg] for SBP, DBP and MAP, respectively.
Frontiers in Medical Technology 06
4 Discussion

The present study aimed to evaluate the ability of a prototype,

PPG-based cuffless device, placed on the upper arm, to track BP

during three well-known activities to induce BP changes using

different physiological mechanisms. The results demonstrated

that the cuffless device estimated BP with satisfactory accuracy

compared to a non-invasive, continuous reference BP monitor, in

38 healthy adults in an experimental laboratory set up consisting

of isometric handgrip (16), mental stress test (17, 18) and cold

pressor test (19–21). The cuffless device showed promising

results in achieving the acceptance criteria from the ISO 81060-

3:2022 standard (ISO 3) (15). To the best of our knowledge, this

is the first study to present results according to the full statistical

methodology outlined in the ISO 3, which is the first standard

addressing the validation of cuffless devices.

The cuffless device fulfilled the acceptance criteria (≤6
(10) mmHg) for the Accuracy and Stability requirements from

ISO 3. A particular strength of our study is that these metrics

were calculated using the whole measurement period, including

the periods with the induced BP change (unstable periods) which

is not required by ISO 3. Even though the present study is not a

validation study, we adopted as closely as possible (given our

different protocol), the metrics and statistical methodology from

ISO 3, which addresses mentioned issues with evaluating

performance of cuffless devices and represents state-of-the-art

benchmark for the present and similar studies.

A few other cuffless devices have demonstrated the ability to

accurately estimate BP in individuals at rest during stable

conditions. A study evaluating a PPG-based cuffless device,

worn as a bracelet (Aktiia), compared to auscultation in
frontiersin.org
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TABLE 2 Blood pressure and heart rate distribution of all individual measurements during the entire test protocol.

Systolic blood
pressure, mmHg

Diastolic blood
pressure, mmHg

Mean arterial
pressure, mmHg

Heart rate, beats
per minute

All activities day 1
Range, min–max 96–221 38–122 57–153 41–108

Within-subject change, median (IQR) 41.3 (26.5) 27.1 (10.7) 32.1 (13.1) 27.5 (10.1)

Handgrip (day 1)
Range, min–max 96–221 40–122 59–153 42–96

Within-subject change, median (IQR) 25.5 (22.6) 17.1 (11.6) 21.7 (13.5) 15.8 (8.5)

Mental stress test (day 1)
Range, min–max 106–198 38–108 57–135 45–108

Within-subject change, median (IQR) 22.6 (15.1) 13.0 (9.0) 16.2 (11.7) 21.6 (13.6)

Cold pressor test (day 1)
Range, min–max 98–201 42–119 62–149 41–100

Within-subject change, median (IQR) 35.1 (19.0) 21.0 (12.2) 27.3 (15.0) 14.1 (8.1)

Handgrip day 2
Range, min–max 105–196 39–104 60–138 44–98

Within-subject change, median (IQR) 33.3 (23.1) 19.1 (17.2) 23.6 (19.1) 15.7 (7.7)

IQR, interquartile range.

TABLE 3 Performance of the cuffless blood pressure device in comparison to the ISO 81060-3:2022 acceptance criteria.

Accuracy
Mean Δ (SD),

mmHg

Stabilitya

Mean Δ (SD),
mmHg

ISO Criteria for
Accuracy and Stability
Mean Δ (SD), mmHg

Change
50th and 85th
percentile, %

ISO Criteria for
Change 50th and
85th percentile, %

Systolic blood pressure 0.3 (8.7) 1.9 (9.2)a ≤6.0 (10.0) 39, 56 ≤25, ≤50
Diastolic blood pressure 0.04 (6.6) 2.9 (8.1)a ≤6.0 (10.0) 32, 48 ≤25, ≤50
Mean arterial pressure 0.8 (7.9) 2.5 (9.5)a ≤6.0 (10.0) 33, 47 ≤25, ≤50

aOnly 11 participants were included in the Stability analysis.

Δ, difference; SD, standard deviation.

Text and values in Italic font indicate the pass criteria of the ISO 81060-3:2022 standard.

