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Detection of natural
autoimmunity to ghrelin
in diabetes mellitus
Rega H. Kasim1,2, Thilo Samson Chillon1,
Anna Maria Eleftheriadou1, Eddy Rijntjes1, Waldemar B. Minich1,
Stefan Zechmann2 and Lutz Schomburg1*
1Institute for Experimental Endocrinology, Charité—Universitätsmedizin Berlin, Berlin, Germany,
2Division of Diabetes and Endocrinology, GZO Zurich Regional Health Center, Wetzikon, Switzerland
Objective: Ghrelin is an orexigenic peptide that becomes post-translationally
modified. Natural autoantibodies to ghrelin (ghrelin-aAb) have been described
in healthy subjects, in eating disorders and rheumatic diseases, with potential
clinical relevance. Despite these important reports, the data base on the
prevalence and physiological role is small and technical approaches for
assessing ghrelin-aAb are few, encouraging respective research for improving
knowledge on the potential endocrine significance.
Methods: A novel immunoprecipitation assay was generated based on a fusion
protein of human ghrelin with a reporter gene. Assay quality was verified with
commercial antibodies. Assay characteristics and matrix effects were
determined, including stability of natural ghrelin-aAb to freezing, signal
linearity in dilution experiments, and comparison of different matrices. Three
groups of serum samples were analyzed for ghrelin-aAb, comprising
commercial sera from healthy subjects and patients with type 1 or type 2
diabetes mellitus.
Results: The newly generated ghrelin-aAb assay proved sensitive, robust and
reliable over a broad concentration range. Results from serum and plasma
differed slightly. The signals from serum remained stable towards freezing and
thawing, and in dilution experiments. Applying a mathematical criterion for
outliers (P75 + 1.5-times IQR), an average prevalence of 11%–12% of positive
samples was identified in the different human cohorts, with no significant sex-
or disease-related difference.
General significance: A novel diagnostic autoantibody assay detected ghrelin-
aAb with a similar prevalence in diabetic patients and controls, suggesting that
autoimmunity to ghrelin plays little role in diabetes mellitus, but may be of
relevance in other diseases where ghrelin signaling is essential.
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1 Introduction

The arcuate hypothalamic nucleus (ARC) acts as the appetite regulatory center in the

human body. It is part of the hypothalamus and is adjacent to the third ventricle and the

median eminence. In response to specific stimuli such as food intake or fasting, peripheral

organs and tissues in the body release appetite-regulating hormones as humoral signals to
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the neuron population of the ARC to maintain homeostasis (1, 2).

The gut-derived peptide ghrelin elicits positive appetite-inducing

effects, acting as an endogenous orexigenic signal secreted mainly

before meal intake (3). Furthermore, it has been described as a

modifier of glucose- and energy-homeostasis, heart and muscle

protection, and also as being involved in bone metabolism and

tumorigenesis (4). The endocrine and orexigenic effects of

ghrelin are mainly mediated by the growth hormone

secretagogue receptor (GHS-R), found e.g., on NPY/AgRP

neurons in the ARC and on somatotropic cells of the

anterior pituitary (5).

Since its detection, ghrelin has been increasingly associated

with obesity and insulin resistance in mammals, controlling

energy homeostasis, growth hormone release and lipogenesis (6).

Subcutaneous injections of ghrelin caused weight gain in rodents

by increasing food intake, insulin secretion and reducing fat

utilization (7). In human subjects, low ghrelin plasma

concentration were associated with circulating insulin

concentrations, hypertension, and type 2 diabetes mellitus

(T2DM) (8). These findings amongst others highlight the

potential relevance of ghrelin for controlling metabolism as a

novel pharmacological target for obesity, insulin resistance, fatty

liver disease and T2DM (9, 10).

It is therefore conceivable that an imbalance in ghrelin

signaling may influence metabolic disease risks and effect energy

metabolism, with pathophysiological relevance (11). Accordingly,

gene variants have been described, and polymorphisms in the

ghrelin gene were associated with hypertension in T2DM (12),

and alcohol use disorder (13).

Besides genetic effects, autoimmunity to ghrelin signaling has

been described recently, in particular concerning obesity (14),

eating disorders (15–18) and rheumatoid arthritis (19).

