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Introduction: The wearable cyborg Hybrid Assistive Limb (HAL) is a therapeutic
exoskeletal device that provides voluntary gait assistance using kinematic/kinetic
gait data and bioelectrical signals. By utilizing the gait data automatically
measured by HAL, we are developing a system to analyze the wearer’s gait
during the intervention, unlike conventional evaluations that compare pre- and
post-treatment gait test results. Despite the potential use of the gait data from
the HAL’s sensor information, there is still a lack of analysis using such gait
data and knowledge of gait patterns during HAL use. This study aimed to
cluster gait patterns into subgroups based on the gait data that the HAL
automatically collected during treatment and to investigate their characteristics.
Methods: Gait data acquired by HAL, including ground reaction forces, joint
angles, trunk angles, and HAL joint torques, were analyzed in individuals with
progressive neuromuscular diseases. For each measured item, principal
component analysis was applied to the gait time-series data to extract the
features of the gait patterns, followed by hierarchical cluster analysis to
generate subgroups based on the principal component scores. Bayesian
regression analysis was conducted to identify the influence of the wearer’s
attributes on the clustered gait patterns.
Results: The gait patterns of 13,710 gait cycles from 457 treatments among 48
individuals were divided into 5–10 clusters for each measured item. The
clusters revealed a variety of gait patterns when wearing the HAL and
identified the characteristics of multiple sub-group types. Bayesian regression
models explained the influence of the wearer’s disease type and gait ability on
the distribution of gait patterns to subgroups.
Discussion: These results revealed key differences in gait patterns related to the
wearer’s condition, demonstrating the importance of monitoring HAL-assisted
walking to provide appropriate interventions. Furthermore, our approach
highlights the usefulness of the gait data that HAL automatically measures
during the intervention. We anticipate that the HAL, designed as a therapeutic
device, will expand its role as a data measurement device for analysis and
evaluation that provides gait data simultaneously with interventions, creating a
novel cybernics treatment system that facilitates a multi-faceted understanding
of the wearer’s gait.

KEYWORDS

hybrid assistive limb (HAL), cybernics treatment, wearable devices, gait analysis,
hierarchical clustering, neuromuscular diseases
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fmedt.2024.1448317&domain=pdf&date_stamp=2020-03-12
mailto:kawamoto@golem.iit.tsukuba.ac.jp
https://doi.org/10.3389/fmedt.2024.1448317
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmedt.2024.1448317/full
https://www.frontiersin.org/articles/10.3389/fmedt.2024.1448317/full
https://www.frontiersin.org/articles/10.3389/fmedt.2024.1448317/full
https://www.frontiersin.org/articles/10.3389/fmedt.2024.1448317/full
https://www.frontiersin.org/journals/medical-technology
https://doi.org/10.3389/fmedt.2024.1448317
https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org/


FIGURE 1

Conceptual diagram of the use of gait data measured by HAL. The
process includes treatment, data accumulation, and analysis using
HAL. In addition to the conventional intervention using HAL, a
more sophisticated treatment system will be constructed by using
the gait time-series data that HAL automatically measures during
the assistance.
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1 Introduction

Gait is achieved by control via neural signals from the central

nervous system to effector muscles based on motor intention

(1, 2). Degeneration of the neuromuscular system, as seen in

neuromuscular diseases, affects these signal pathways responsible

for movement, leading to gait disorders (2, 3). For a long time,

many rehabilitation programs for such gait disorders focused on

compensatory strategies using residual function, rather than

directly aiming to restore function (2). However, in recent years,

a new treatment approach, that target the neuromuscular system

for functional improvement and regeneration have been

attracting attention.

The world’s first wearable cyborg Hybrid Assistive Limb (HAL;

CYBERDYNE Inc., Tsukuba, Japan) is a therapeutic device that

assists the wearer’s gait through a voluntary drive (4, 5). To

achieve movement under fusion with the wearer, the HAL

generates assistive torques using sensor information, such as

bioelectrical signals, which reflect the wearer’s motor intentions,

and ground reaction forces, which represent the gait phase (6, 7).

Walking with HAL creates a neural information transfer loop

between the central nervous system and the musculoskeletal

system via HAL, which is believed to be important for

neuroregeneration (2, 5). Cybernics treatment, an intervention

using HAL, strengthens the neural loop via the device through

repetition without increasing the neuromuscular system’s

excessive load and fatigue of the wearer. Specifically, HAL assists

the wearer’s movements based on their motor intentions,

facilitating the synchronization of motor commands and sensory

feedback at appropriate timings, which forms interactive

biofeedback loops. The repetition of this process, which enhances

the transmission efficiency of synapses, is a crucial aspect of

cybernics treatment (2, 8–10). Previous studies have

demonstrated that this approach is effective in maintaining and

improving gait ability in individuals with gait disorders caused

by progressive neuromuscular diseases (2, 11–14).

To monitor the effect and progress of intervention using HAL,

conventional assessments in cybernics treatment compare some

indicators of gait ability, such as the 2-min or 6-min walk

distance, 10-meter walk speed, and Functional Ambulation

Category (FAC), before and after a series of several intervention

sessions (2, 11–17). These metrics are measured without HAL

and are performed separately from treatment. Although these

conventional methods are effective in examining intervention-

related changes in gait ability, they are difficult to use in daily

practice because of the high burden of measurement (18). The

physical strain on the patients to perform gait tests for evaluation

only, separate from treatment, the burden on the clinical

operators to measure data while ensuring patient safety, and time

constraints make it practically difficult to perform these

measurements at a high frequency. Moreover, current methods

are disconnected from the process of the actual treatment

sessions, which does not bring objective information on the

wearer’s gait condition during intervention. Since the core of

HAL-assisted gait is the feasibility of repeatedly forming

interactive biofeedback loops even in individuals who struggle
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with this process on their own, it is desirable to monitor the gait

resulting from the interaction between the HAL and the wearer;

however, there is no established method for this.

Therefore, we have begun developing a system for data

accumulation and analysis in cybernics treatment that utilizes the

gait data measured by the HAL while it assists the wearer’s gait

(Figure 1). In addition to the bioelectrical signals and ground

reaction forces required for torque generation, HAL acquires gait

data on lower limb joint angles, trunk angles, and joint torques of

the HAL during the intervention. The use of the HAL sensor to

collect data for analysis and evaluation has significant advantages in

clinical applications. These gait time-series data are automatically

recorded, without creating an additional burden for patients and

clinical operators beyond the treatment itself, nor altering the

procedural flow of existing clinical practices. The HAL use also

facilitates the accumulation and analysis of data from various cases

more efficiently than conventional methods. This creates a

foundation for the efficient aggregation of consistent and objective

data obtained through a common device, HAL, which is

particularly beneficial in cybernics treatment, as it is sometimes

applied to rare diseases. Additionally, it enables the implementation

and evaluation of a treatment that considers gait motion during the

intervention in each session, addressing questions about the

wearer’s gait condition during the intervention and allowing for

more frequent evaluations in every treatment session compared to

conventional methods. Moreover, this system not only offers

benefits in clinical settings but also introduces a new role for HAL

as a device for data measurement, beyond just being a therapeutic

device. It will serve as a key framework in cybernics treatment for

capturing the wearer’s gait condition associated with HAL

intervention from multiple perspectives.