Hove et al. 10.3389/fmedt.2024.1464473
91 adults (6) demonstrated accurate BP predictions in the seated,

supine and standing position with a mean difference (SD) for SBP

of 0.5 (7.8) mmHg in the sitting position, −2.4 (10.1) mmHg in

the supine, and −0.6 (12.5) mmHg in the standing position.

Differences for DBP readings were 0.4 (6.9) mmHg, −1.9
(7.7) mmHg, and −4.9 (9.1) mmHg respectively. Accuracy of the

same device (Aktiia) was compared to auscultation in 35 elderly

individuals in the seated, supine and standing position (8) and

demonstrated similar results. Another study evaluating a cuffless

device that is based on pulse transit time (Somnotouch-NIBP)

demonstrated similar results in 33 subjects in the seated

position (5). The BP estimations of a cuffless, wrist-worn or

skin attached device (BioBeat), that uses pulse wave analysis

of the PPG signal in combination with pulse wave transit

times, was compared to the measurements of a standard

sphygmomanometer device in 1,057 subjects in the seated

position (7). In this study the BioBeat device was found similar

to the sphygmomanometer device with high agreement and

reliability levels. However, none of these studies have shown that

cuffless devices can accurately track substantial physiological BP

changes. This is an important aspect, as cuffless devices only

track changes in BP relative to the calibration value. Thus, in a

stable, resting condition where BP variations are small, a device

would seem to track BP accurately even though this might not

be true under larger BP changes.
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Unlike most studies on cuffless devices, which predominantly

focus on accuracy assessment during resting conditions, we

evaluated performance of the cuffless device during large BP

changes induced by three different physiological mechanisms, i.e.,

isometric handgrip, mental stress test, and cold pressor test. The

effects of isometric exercise on the cardiovascular system were first

described by Lindhard in 1920 (54). Since then, it has been shown

that isometric exercise causes a concurrent increase in both SBP

and DBP (36, 55–57). The BP response to mental stress is

characterized by a predominant elevation in SBP, reflecting

increased cardiac output driven by an increase in both stroke

volume and HR, while DBP may remain relatively stable or show

a modest increase (58, 59). Cold induced pain typically results in a

rapid and consistent BP elevation during the stimulus due to an

immediate sympathetic surge, primarily in SBP, while DBP may

also rise (21, 60, 61). Despite using these different mechanisms to

induce BP changes, we still demonstrated high agreement in the

ability of the cuffless BP device to track SBP, DBP and MAP.

Furthermore, the cuffless device showed promising results in

meeting the acceptance criteria for the Change requirement of

ISO 3 (50th percentile ≤25% and 85th percentile ≤50%). The
85th percentile of error rate for MAP and DBP was within the

acceptance criteria but was higher than the limit for SBP for the

85th percentile and for all BP parameters for the 50th percentile.

Only one comparative study has presented results partially
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FIGURE 5

Time series plots of the results from the entire test protocol day 1 from six different participants for reference and cuffless systolic blood pressure
(SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP). The y-axis represents blood pressure (mmHg) and x-axis time (minutes).
The results are from three subjects with good agreement (A–C) and three subjects with mediocre agreement (D–F).
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according to the statistical methodology outlined in ISO 3, i.e.,

Khayat et al. recently evaluated a wearable sensor against intra-

arterial BP measurements for the Change criteria in 27 patients

undergoing surgery, achieving a 50th percentile and 85th

percentile of error rate of 23.8% and 42%, respectively (62),

meeting the ISO 3 Change criteria (≤25% and ≤50% error for

the 50th and 85th percentiles respectively). Even though the

cuffless device, tested in the present study, only partially fulfilled
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the acceptance criteria for the Change requirement, we argue that

the results are promising towards meeting the criteria in a future

validation study for several reasons. First, ISO 3 only requires a

limited increase (15 mmHg in SBP, 10 mmHg in DBP and

12 mmHg in MAP) for the BP change included in the Change

analysis, and it does not require comparison of measurements

obtained during this period of change where BP is unstable. In

the present study, we induced substantial BP changes in our
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FIGURE 6

Bland-Altman plots for individual blood pressure (BP) readings for each BP parameter day 1 of the test protocol. Mean of BP values from the reference
device and cuffless device (x-axis) plotted against the difference between reference and cuffless BP values (y-axis). Horizontal red lines indicate bias
and horizontal blue lines indicate upper and lower 95% limits of agreement. Vertical, dotted lines represent mean (±2 SD). Outliers, defined as BP
differences above 30 mmHg and below −30 mmHg (53), are plotted at point 30 mmHg and −30 mmHg, respectively.