Mechanistically, the endogenous ghrelin-aAb may stabilize

circulating ghrelin, thereby increasing its half-life and supporting

its endocrine signaling activity (20). Alternatively, the interaction

of ghrelin with its receptors may become impaired, inducing

ghrelin resistance.

By now, detection of natural ghrelin-aAb in human serum

samples has mainly been performed by enzyme-linked

immunosorbent assays (ELISA) using commercial ghrelin

preparations as bait, and employing anti-human IgG with

reporter moiety as detectors for recognizing the endogenous

ghrelin-aAb (14, 21). As the different techniques come with

specific advantages and limitations, we decided to establish an

alternative method for ghrelin-aAb quantification by using a

fusion protein of ghrelin in frame with a reporter enzyme as bait,

thereby avoiding a second detection step. To this end, protein-A-

based precipitation of potential aAb bound to the fusion protein

is used for quantification of ghrelin-aAb. After verification of the

suitability and robustness of the method, we decided to conduct

a first analysis of control subjects in comparison to patients with

a diagnosis of T1DM or T2DM. The results indicate high quality

of the analytical assay, but no differences in ghrelin-aAb

prevalence in the three groups of subjects.
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2 Material and methods

2.1 Human serum samples

Three sets of serum samples obtained from healthy human

adults and patients with a diagnosis of T1DM or T2DM were

purchased from a commercial supplier (in.vent Diagnostica

GmbH, Hennigsdorf, Germany). The anthropometric and

pathophysiological information available for these samples was

restricted to the diagnosis of T1DM or T2DM, or a self-reported

health status as disease-free (“healthy”), along with age and sex

at the time of blood drawing. The full cohort available for

analysis consisted of healthy subjects (200 males and

200 females, age range; 18–63 years), 121 patients with T1DM

(60 males and 61 females, age range; 18–78) and 124 patients

with T2DM (66 males and 58 females, age range; 28–87).

Additional clinical information was not available due to data

safety regulations. Ethical permission and written informed

consent of all subjects analyzed in this study were collected by

the commercial provider prior to blood drawing, aliquot

preparation and commercial distribution to the research laboratory.
2.2 Materials

A commercial polyclonal IgG antiserum to human ghrelin was

purchased (#PA1-1046, Invitrogen, Thermo Fisher Scientific

GmbH, Deutschland,) to serve as positive control. The antiserum

is described to detect both the octanoylated and non-

octanoylated forms of ghrelin. 96-well plates were obtained from

Greiner AG (Kremsmünster, Austria), and SEAP substrate

Tropix CSPD was purchased from Applied Biosystems GmbH

(Darmstadt, Germany).
2.3 Construction and preparation of the
ghrelin-SEAP fusion reporter

The cDNA of secreted alkaline phosphatase (SEAP) was

amplified by PCR and inserted into plasmid pIRESneo giving

rise to pIRESneo-SEAP, as described before in the generation of

a similarly-designed assay in more detail (22). The cDNA of

human ghrelin was amplified by PCR and used to generate

plasmid pIRESneo-SEAP-ghrelin encoding the SEAP-ghrelin

fusion protein. The expression plasmids were verified by DNA

sequencing. Human embryonic kidney cells (HEK 293 cells) were

grown in DMEM/F12 (#31330, Thermo Fisher Scientific GmbH,

Dreieich, Germany) supplemented with 10% fetal bovine serum

and transfected with pIRESneo-SEAP-ghrelin using FuGENE HD

reagent (#E2311, Promega GmbH, Walldorf, Germany). Forty-

eight hours after transfection, the selection of stable transfectants

was started by adding 0.8 mg/ml G418 sulfate (#345812,

Calbiochem GmbH, Sandhausen, Germany). Stable clones

expressing high levels of recombinant protein were selected and
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expanded for protein production. To this end, confluent HEK 293-

SEAP-ghrelin cells were grown in 75 cm2 plates in serum-free

DMEM/F12 medium containing 1% BSA for 72 h. The cell

culture supernatant was collected, centrifuged at 2.500 rpm to

pellet cells and large debris, decanted, and stored at −80°C until

needed for the measurements.
2.4 Immunoprecipitation assay for
ghrelin-aAb using human sera