Despite the potential utilization of gait data during the

intervention, research on the gait while wearing HAL remains
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limited (18–20). Puentes et al. (19) evaluated gait coordination with

planar covariation in hemiparetic stroke patients by recording

segmental kinematics while wearing HAL using motion capture,

although it only covered the coordination between the paretic

and non-paretic legs. Kadone et al. (20) analyzed muscular

activation patterns and synergies during HAL intervention in an

individual with myelopathy, but the data was recorded using

EMG sensors separate from the HAL sensors and it was a single

case report focusing only on muscular activities. Our former

study (18) assessed bioelectrical signal patterns measured by

HAL, primarily comparing the similarity of patterns between

those without gait disorder and those with neuromuscular

diseases, without addressing kinematic and kinetic data other

than bioelectrical signals or examining pattern characteristics and

differences among individuals undergoing treatment. The lack of

focused studies on the kinematics and kinetics of gait during the

intervention, including studies using gait data automatically

acquired by HAL, hinders our understanding of how patients

walk under fusion with HAL in daily clinical settings. Addressing

this gap is crucial for evaluating gait with metrics that capture

the characteristics of HAL-assisted walking, and for creating

optimal feedback and treatment strategies for each individual.

The assistive torques provided by the HAL through voluntary

control vary according to the gait motions generated by the wearer.

Consequently, the gait patterns produced by the interaction between

the HAL and the wearer differ according to the gait cycle, treatment

session, individual, and the wearer’s gait ability. Subgrouping such

diverse gait patterns through clustering contributes to identifying

typical gait types and systematically characterized gait features, which

lead to effective evaluations and intervention strategies (21–23).

Similarly in cybernics treatment, clustering various gait patterns and

knowing their relationship to the wearer’s disease type, gait ability,

and other factors provides new information for identifying the

specific characteristics of the wearer’s gait and developing treatment

plans. Our unique approach of utilizing the automatically measured

gait data from HAL has facilitated the accumulation of large volumes

of gait data, enabling this study to conduct a pioneering

comprehensive clustering analysis of kinematic and kinetic patterns

during interventions for rare neuromuscular diseases.

The objective of this study was to cluster the gait patterns of

individuals with neuromuscular diseases receiving cybernics treatment

into subgroups based on gait kinematic and kinetic data automatically

measured by the HAL during assisted walking, followed by examining

the features of these subgroups, as part of a novel approach to

establish a method of multi-faceted gait understanding while

cybernics treatment. The clustering results characterized the patterns

of ground reaction forces, lower limb joint angles, trunk angles, and

joint torque of the HAL during walking with HAL. Furthermore, the

subsequent analysis using Bayesian regression models provided

interpretations regarding the associations between the wearer’s

attributes, such as disease type and gait ability, and the gait patterns of

each subgroup. This study is the first to reveal the characteristics of

entire gait kinematic and kinetic patterns during HAL-assisted

walking in individuals with neuromuscular diseases, as well as to

investigate how differences in gait patterns relate to disease type and

gait ability. Our new insight into gait under the fusion of the wearer
Frontiers in Medical Technology 03
and the HAL will encourage the gait assessment using the data

automatically measured by the HAL in cybernics treatment.
2 Materials and methods

2.1 Data source and study design

This study was a secondary analysis of data collected for a long-

term outcome survey of “HAL for Medical Use (Lower Limb Type)”

(Trial ID: jRCT1092220301/JMA-IIA00301) (24). One objective of

the survey was to collect and analyze data on cybernics treatment

using HAL. The participants in the survey were individuals with

neuromuscular diseases, including the following conditions

associated with gait disorder: amyotrophic lateral sclerosis, spinal

muscular atrophy, spinal bulbar muscular atrophy, Charcot-Marie

Tooth disease, distal myopathy, congenital myopathy, sporadic

inclusion body myositis, and muscular dystrophy. The treatments

were performed at 20 specialty care hospitals or clinics in Japan.

Each intervention required participants to wear a HAL for Medical

Use—Lower Limb Type (HAL-ML05) and walk under the fusion

with the HAL for periods ranging between 20 and 40 min, with

no more than one session conducted per day. The duration of the

intervention was defined as a maximum of 40 months, and the

number and duration of treatments differed among participants.

As the primary outcome of the survey, the 2-min walk test was

conducted without HAL at intervals.

The control mode of the HAL was set to Cybernic Voluntary

Control (CVC) mode, in which the assisting torques to the hip

and knee joint support the wearer’s movement according to

voluntary muscle activity (11, 25, 26). The degree of assist torques

from the HAL was adjusted by the operators at each clinical site,

depending on the wearer’s condition (26). Gait data during

treatment were automatically collected using the HAL and saved

through dedicated applications. Time-series data of ground

reaction forces (heel and toe), lower limb joint angles (hip and

knee), trunk angles (pitch and roll), and joint torques of the HAL

(hip and knee) were included. Gait time-series data, other than

trunk angles, were obtained separately for each leg (left and right).

Gait data from 549 interventions in 48 individuals were obtained

through the survey. From these data, the minimum number of

interventions per person was 1, the maximum was 93, and the median

was 6. The age of the participants at the start of the cybernics

treatment ranged from 24 to 77 years. The distribution of height

ranged from 149.8 cm to 179.0 cm, and regarding the sizes of HAL, 10

participants used size S, 28 used size M, 9 used size L, and 1 used size X.
2.2 Data processing

After obtaining the gait data measured by the HAL from the

survey, we segmented the time-series data into gait cycles based

on the weight distribution between the left and right legs

calculated from the ground reaction forces (27). The start of

the gait cycle was defined as the point at which a change in the

weight distribution ratio occurred owing to a transition from the
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swing phase to ground contact (Supplementary Material A). The

gait cycle starting with the initial contact of the right leg defined

the right leg as the reference leg. Similarly, when the cycle

started with the initial contact of the left leg, it was defined as

the reference leg (Supplementary Material A). Subsequently, for

each gait cycle, the time-series data were time-normalized in 101

time points, from 0% to 100% in 1% increments, using spline

interpolation. The ground reaction force data were amplitude-

normalized by dividing them by the wearer’s body weight.
2.3 Principal component analysis

In the following analysis, we used gait time-series data from 15

gait cycles per treatment session for each leg side. The sessions in

which the number of detected gait cycles did not reach 15 per leg

were excluded from the analysis. Some clinical data included

sessions with fewer gait cycles, and excluding these sessions

could potentially introduce bias due to the wearer’s gait ability

and fatigue. The threshold of 15 cycles was determined by

balancing the amount of excluded data with a sufficient amount

of data to ensure consistency in the analysis. Ultimately, time-

series data comprising 13,710 gait cycles from 457 treatments

involving 48 individuals were used for the study.

We used principal component analysis (PCA) on the gait time-

series data to summarize the major variations in gait patterns with

low-dimensional features (28–32). A total of seven matrices for

applying PCA were created for each set of kinematic and kinetic

data. For the ground reaction forces, the data from the heel and toe

sides of both the reference leg (the leg that begins bearing weight at

0% of the gait cycle) and the opposite leg were combined to form a

matrix with 404 columns (101 time points × 4 items) and 13,710

rows (13,710 gait cycles). For the hip joint angle, the data for the

reference leg were extracted from each gait cycle, resulting in a

matrix of 101 columns (101 time points × 1 item). Similarly,

matrices with 101 columns were created for the knee joint angle,

hip torque, and knee torque. For the trunk pitch angle, the time-

normalized data for each gait cycle were used directly to form a

101-column matrix. For the trunk roll angle, the signs were unified

for the left and right legs such that the tilt toward the reference leg

was in the positive direction, and a 101-column matrix was formed.