Hove et al. 10.3389/fmedt.2024.1464473
participants, and all available pairs were included in the Change

analysis. During some activity periods BP was changing

extremely fast. This might have introduced a higher uncertainty

in BP measurements from both the reference and cuffless device.

Thus, our results may have been better had we excluded periods

with unstable BP. However, we decided not to do this to clearly

illustrate the ability of the technology to track changes in

challenging conditions as well. Second, ISO 3 only requires a

certain BP change but does not specify how this BP change shall

be achieved. Alterations in BP can be induced by different

mechanisms and stimuli, and the hemodynamic responses to

these can vary in terms of magnitude and duration. In the

present study, we used 3 different interventions to induce BP

changes through different physiological mechanisms, instead of

just using one single exercise that is typically performed (36, 37,

63). Third, the activities used to induce BP changes were equally

weighted in our Change calculations. The cold pressor test,

where the right hand of the participant was completely immersed

in ice water, could in some individuals have led to a significant

peripheral vasoconstriction in the extremity contralateral to the

cold immersion (64) and probably introduced a higher

uncertainty in the BP measurements conducted by the reference

device (64, 65). We believe that these factors may explain why

we did not fulfill all acceptance criteria outlined in ISO 3 in the

present study and argue that the cuffless device showed

promising results in meeting the Change requirements in a

future validation study.
5 Deviances from the ISO
81060-3:2022 protocol

Even though we used methodology from ISO 81060-3:2022 to

evaluate our results, it is important to note that the protocol used in

the present study differs from the protocol described in ISO 3.

Most importantly, we used a different reference method. The

ISO 3 protocol requires an intra-arterial BP reference. This

involves cannulation of a peripheral artery, most commonly the
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radial artery, with a catheter. In the present study, the Human

NIBP and Nexfin, which deliver continuous BP readings via a

non-invasive dual finger cuff system, were used as reference BP

devices. Both instruments use the volume-clamp methodology to

assess arterial pressure in the finger and by that calculate BP

(66). The accuracy of the Human NIBP Nano is according to the

manufacturer ± 1% of the full range (max. 3 mmHg) (65). Nexfin

has been compared to intra-arterial measurements in several

studies, demonstrating bias (SD) ranging from −1.2 (6.5) mmHg

to −4.6 (6.5) mmHg (27–30). The parent technology, Finapres

(FMS Finapres, Medical systems BV, Amsterdam), has been

demonstrated to be accurate when compared to intra-arterial

pressure with only minor discrepancies (17, 34) and has been

validated for use in research (31, 32). Finapres has proven to be

reliable in monitoring BP during dynamic changes (67, 68).

However, a few studies have shown these and comparable devices

to be less accurate than intra-arterial BP measurements (69),

especially for SBP (33, 70), and they are not recommended for

hemodynamic monitoring in critically ill patients where sudden

hypotension may occur (71). Nevertheless, the finger cuff devices

are commonly accepted as reliable for non-invasive BP

measurements in non-critically ill patients (17, 34, 35). While the

use of intra-arterial measurements provides enhanced accuracy, it

requires an invasive procedure, thereby also raising ethical,

practical, and financial considerations. Therefore, for our healthy

population the volume-clamp device was considered adequate

and appropriate.

Second, the total test period for each subject did not fulfill the

requirement for the Stability requirement of ISO 3. The standard

requires measurements during the first 5 h and again after 24 h

for devices intended for 24 h monitoring. This was not feasible

for the present study.