All these matrices consisted of 13,710 rows. The eigenvectors

obtained from the covariance matrix of each kinematic/kinetic data

matrix served as the principal components (PCs) representing the

independent features of the patterns. The PCs were ordered by the

amount of captured variation in the time-series data, with the first

PC corresponding to the greatest variation in the patterns of the

data set (33). The principal component scores represent the

contribution of each principal component to the time-series pattern

of individual gait cycles (30).
2.4 Clustering analysis

We employed hierarchical clustering using Ward’s linkage

method and Euclidean distance measures (22, 23, 34–36) to
Frontiers in Medical Technology 04
determine the subgroups of each kinematic and kinetic gait

pattern. In the cluster analysis of each measurement item, the

input was the scores of the selected PCs up to the point where

the cumulative contribution rate reached 99% in the PCA,

ensuring that sufficient principal components were selected to

avoid overly limiting the features influencing the clustering, while

efficiently reducing dimensionality. The final number of clusters

was set to that with the largest percentage change in linkage

distance with the change in the number of clusters, out of an

analytically tractable range of 5–10 (37).
2.5 Bayesian regression analysis

Our interest was to understand how the wearer’s disease

characteristics and gait ability were related to differences among

the clustered subgroups. To address this critical issue in a clinical

context, we constructed a Bayesian regression model for each

kinematic and kinetic gait pattern to analyze the effects of

disease type and 2-min walk distance on the distribution

probabilities of the gait pattern subgroups in each treatment

session (38).

Assuming that the wearer’s disease type, the initial gait ability

before the first treatment during the survey, and gait ability at each

treatment session would make the difference in the gait patterns,

we incorporated these variables into the regression model. The

distribution of gait patterns was represented by the number of

gait cycles belonging to each cluster in a single treatment session.

A total of 30 gait cycles (15 cycles per leg) were extracted from

each treatment session, so the response variable yit for the t-th

session of participant i was modeled to follow a multinomial

distribution with n ¼ 30, where the probability of belonging to

k-th cluster was parameterized by uitk. The parameter uitk was

linked to a linear model through the softmax function. The

linear predictor included the following variables: disease type x1i,

initial gait ability x2i, and the gait ability at the t-th session x3it
for participant i. Additionally, a random effect uik was included

in the model to account for individual differences, as the data

were collected repeatedly from each participant.

Regarding disease type (x1i), the eight neuromuscular diseases

were divided into two groups: neurogenic disease, including

amyotrophic lateral sclerosis, spinal muscular atrophy, spinal

bulbar muscular atrophy, and Charcot-Marie Tooth disease

(coded as “0” in the binary variable); and myogenic disease,

including distal myopathy, congenital myopathy, sporadic

inclusion body myositis, and muscular dystrophy (coded as “1”).

For initial gait ability (x2i), we used the 2-min walk distance

measured before each participant’s first treatment session. Gait

ability at the t-th treatment session (x3it) was represented by the

deviation from each participant’s average 2-min walk distance.

Since 2-min walk distances were not measured at every treatment

session but before and after one series of several sessions, the

2-min walk distances for each session within a series were

estimated using linear interpolation. If either the pre- or post-

series measurement was missing, the available measurement was

applied for all sessions within the series. In cases where both
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measurements were missing, the data from that series were

excluded as missing data. Ultimately, data from 428 treatment

sessions across 45 participants were used in this Bayesian analysis.

The Bayesian regression model described above is expressed by

the following equation:

yit � Multinomial(n, uit),

uit ¼ (uit1, uit2, . . . , uitK ),

uitk ¼ exp(hitk)
PK

j¼1 exp(hitj)
,

hitk ¼ b0k þ b1kx1i þ b2kx2i þ b3kx3it þ uik,

where K is the number of subgrouped clusters (k ¼ 1, 2, . . . , K)

for each measurement item. All parameters were allowed to take

both positive and negative real values, and we used a normal

distribution with a mean of 0 as the prior distribution (38). To

account for the differences in scale between 2-min walk distances

and other variables, the variances were set to 1 for β0k, β1k, and

uik, and to 0.01 for β2k and β3k:

b0k, b1k, uik � N (0, 1),

b2k, b3k � N (0, 0:01):

The impacts of explanatory variables on the distribution

probability of gait patterns were interpreted based on the sign of

each parameter. We considered a parameter to have a strong

effect if the 95% credible interval (95% CI) of its posterior

distribution did not include zero (39).

The Bayesian regression analysis was conducted using the PyMC

package (v5.12.0) in Python (40). The posterior distributions were

estimated using the No-U-Turn Sampler (NUTS) (41). The

sampling was performed using four chains with 4,000 iterations

each, with the first 2,000 iterations discarded as the burn-in period.

Convergences were assessed by the Gelman-Rubin statistic (R̂) (38),

which was 1.0 for all parameters.
3 Results

3.1 Ground reaction forces

The first 23 PCs, accounting for a cumulative contribution rate

of 99.02%, were selected as clustering inputs. The patterns of the

ground reaction forces were divided into ten subgroups (GRF-

C1–C10; Figure 2) at a percentage change in the linkage distance

of 21.92%. Figure 2 shows that the load on the heel side was

greater than that on the toe side for GRF-C1–C5. Conversely, for

C6, 8, and 10, the load on the toe side was greater than that on

the heel side. In C1 and C8 the load was primarily on one side,

either the heel side or the toe side, respectively. In the GRF-C7

pattern, the peak loads of the normalized ground reaction forces

were smaller than those of the other clusters. In contrast, C9 has

large loads on both the heel and toe sides. There was a left-right

difference in C2 and C4, where the heel load of one leg and the
Frontiers in Medical Technology 05
toe load of the other leg were greater as a set. The results of the

Bayesian analysis (Table 1) indicated that disease type (β1k) had

a positive effect on GRF-C4 and negative effects on C1 and C9,

meaning that myogenic diseases increased the likelihood of C4

and decreased it for C1 and C9 compared to neurogenic diseases.

Initial gait ability (β2k) tended to have negative effects on GRF-

C3 and C7, and positive effects on C9 and C10. Gait ability at

each treatment session (β3k) positively influenced GRF-C1 and

C6, and negatively influenced C4 and C7. The baseline

probability of cluster membership, excluding the effects of

disease type and gait ability, was higher for GRF-C1, C3, C5, and

C7, with positive 95% CIs for the intercept (β0k), and lower for

C4, C9, and C10, with negative 95% CIs for the intercept.
3.2 Lower limb joint angles

For the hip joint angle, the first eight PCs, which accounted for

a cumulative contribution rate of 99.07%, were selected as

clustering inputs. The hip angle patterns were divided into five

subgroups (HIP-ANGLE-C1–C5; Figure 3) at a percentage

change in the linkage distance of 12.04%. Figure 3 shows that the

primary differences in the hip joint angle patterns were in the

magnitude of the offset throughout the gait cycle and the range

of motion. HIP-ANGLE-C1, which was composed solely of data

from one participant, had the largest flexion direction offset over

the entire gait cycle. C2 also showed a strong tendency toward

flexion, although not as much as C1, and its average pattern did

not extend below 0°. In cluster C3, the timing to reach extension

was the earliest, and the maximum extension angle was the

largest among the five clusters. The patterns included in C5

indicated a greater range of hip-angle motion with large flexion

in the swing phase. The posterior distribution from the Bayesian

analysis (Table 2) indicated that initial gait ability (β2k) had a

negative effect on HIP-ANGLE-C1 and a positive effect on C3.

The baseline probability of cluster membership was lower for C1,

with a negative 95% CI for the intercept (β0k), and higher for C4

and C5, with positive 95% CIs for the intercept.

For the knee joint angle, the first nine PCs, which accounted

for a cumulative contribution rate of 99.26%, were selected as

clustering inputs. The knee angle patterns were divided into six

subgroups (KNEE-ANGLE-C1–C6; Figure 4), with a percentage

change in the linkage distance of 17.24%. Figure 4 shows that

KNEE-ANGLE-C1 and C2 had weak stance-phase extensions,

whereas C3–C5 reached a knee joint angle near 0° in the stance

phase. The maximum flexion angles were larger in C1 and C3

than in the other clusters, whereas it was smaller in C5. The

posterior distribution from the Bayesian analysis (Table 3)

showed a trend of fewer gait cycles in KNEE-ANGLE-C3 and

more in C5 with myogenic diseases compared to neurogenic

diseases (β1k). Both lower initial gait ability (β2k) and lower

session gait ability (β3k) were more likely to produce patterns in

KNEE-ANGLE-C2. The baseline probability of cluster

membership was lower for C1, with a negative 95% CI for the

intercept (β0k).
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FIGURE 2

Patterns of ground reaction forces for each subgroup. The loads are normalized by the wearer’s weight. The n in the graph is the number of gait cycles
in the cluster. The solid lines are the average patterns of all gait cycles in the cluster, while the colored shadings are the mean ± standard deviation
range. The magenta and cyan colors represent the values measured by the sensors on the heel and toe side of the reference leg (the leg that begins
bearing weight at 0% of the gait cycle), respectively. The red and blue colors represent the heel and toe side of the opposite leg, respectively.
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3.3 Trunk angles

For the trunk pitch angle, the first 11 PCs, which accounted for

a cumulative contribution rate of 99.18%, were selected as

clustering inputs. The trunk pitch angle patterns were divided

into seven subgroups (TRUNK-PITCH-C1–C7; Figure 5) with a

33.60% change in the linkage distance. Figure 5 shows that the

pattern of the trunk pitch angles can be divided by the degree of

forward tilt. The magnitude of the anterior tilt of the trunk was
Frontiers in Medical Technology 06
not in the order of the cluster number, with TRUNK-ROLL-C3

having the largest forward lean angle. On the contrary, in C6,

the average pattern of the pitch angle remained in the negative

range throughout the gait cycle, indicating a slight backward

lean. The results of the Bayesian analysis (Table 4) suggested that

having myogenic rather than neurogenic diseases (β1k) increased

the likelihood of the pattern in TRUNK-PITCH-C2 and C3, and

decreased the likelihood of C5. Initial gait ability (β2k) tended to

have negative effects on TRUNK-PITCH-C2 and C3, and
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https://doi.org/10.3389/fmedt.2024.1448317
https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org/


TABLE 1 Posterior summary and convergence statistics of the Bayesian regression model for ground reaction forces.

Intercept (β0k) Disease type (β1k) Initial gait ability (β2k) Session gait ability (β3k)

Mean [95% CI] ESS Mean [95% CI] ESS Mean [95% CI] ESS Mean [95% CI] ESS
C1 1.025 [0.049, 2.025] 4,006 −1.484 [−2.391, −0.493] 4,330 −0.002 [−0.012, 0.007] 4,849 0.016 [0.004, 0.028] 8,385

C2 −0.381 [−1.428, 0.619] 4,838 0.428 [−0.543, 1.305] 4,331 0.002 [−0.007, 0.012] 4,907 −0.009 [−0.019, 0.001] 6,314

C3 1.105 [0.188, 2.079] 4,098 0.568 [−0.288, 1.534] 3,860 −0.012 [−0.021, −0.002] 4,878 −0.004 [−0.013, 0.005] 5,300

C4 −1.393 [−2.506, −0.308] 5,018 1.035 [0.042, 2.005] 4,669 0.001 [−0.01, 0.011] 5,344 −0.029 [−0.039, −0.019] 5,770

C5 1.213 [0.335, 2.224] 3,475 0.805 [−0.054, 1.679] 3,422 −0.004 [−0.013, 0.005] 4,229 −0.004 [−0.013, 0.004] 4,348

C6 0.633 [−0.300, 1.539] 3,926 0.369 [−0.492, 1.226] 3,519 0.004 [−0.005, 0.013] 4,174 0.031 [0.021, 0.042] 6,604

C7 3.134 [2.239, 4.029] 3,418 0.553 [−0.331, 1.418] 3,610 −0.029 [−0.038, −0.019] 4,678 −0.022 [−0.031, −0.012] 5,541

C8 0.829 [−0.125, 1.785] 4,147 0.103 [−0.855, 1.022] 4,335 −0.01 [−0.019, 0.000] 5,045 −0.007 [−0.021, 0.008] 10,648

C9 −2.206 [−3.428, −0.995] 6,401 −2.33 [−3.565, −1.106] 6,516 0.017 [0.006, 0.028] 5,173 0.017 [0.000, 0.033] 11,376

C10 −3.814 [−5.038, −2.601] 6,144 −0.119 [−1.160, 0.911] 4,979 0.031 [0.021, 0.042] 4,937 0.009 [−0.008, 0.024] 11,361

The table presents the mean and 95% credible intervals (95% CI) of the posterior distribution for fixed effects, as well as the bulk effective sample size (ESS) for each parameter. The rows
correspond to the cluster numbers (k) of subgrouped patterns; i.e., Ck corresponds to the cluster name “GRF-Ck”.

FIGURE 3

Patterns of hip joint angle for each subgroup. Positive angles indicate flexion, negative angles indicate extension, and zero indicates the hip joint is
straight. The n in the graph is the number of gait cycles in the cluster. The solid black line is the average pattern of all gait cycles in the cluster,
and the gray shading is the mean ± standard deviation range.

TABLE 2 Posterior summary and convergence statistics of the Bayesian regression model for hip joint angle.

Intercept (β0k) Disease type (β1k) Initial gait ability (β2k) Session gait ability (β3k)

Mean [95% CI] ESS Mean [95% CI] ESS Mean [95% CI] ESS Mean [95% CI] ESS
C1 −2.740 [−3.947, −1.490] 9,853 0.261 [−1.087, 1.512] 10,649 −0.023 [−0.038, −0.008] 11,347 −0.001 [−0.019, 0.017] 16,278

C2 −0.237 [−1.259, 0.847] 7,160 0.721 [−0.320, 1.756] 6,957 −0.003 [−0.013, 0.008] 8,715 0.008 [−0.002, 0.017] 6,428

C3 0.522 [−0.500, 1.521] 6,893 −0.388 [−1.420, 0.612] 6,858 0.016 [0.006, 0.027] 8,506 −0.008 [−0.018, 0.002] 6,755

C4 1.126 [0.105, 2.129] 6,484 0.156 [−0.870, 1.150] 7,100 0.008 [−0.002, 0.019] 7,666 −0.001 [−0.010, 0.010] 6,313

C5 1.288 [0.250, 2.343] 7,050 −0.730 [−1.761, 0.261] 7,370 0.002 [−0.008, 0.013] 8,331 0.002 [−0.008, 0.013] 6,395

The table presents the mean and 95% credible intervals (95% CI) of the posterior distribution for fixed effects, as well as the bulk effective sample size (ESS) for each parameter. The rows
correspond to the cluster numbers (k) of subgrouped patterns; i.e., Ck corresponds to the cluster name “HIP-ANGLE-Ck”.
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FIGURE 4

Patterns of knee joint angle for each subgroup. Positive angles indicate flexion, negative angles indicate extension, and zero indicates the knee joint is
straight. The n in the graph is the number of gait cycles in the cluster. The solid black line is the average pattern of all gait cycles in the cluster, and the
gray shading is the mean ± standard deviation range.

TABLE 3 Posterior summary and convergence statistics of the Bayesian regression model for knee joint angle.