Third, the number of test subjects was lower than required for

the Stability requirement. For the given ICC in our dataset, ISO 3

requires at least 30 test subjects. We included more than an

adequate number of test subjects (n = 38) for the Accuracy and

Change analysis. However, only 11 individuals completed the

24 h measurement providing data for the Stability analysis.
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Fourth, the subject characteristics, including the distribution of

BP, did not fulfil the criteria of ISO 3. Our cohort was relatively

young, i.e., only 13% >50 years (requirement >40%), 5% >60 years

(requirement >25%) and none >70 years (requirement >10%).
6 Strengths and limitations

A strength of the present study is that we evaluated performance

of the cuffless device during relatively large BP changes. This aspect

is essential, given that cuffless devices estimate BP changes relative to

a calibration value. Consequently, under stable, resting settings where

BP fluctuations are minimal, a device may appear to track BP

accurately. However, this perceived accuracy may not hold true

when there are larger variations in BP. Furthermore, we used three

well-known activities to induce BP changes via different

physiological mechanisms, i.e., isometric handgrip, mental stress

test, and cold pressor test.

Another strength is that we assessed performance of the

cuffless device in accordance with the statistical requirements

from the ISO 81060-3:2022 standard. This standard provides a

framework and statistics that enables direct comparisons between

different continuous, cuffless devices during both stable and

unstable conditions. Even though the present study is not a

validation study, using these metrics is particularly meaningful

for future comparisons with other devices. Additionally, we have

highlighted our results along with important deviances from the

ISO 81060-3:2022 protocol, which we believe are noteworthy for

future investigations and device comparisons.

However, the present study has several limitations. First, the study

was conducted under highly controlled laboratory conditions.

Consequently, the results may not be directly applicable to real-life

settings. Second, most of our participants had light skin color

(Fitzpatrick 1–3). Third, we only included healthy individuals.

Cuffless BP devices make presumptions about the arterial pulse

wave in their BP prediction models. Thus, the BP prediction

models might not be generalized to individuals with chronic

diseases, such as peripheral artery disease or cardiovascular diseases,

pregnant women, individuals with obesity, darker skin tones and/or

tattooed skin (14). The aim of the present study was to induce

relatively large BP changes. Thus, for ethical reasons we chose to

exclude candidates with comorbidities, such as hypertension and

cardiovascular diseases. Further research is necessary to determine

device performance in these sub-populations, which are currently

under-represented in clinical trials.
7 Conclusions

The present study demonstrated the ability of a prototype,

photoplethysmography-based cuffless device, placed on the upper

arm, to track large BP changes induced by different physiological

mechanisms. The cuffless device showed promising results in

achieving the acceptance criteria for the Accuracy, Stability and

Change requirements from the ISO 81060-3:2022 standard in

healthy adults. However, it is important to note, that we used a
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different reference BP device and did not fulfill the requirement

for participant characteristics. Furthermore, the subject number

and study protocol time was not in accordance with the standard

for the Stability requirement.

The results of the present study are optimistic towards the

clinical use of cuffless devices in BP monitoring in healthy

adults. However, further research and validation is needed before

the technology can be implemented in health care.
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SUPPLEMENTARY FIGURE S7

Histogram of all reference blood pressure readings (n= 836) included in the
ISO Accuracy analysis for each blood pressure parameter.

SUPPLEMENTARY FIGURE S8

Scatter plot of all reference blood pressure readings (n= 836) included in the
ISO Accuracy analysis for each blood pressure parameter. The y-axis
represents included reference blood pressure (mmHg), x-axis time
(minutes) from calibration of the cuffless device.

SUPPLEMENTARY FIGURE S9

Histogram of all reference blood pressure readings (n= 484) included in the
ISO Stability analysis for each blood pressure parameter.

SUPPLEMENTARY FIGURE S10

Histogram of all reference blood pressure readings (n= 7,098 for systolic, n
= 6,284 for diastolic and n= 7,020 for mean arterial pressure) included in the
ISO Change analysis for each blood pressure parameter.

SUPPLEMENTARY FIGURE S11

Histogram of all reference blood pressure change parameters (n= 3,549 for
systolic, n= 3,142 for diastolic and n= 3,510 for mean arterial pressure)
included in the ISO Change analysis for each blood pressure parameter.
The reference blood pressure change parameter was calculated by taking
the reported reference blood pressure measurement at the end of the
blood pressure change minus the reported reference blood pressure
measurement at the start of the blood pressure change.
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