Intercept (β0k) Disease type (β1k) Initial gait ability (β2k) Session gait ability (β3k)

Mean [95% CI] ESS Mean [95% CI] ESS Mean [95% CI] ESS Mean [95% CI] ESS
C1 −1.151 [−2.161, −0.071] 3,695 −0.320 [−1.294, 0.675] 3,388 −0.002 [−0.012, 0.008] 3,952 −0.012 [−0.023, 0.000] 6,370

C2 0.330 [−0.688, 1.301] 3,229 0.395 [−0.583, 1.355] 3,145 −0.011 [−0.021, −0.002] 3,530 −0.013 [−0.022, −0.004] 3,836

C3 −0.334 [−1.270, 0.661] 3,422 −0.974 [−1.964, −0.026] 3,043 0.008 [−0.002, 0.017] 3,314 0.009 [−0.001, 0.019] 4,269

C4 0.717 [−0.252, 1.651] 3,021 −0.337 [−1.299, 0.570] 2,862 0.007 [−0.002, 0.016] 3,476 0.007 [−0.001, 0.016] 3,456

C5 −0.293 [−1.249, 0.655] 3,247 1.287 [0.354, 2.257] 2,981 −0.003 [−0.013, 0.006] 3,443 0.000 [−0.009, 0.009] 3,836

C6 0.693 [−0.264, 1.630] 3,025 −0.052 [−0.984, 0.881] 2,938 0.002 [−0.008, 0.011] 3,111 0.008 [−0.001, 0.016] 3,408

The table presents the mean and 95% credible intervals (95% CI) of the posterior distribution for fixed effects, as well as the bulk effective sample size (ESS) for each parameter. The rows
correspond to the cluster numbers (k) of subgrouped patterns; i.e., Ck corresponds to the cluster name “KNEE-ANGLE-Ck”.
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positive effects on C5–7. Gait ability at each treatment session (β3k)

positively influenced TRUNK-PITCH-C3, and negatively

influenced C1 and C6. The baseline probability of cluster

membership was higher for TRUNK-PITCH-C1, C4, and C5,

with positive 95% CIs for the intercept (β0k), and lower for C3

and C6, with negative 95% CIs for the intercept.

For the trunk roll angle, the first 13 PCs, which accounted for a

cumulative contribution rate of 99.07%, were selected as clustering

inputs. The trunk roll angle patterns were divided into five

subgroups (TRUNK-ROLL-C1–C5; Figure 6) with a percentage

change in the linkage distance of 38.83%. Figure 6 shows that the

roll angle of the trunk varies with the symmetry and magnitude

of the trunk sway. The lateral sway of the trunk was small

throughout the gait cycle in TRUNK-ROLL-C1 and C5, and both

clusters showed left-right differences. In C1, the trunk generally

leaned toward the side of the reference leg, making an initial
Frontiers in Medical Technology 08
contact. In contrast, in C5, the trunk leaned toward the side of

the non-reference leg. The patterns in C2 and C4 had common

characteristics in that there were large changes in the angles at

the beginning (approximately 0%–10%) and middle

(approximately 50%–60%) of the gait cycle, with the trunk

leaning toward the opposite non-reference leg in the first half

and toward the side of the reference leg in the second half.

However, they differed in whether the leaning angles were

greater for the reference leg or the opposite leg. C3 exhibited a

symmetrical pattern where the trunk reached a peak tilt near

0%–10% and 50%–60% of the gait cycle, followed quickly by a

return to vertical orientation. The results of the Bayesian analysis

(Table 5) suggested that being neurogenic rather than myogenic

(β1k) increased the likelihood of the pattern in TRUNK-ROLL-

C4 and that lower gait ability at treatment sessions (β3k)

increased the likelihood of the pattern in C3.
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FIGURE 5

Patterns of trunk pitch angle for each subgroup. The trunk pitch angle represents the tilt of the HAL control system behind the wearer’s lumbar at the
sagittal plane. Positive trunk pitch angles indicate anterior tilt, negative trunk pitch angles indicate posterior tilt, and zero indicates upright posture with
no tilt. The n in the graph is the number of gait cycles in the cluster. The solid black line is the average pattern of all gait cycles in the cluster, and the
gray shading is the mean ± standard deviation range.

TABLE 4 Posterior summary and convergence statistics of the Bayesian regression model for trunk pitch angle.

Intercept (β0k) Disease type (β1k) Initial gait ability (β2k) Session gait ability (β3k)

Mean [95% CI] ESS Mean [95% CI] ESS Mean [95% CI] ESS Mean [95% CI] ESS
C1 0.96 [0.028, 1.875] 7,129 −0.595 [−1.512, 0.342] 6,610 0.001 [−0.008, 0.011] 8,394 −0.018 [−0.026, −0.009] 7,266

C2 −0.991 [−2.039, 0.099] 9,231 1.719 [0.598, 2.823] 8,967 −0.026 [−0.039, −0.014] 10,821 0.003 [−0.007, 0.012] 7,974

C3 −1.893 [−3.113, −0.751] 11,272 1.460 [0.192, 2.639] 10,677 −0.029 [−0.042, −0.014] 13,106 0.036 [0.023, 0.049] 14,460

C4 1.169 [0.201, 2.048] 6,995 −0.774 [−1.674, 0.181] 5,963 0.009 [0.000, 0.019] 8,239 −0.002 [−0.011, 0.006] 6,543

C5 1.272 [0.376, 2.214] 6,368 −0.932 [−1.842, −0.045] 6,557 0.016 [0.007, 0.025] 8,131 0.003 [−0.006, 0.011] 6,670

C6 −1.096 [−2.064, −0.070] 8,140 −0.349 [−1.315, 0.639] 7,391 0.011 [0.001, 0.021] 9,114 −0.017 [−0.026, −0.008] 7,507

C7 0.637 [−0.295, 1.562] 7,044 −0.572 [−1.512, 0.342] 6,081 0.018 [0.008, 0.027] 8,426 −0.004 [−0.012, 0.004] 7,074

The table presents the mean and 95% credible intervals (95% CI) of the posterior distribution for fixed effects, as well as the bulk effective sample size (ESS) for each parameter. The rows
correspond to the cluster numbers (k) of subgrouped patterns; i.e., Ck corresponds to the cluster name “TRUNK-PITCH-Ck”.
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3.4 Joint torques of HAL

For the torque of the HAL at the hip joint, the first 22 PCs,

accounting for a cumulative contribution rate of 99.11%, were

selected as clustering inputs. The patterns of the HAL’s hip
Frontiers in Medical Technology 09
torque were divided into five subgroups (HIP-TRQ-C1–C5;

Figure 7), with a percentage change in the linkage distance of

35.40%. Figure 7 shows that there were differences in the

patterns of the HAL hip joint torque during the first half of the

gait cycle. During this phase, HIP-TRQ-C3, C4, and C5 showed
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FIGURE 6

Patterns of trunk roll angle for each subgroup. The trunk roll angle represents the tilt of the HAL control system behind the wearer’s lumbar at the
frontal plane. Positive trunk roll angles indicate tilt toward the reference leg side, negative trunk roll angles indicate tilt toward the opposite leg
side, and zero indicates upright posture with no tilt. The n in the graph is the number of gait cycles in the cluster. The solid black line is the
average pattern of all gait cycles in the cluster, and the gray shading is the mean ± standard deviation range.

TABLE 5 Posterior summary and convergence statistics of the Bayesian regression model for trunk roll angle.

Intercept (β0k) Disease TYPE (β1k) Initial gait ability (β2k) Session gait ability (β3k)

Mean [95% CI] ESS Mean [95% CI] ESS Mean [95% CI] ESS Mean [95% CI] ESS
C1 −0.496 [−1.538, 0.467] 8,100 0.531 [−0.436, 1.524] 7,680 −0.003 [−0.013, 0.007] 9,284 −0.002 [−0.012, 0.007] 7,819

C2 0.064 [−0.956, 1.059] 8,330 −1.03 [−1.991, 0.015] 7,608 0.007 [−0.002, 0.017] 8,352 0.008 [−0.002, 0.017] 8,380

C3 0.316 [−0.653, 1.338] 8,114 0.925 [−0.047, 1.961] 7,579 −0.004 [−0.013, 0.006] 9,009 −0.012 [−0.021, −0.003] 8,061

C4 0.143 [−0.874, 1.134] 8,203 −1.152 [−2.155, −0.164] 7,607 0.001 [−0.010, 0.010] 9,060 0.009 [0.000, 0.019] 8,141

C5 −0.033 [−1.016, 1.005] 7,977 0.747 [−0.220, 1.743] 7,472 −0.002 [−0.012, 0.008] 9,179 −0.002 [−0.012, 0.006] 8,078

The table presents the mean and 95% credible intervals (95% CI) of the posterior distribution for fixed effects, as well as the bulk effective sample size (ESS) for each parameter. The rows
correspond to the cluster numbers (k) of subgrouped patterns; i.e., Ck corresponds to the cluster name “TRUNK-ROLL-Ck”.
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clear extension torque, whereas C1 showed only a slight extension

tendency. Unlike the other clusters, C2 initially showed flexion

torque and had a strong flexion tendency throughout the gait

cycle. In C3, the peak extension torque occurred later than in C4

and C5. The difference between C4 and C5 was the torque

amplitude. The posterior distribution from the Bayesian analysis

(Table 6) showed a trend toward more gait cycles in HIP-TRQ-

C4 for neurogenic diseases, with a negative effect of disease type

(β1k). Initial gait ability (β2k) tended to have a negative effect on

C2 and a positive effect on C5. Gait ability at each treatment

session (β3k) negatively influenced C1 and positively influenced

C2. The baseline probability of cluster membership was lower for

HIP-TRQ-C3, with a negative 95% CI for the intercept (β0k), and

higher for C4, with a positive 95% CI for the intercept.

For the torque of the HAL at the knee joint, the first 26 PCs,

accounting for a cumulative contribution rate of 99.06%, were
Frontiers in Medical Technology 10
selected as clustering inputs. The patterns of the HAL’s knee

torque were divided into five subgroups (KNEE-TRQ-C1–C5;

Figure 8), with a percentage change in the linkage distance of

17.64%. Figure 8 shows that there were differences among the

clusters in the pattern of the HAL knee joint torque up to

approximately 60% of the gait cycle. KNEE-TRQ-C1 to C3

mainly had extension torque during that phase, while C4 had

flexion torque, and C5 had intermediate torque. In C2 and C3,

the change in the torque values in the extension direction was

large, up to approximately 20% of the gait cycle. The posterior

distribution from the Bayesian analysis (Table 7) showed that

those with lower initial gait ability (β2k) were more likely to take

the KNEE-TRQ-C2 pattern. Lower gait ability at treatment

sessions tended to increase the likelihood of C2, while higher gait

ability at treatment sessions tended to increase the likelihood of

C3 (β3k). The baseline probability was lower for KNEE-TRQ-C2
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FIGURE 7

Patterns of hip joint torque produced by HAL for each subgroup. Positive torque indicates a force in the flexion direction, negative torque indicates in
the extension direction, and zero indicates no torque is applied. The n in the graph is the number of gait cycles in the cluster. The solid black line is the
average pattern of all gait cycles in the cluster, and the gray shading is the mean ± standard deviation range.

TABLE 6 Posterior summary and convergence statistics of the Bayesian regression model for hip joint torque produced by HAL.

Intercept (β0k) Disease type (β1k) Initial gait ability (β2k) Session gait ability (β3k)

Mean [95% CI] ESS Mean [95% CI] ESS Mean [95% CI] ESS Mean [95% CI] ESS
C1 0.505 [−0.534, 1.497] 8,619 0.525 [−0.488, 1.499] 8222 0.009 [−0.001, 0.019] 10,488 −0.013 [−0.022, −0.004] 8,537

C2 −0.289 [−1.325, 0.749] 9,428 0.601 [−0.451, 1.611] 9,069 −0.011 [−0.021, −0.001] 10,749 0.017 [0.007, 0.026] 8,143

C3 −1.049 [−2.130, −0.011] 9,484 −0.128 [−1.214, 0.894] 9,073 −0.011 [−0.022, 0.000] 12,271 0.002 [−0.008, 0.012] 8,163

C4 1.539 [0.554, 2.580] 8,931 −1.373 [−2.340, −0.373] 8,297 −0.001 [−0.012, 0.009] 10,725 −0.005 [−0.014, 0.005] 7,954

C5 −0.744 [−1.790, 0.242] 8,794 0.438 [−0.519, 1.475] 8,574 0.014 [0.004, 0.024] 10,203 −0.001 [−0.011, 0.008] 8,188

The table presents the mean and 95% credible intervals (95% CI) of the posterior distribution for fixed effects, as well as the bulk effective sample size (ESS) for each parameter. The rows
correspond to the cluster numbers (k) of subgrouped patterns; i.e., Ck corresponds to the cluster name “HIP-TRQ-Ck”.
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and C3, with negative 95% CIs for the intercept (β0k), and higher

for C5, with a positive 95% CI for the intercept.
4 Discussion

The main objective of this study was to create subgroups of gait

patterns that the HAL automatically measures during HAL-assisted

gait in individuals with neuromuscular diseases. We hypothesized

that the gait produced by the interaction between the wearer and

HAL based on voluntary intention has various patterns. By

forming subgroups using hierarchical clustering, we expected it

would be possible to find typical gait types. The secondary goal

was to clarify the characteristics of each cluster, particularly

regarding the wearer’s attributes that influence differences in gait

patterns. We hypothesized that disease type and gait ability

would affect the differences between clusters and expected that
Frontiers in Medical Technology 11
the Bayesian regression model would be useful in interpreting

these effects. The overall results showed that the subgroups

organized based on hierarchical clustering highlighted the

characteristics of multiple kinematic and kinetic gait patterns

while wearing HAL, with some patterns showing significant

associations with the wearer’s disease type and gait ability.

For the ground reaction forces, it is an obvious feature whether

the load is biased toward the heel or toe. In a typical gait in

individuals without gait disorders and without HAL, during the

stance phase, the foot contacts the ground from the heel side,

followed by a gradual forward shift of the body’s center of mass,

and finally, the toes leave the ground (42). The vertical

component of the ground reaction force across the entire sole

forms an M-shaped curve, with the first peak occurring soon

after the heel strike and the second peak during push-off

(42, 43). When wearing the HAL, because the ground reaction

force sensors are positioned at the forward and backward of the
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FIGURE 8

Patterns of knee joint torque produced by HAL for each subgroup. Positive torque indicates a force in the flexion direction, negative torque indicates in
the extension direction, and zero indicates no torque is applied. The k in the graph is the number of gait cycles in the cluster. The solid black line is the
average pattern of all gait cycles in the cluster, and the gray shading is the mean ± standard deviation range.

TABLE 7 Posterior summary and convergence statistics of the Bayesian regression model for knee joint torque produced by HAL.

Intercept (β0k) Disease type (β1k) Initial gait ability (β2k) Session gait ability (β3k)

Mean [95% CI] ESS Mean [95% CI] ESS Mean [95% CI] ESS Mean [95% CI] ESS
C1 0.68 [−0.328, 1.777] 4,306 0.524 [−0.425, 1.539] 4,106 −0.005 [−0.016, 0.004] 4,763 0.008 [−0.001, 0.018] 4,190

C2 −1.502 [−2.633, −0.369] 4,665 0.966 [−0.173, 2.073] 4,998 −0.016 [−0.028, −0.005] 6,018 −0.029 [−0.040, −0.017] 6,040

C3 −1.364 [−2.401, −0.245] 4,679 0.142 [−0.901, 1.134] 4,328 0.007 [−0.003, 0.017] 4,918 0.011 [0.002, 0.021] 4,448

C4 0.233 [−0.825, 1.252] 3,825 −0.837 [−1.815, 0.205] 4,060 0.008 [−0.003, 0.018] 4,622 0.006 [−0.004, 0.016] 4,207

C5 1.964 [0.933, 2.969] 4,001 −0.833 [−1.816, 0.171] 4,097 0.006 [−0.003, 0.017] 4,600 0.003 [−0.006, 0.013] 4,016

The table presents the mean and 95% credible intervals (95% CI) of the posterior distribution for fixed effects, as well as the bulk effective sample size (ESS) for each parameter. The rows
correspond to the cluster numbers (k) of subgrouped patterns; i.e., Ck corresponds to the cluster name “KNEE-TRQ-Ck”.
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sole, it was presumed that the first peak of the M-shaped curve was

observed at the heel side and the second peak at the toe side.

However, some data in the results showed load distributions that

were different from the typical HAL non-wearing gait, as seen in

several clusters represented by GRF-C1 and C8 (Figure 2).

Generally, muscle weakness is thought to be a cause of heel walking

(44–46), and it is possible that muscle weakness associated with

neuromuscular diseases similarly leads to a lack or delay in heel-off

during walking with the HAL. According to the Bayesian

regression, the heel walking pattern of almost no load on the toes,

as seen in GRF-C1, appears to be more likely in wearers with

neurogenic diseases than in those with myogenic diseases. On the

other hand, even among individuals with neurogenic diseases, those

with higher initial gait ability tend to have an increased likelihood

of the GRF-C9 or C10 patterns, where more stress is placed on the

toes, suggesting that gait patterns vary significantly with disease

progression. Toe walking is caused by spasticity or contracture of
Frontiers in Medical Technology 12
the plantar flexor muscles (44, 45). However, these are not

commonly observed in individuals with neuromuscular diseases

who participated in the outcome survey. Therefore, there may be

specific contributing factors related to gait during the HAL

intervention. Although the possibility of differences in ground

reaction force patterns due to changes in gait speed and the

presence or absence of HAL needs to be considered, the diversity in

the ratio of load distribution between the heel and toe, as seen in

the clustering results (Figure 2), would be a distinguishing and

characteristic of these patterns.

A possible reason for the smaller loads of the normalized ground

reaction forces observed in the patterns within GRF-C7 (Figure 2) is

that the wearers used partial body weight support using gait harnesses

during these interventions. Clusters of ground reaction forces other

than GRF-C7 may also contain gait cycles in which weight support

is used. Clinical operators sometimes combine HAL assistance and

weight support, depending on the wearer’s gait ability. If the wearer
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has difficulty supporting their own body weight while walking,

clinical operators may increase the amount of body weight support.

The results of the Bayesian regression, showing that both initial

and session gait ability had a negative effect on GRF-C7, support

the idea that a decline in gait ability increases the amount of

weight support and reduces ground reaction forces throughout the

gait cycle. The amplitude of the normalized ground reaction forces

can be one of the key indicators of gait changes during

intervention because it reflects the amount of weight support.

One of the characteristics that divided the hip joint angle patterns

was the difference in the range of motion. Considering that the range

of motion in natural speed gait while not wearing the HAL spans

from 10° extension to 30° flexion (from −10° to 30°) (47, 48),

HIP-ANGLE-C1 and C2 show excessive flexion overall, even when

excluding the difference due to HAL usage (Figure 3). The causes

of excessive hip flexion include hip flexion contracture and

spasticity of the hip flexors (46). However, in individuals with

neuromuscular diseases undergoing cybernics treatment, excessive

hip flexion is more likely to be caused by muscle weakness, often

accompanied by excessive knee flexion and anterior trunk tilt. The

pattern in HIP-ANGLE-C1 was rare and cannot be generalized,

but it is influenced by low initial gait ability, suggesting a strong

possibility of significant progression of muscle weakness. The

relationships between the measured items were not examined in

this study; therefore, additional research on the possibility of

compensatory movements, such as excessive knee flexion and

anterior trunk tilt, is needed. The slightly stronger extension during

the stance phase in the HIP-ANGLE-C3 (Figure 3) is likely

because individuals with higher gait ability can achieve better hip

extension. Alternatively, it may be due to the HAL applying more

hip torque in the extension direction. Conversely, the larger flexion

during the swing phase in the HIP-ANGLE-C5 (Figure 3) may be

because the HAL applies more hip torque in the flexion direction.

A noticeable feature of the knee joint angle pattern is the lack of

knee extension during the stance phase in the KNEE-ANGLE-C1 and

C2 (Figure 4). The gait of people without gait disorders and without

HAL has a total of two flexion peaks: one in the stance phase and the

other in the swing phase. The knee flexes by approximately 5° at the

heel strike (at 0% of the gait cycle), and in the first half of the stance

phase, it flexes to approximately 20° at the first peak and then returns

to approximately 5° flexion. Subsequently, it reaches approximately

60° of flexion at the second peak during the swing phase, and the

flexion angle decreases again toward the end of the gait cycle (43,

47). In the KNEE-ANGLE-C1 and C2, the maximum extension of

the average pattern was considerably greater than 5°, which

indicates the knee was in hyperflexion. A similar pattern of

excessive flexion was observed in the knee joint patterns of

individuals with bilateral plantar flexor weakness, as measured by

Waterval et al. (49), suggesting that this pattern is likely to occur

in those with muscle weakness. The results of the Bayesian

regression showed a similar trend, indicating that individuals with

lower gait ability are more likely to exhibit excessive knee flexion

(Table 3; KNEE-ANGLE-C2). In the gait of individuals using HAL,

excessive flexion can be suppressed by strengthening the knee

extension assistance. In KNEE-ANGLE-C5, the flexion angle at the

second peak during the swing phase is the smallest, but it does not
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seem to differ much from the maximum flexion angle in normal

walking (Figure 4). At C3, the maximum flexion angle was larger

(Figure 4), and excessive flexion during the swing phase was

thought to compensate for excessive ankle plantar flexion to ensure

clearance (46). During HAL intervention, there is also the

possibility that the assistive force for knee flexion is too strong. An

interesting difference between KNEE-ANGLE-C3 and C5 is that

the likelihood of excessive knee flexion in the swing phase

increases in individuals with neurogenic diseases, whereas the

likelihood of less or normal amounts of knee flexion increases in

those with myogenic diseases (Table 3). The mechanisms

underlying this phenomenon warrant further investigation.

The differences between clusters in the trunk pitch angle

mainly represented the degree of forward or backward tilt of the

trunk, particularly in the lumbar region where the HAL control

system was located. During normal walking without a HAL, the

trunk is tilted forward by approximately 5° (50). The angle

varied by cluster; however, in TRUNK-PITCH-C1 through C4,

the trunk was tilted forward more than usual (Figure 5). Some

researchers have mentioned that forward trunk tilt during

walking without HAL is caused by weakness of the hip extensors

or quadriceps (51). A similar tilt pattern in the trunk pitch angle

may also appear during walking with the HAL, despite the

presence of assistive torque. Additionally, using assistive devices

with the upper limbs to support the trunk can cause a forward

tilt (46). Therefore, if a harness is used to support the body

during treatment, the trunk is likely to tilt forward. The results

of the Bayesian analysis showed that individuals with myogenic

disease and greater decline in gait ability tended to have a more

pronounced forward-leaning posture (Table 4; TRUNK-PITCH-

C2 and C3). Generally, muscle weakness due to myopathy,

except for distal myopathy, is primarily seen in proximal muscles

(52). Our results support the hypothesis that individuals with

myogenic diseases have difficulty maintaining trunk stability as

the disease progresses, resulting in a forward-leaning posture

during HAL-assisted walking. On the other hand, individuals in

TRUNK-PITCH-C5, C6, and C7, where the trunk does not lean

excessively forward and remains upright, tend to have relatively

higher gait ability. However, the likelihood of C6 increased when

the gait ability was lower within individuals, suggesting that a

decline in gait ability may lead to a tendency to lean backward.

Regarding the trunk roll angle, the characteristics are divided

into cases where there is a significant left-right amplitude from

the equilibrium position (Figure 6; TRUNK-ROLL-C2 -C4) and

cases where there is a low amplitude (Figure 6; TRUNK-ROLL-

C1 and C5). In low amplitude clusters, such as C1 and C5, the

trunk movement was considered restricted. In these clusters, the

lumbar region tends to be constantly tilted to either the left or

right, which may be caused by scoliosis, a condition that can also

occur in patients with neuromuscular diseases (53). Among the

clusters with a relatively clear sway, the patterns differed between

TRUNK-ROLL-C3 and -C2/-C4. The pattern in C3 was similar

to that of the superior iliac spine in the frontal plane of healthy

men, as shown in a study by Ceccato et al. (50). However, since

the TRUNK-ROLL-C3 pattern was more likely to appear when

the 2-min walk distance within an individual was shorter, it must
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be carefully considered whether the similarity to the pattern in

healthy people represents good gait status in gait with HAL. In

C2 and C4, the trunk was tilted toward the side opposite the

supporting leg during the stance phase, which was related to the

neurogenic diseases. This occurs when it is difficult to stabilize

the pelvis, such as in cases of muscle weakness in the hip

abductor on the same side as the supporting leg (46). Because

the HAL does not generate torque to support movement in the

frontal plane, it is inferred that in individuals with advanced

muscle weakness, pelvic tilt toward the side opposite the

supporting leg occurs even while wearing the HAL.

An interesting aspect of the HAL hip and knee joint torque

patterns is that, depending on the cluster, the assistive torque acts

in different directions (flexion or extension) even with the same

gait phase. Regarding hip torque, HIP-TRQ-C2 showed flexion

torque even in phases in which the other clusters exhibited

extension torque (Figure 7). In terms of knee torque, most clusters

exhibited extension torque during the first half of the gait cycle,

whereas KNEE-TRQ-C4 exhibited flexion torque (Figure 8). The

torque output is determined by the magnitude of the bioelectrical

signals from the flexor and extensor muscles, and it is possible to

adjust the magnitude and balance of the flexion and extension

torque using parameters in the HAL’s settings. The difference in

amplitude, for example, between HIP-TRQ-C4 and -C5 (Figure 7),

was presumably caused by differences in the amplitude of the

measured bioelectrical signals or the assist gain in the HAL

settings. Since individuals with relatively higher initial gait ability

tended to exhibit the HIP-TRQ-C5 pattern, these differences in

amplitude may reflect variations in the wearers’ gait abilities.

Alternatively, the fact that individuals with neurogenic diseases

were more likely to exhibit the HIP-TRQ-C4 pattern than those

with myogenic diseases suggests that these differences may be

related to the type of disease. Furthermore, the results for KNEE-

TRQ-C2 indicate that greater assistive torque is required when gait

ability declines. Although we do not currently know the factors

that cause differences in the patterns that produce opposite torques

to other clusters during certain gait phases, such as HIP-TRQ-C2

and KNEE-TRQ-C4, we believe that it is necessary to understand

these differences when assessing the gait during HAL intervention.

In addition, the effect of these different torque patterns on the

actual joint movements is an interesting research topic.

The clustering results showed asymmetry in the ground reaction

forces (Figure 2; GRF-C2 and C4) and the trunk roll angles

(Figure 6; TRUNK-ROLL-C1, C2, C4, and C5). The results of the

Bayesian regression suggest that myogenic diseases are more likely to

cause asymmetry in ground reaction force patterns (Table 1; GRF-

C4), while asymmetry in trunk sway appears to be somewhat more

pronounced in neurogenic diseases, as seen in one of the four

clusters showing asymmetry (Table 5; TRUNK-ROLL-C4). Previous

studies on progressive neuromuscular diseases have shown that these

diseases sometimes cause asymmetrical muscle weakness and

associated bone deformities (3, 54–56). Our clusters revealed that

there is often left-right asymmetry in gait when wearing the HAL as

well. This study did not specifically examine the asymmetry of the

left and right legs, and the clustering results did not explain the

asymmetry in the joint angles or joint torques of the HAL. Future
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work will detail the differences between the left- and right-leg

patterns. Analyzing gait patterns while wearing HAL to capture left-

right differences would help tailor assistance to the characteristics of

each leg and track changes in the degree of asymmetry.

One limitation of our study is that the clustering results depend

on the sample data. Considering that a cluster containing data from

only one participant was formed in the analysis of the hip joint

angle patterns, there is no guarantee that these results are

universal. If a pattern that is significantly different from the

others emerges, it may not resemble any of the clusters formed

in this study. Nevertheless, the fact that we were able to use a

larger amount of data, with 137,100 gait cycles from 457

treatment sessions in 48 individuals, compared to previous

studies on neuromuscular disease treatment using HAL (2, 13,

14) is a strength of our research. Another potential limitation is

that the clusters obtained in our results may not always represent

the optimal partitions. We here limited the number of clusters to

a range of five to ten to achieve a balance between preventing

overgeneralization and ensuring ease of interpretation.

Subsequently, we decided on the final number of clusters based

on the percentage change in the linkage distance with a change

in the number of clusters. Several other methods are present for

determining the number of clusters in hierarchical clustering (57)

and it is necessary to consider them based on the purpose of the

analysis. Furthermore, it is important to interpret our results

with the understanding that, although we facilitated the capture

of gait pattern features by clustering, we have not discussed

whether the patterns in each cluster are desirable in terms of

HAL intervention. In the intervention, it is not simply a matter

of imitating the desired gait patterns of other clusters.

In this study, we analyzed the data concerning neuromuscular

diseases. Our approach is also applicable to other diseases and

disorders for which HAL interventions have been applied, such as

stroke (58), cerebral palsy (59), and spinal cord injury (60). Because

gait disorders vary in nature depending on their cause, it is

anticipated that gait patterns will differ based on the specific diseases

causing them. Indeed, differences between neurogenic and myogenic

diseases were observed in this study. Examining differences in gait

patterns due to diseases and disorders will help us better understand

gait and implement personalized HAL interventions.

As mentioned in the Introduction, we aimed to establish an

advanced system by accumulating and analyzing gait data obtained

during HAL-assisted treatment, which contributes to gait

evaluation. The importance of our results in sorting the gait

patterns during HAL use into several clusters lies in making it

easier to capture gait characteristics during cybernics treatment.

This has likely become the first step toward effective utilization of

the kinematics and kinetics data automatically measured by the HAL.
5 Conclusion

We have been developing a pioneering system to monitor the

wearer’s gait condition associated with cybernics treatment by

accumulating and analyzing gait data measured during

intervention, rather than relying on conventional gait tests based
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on distance and speed without HAL, enabling a multi-faceted

understanding of the wearer’s gait characteristics and condition.

As part of this effort, we focused on the gait data automatically

measured by HAL during assisted walking and clustered the gait

patterns from the cybernics treatment into subgroups. The time-

series patterns of the ground reaction forces, lower limb joint

angles, trunk angles, and joint torques of the HAL were divided

into 5–10 subgroups using a hierarchical clustering method,

indicating that the gait patterns during walking with the HAL

vary widely with several characteristic types. Moreover, the

analysis of Bayesian regression models provided interpretations

of how the wearer’s disease type and gait ability influenced the

differences in the probability of belonging to each subgroup.

These differences in gait patterns suggest the diversity and

complexity of gait generated through the interaction between the

wearer and HAL, which implies the potential for more optimal

intervention based on the characteristics captured by such

subgrouping, depending on the gait condition. Our research

highlights the importance of analyzing and evaluating gait while

wearing HAL in cybernics treatment and demonstrates the

usefulness of gait data automatically measured by HAL. HAL is

expected to function not only as a therapeutic device but also as

a gait measurement device for analysis and evaluation. Further

work will investigate more detailed and additional factors that

produce differences in gait patterns during the intervention and

the impact of these differences on treatment efficacy, leading to

sophisticated evaluation and feedback in cybernics treatment.
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