The cell extract containing SEAP-ghrelin was diluted in assay

buffer (20 mM HEPES-NaOH, pH 7.5, 50 mM NaCl, 1% Triton

X-100, 10% glycerol, and 5 mg/ml BSA). Measurements were

conducted with 40 μl SEAP-ghrelin-buffer dilution and 5 μl of

serum sample, and incubated overnight at 4°C. The next day,

40 μl of 20% POROS-Protein-A resins (ASKA Biotech GmbH,

Hennigsdorf, Germany) were added and incubated for 1 h at

room temperature. POROS-Protein-A-immune complexes were

precipitated and washed 6 times with 200 µl of washing buffer

(50 mM Tris-HCl, pH 7.5, 100 mM NaCl, 0.5% Triton ×100).

Washed pellets were dissolved in 150 µl SEAP substrate buffer

(Tropix CSPD, Applied Biosystems) pre-diluted 1:5 in substrate

buffer (1M diethanolamine, 0.5 mM MgCl2), and incubated for

30 min. SEAP activity was measured in a luminometer for 5 s

and the relative light units (RLU) were recorded. Results are

expressed as RLU, or after normalization to the background as a

binding index (BI), denoting the signal strength as factor above

average control signals.
2.5 Isolation of human immunoglobulins

In order to isolate human immunoglobulins (Ig), serum

samples (100 µl) were diluted with assay buffer to 1.0 ml and

incubated overnight at 4°C with 0.2 ml of protein G-Sepharose

known to bind Ig, mainly of the IgG class. Complexes were

pelleted and washed 10 times with PBS. Bound Ig were eluted

with 25 mM citric acid (pH 3.0), and immediately neutralized to

a pH of 7.0 using 1M HEPES-NaOH (pH 8.0). Eluted Ig were

concentrated to 100 μl (∼1 mg/ml) using a Speedvac device at

room temperature.
2.6 Statistical analysis

GraphPad Prism 8 software was used to analyze the data. All

data are represented as mean ± S.E.M. Statistical significance was

defined as p < 0.05 (*), p < 0.01 (**) or p < 0.001 (***). Signals

were normalized according to the background noise from

negative samples. To this end, the mean of the signals (RLU;

relative light units) from the lower 50% of samples analyzed was

determined, and received a binding index (BI) of 1.0. Then, all

signals were divided by this background RLU value, thereby

converting the measured RLU to BI values. Using a mathematical

outlier criterion (P75 + 1.5-times IQR), a threshold for positivity
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was defined from the full set of BI values, assuming that most

samples are negative for ghrelin-aAb. Samples were classified as

positive or negative for ghrelin-aAb when the calculated BI

exceeded this threshold value or not, as described (23). This

definition is robust for medium-sized cohorts, and applicable to

data sets containing aAb-positive samples (i.e., mathematical

outliers), under the condition that the number of aAb-positive

samples is less than 25% of all samples tested, which can be

safely assumed in observational cross-sectional studies.
3 Results

3.1 Generation of an immunoprecipitation
assay to measure ghrelin-aAb

After transfection and G418-mediated selection, a total of

twelve HEK293 cell clones were isolated and expanded.

Expression levels of the SEAP-ghrelin fusion proteins were

determined by assessment of SEAP enzymatic activity. The two

clones with the highest SEAP activity were selected, further

expanded and stocks were prepared for safe storage in liquid

nitrogen. A subset of the sera from the healthy subjects was

analyzed to identify samples with positive ghrelin-aAb to serve as

regular standards and for test performance characterization. A

commercial antiserum recognizing human ghrelin was tested in

parallel to validate the assay and assess signal dependence on Ab

concentration (Figure 1A). Two positive samples were tested for

stability at 4°C or room temperature (RT) for 5 and 10 days. The

results indicate no loss of ghrelin-aAb signals in serum under

these conditions (Figure 1B).
3.2 Characterization of signal strength with
varying amounts of ghrelin-aAb

After verifying the proportional increase of signal strength with

ghrelin-specific commercial antiserum to human ghrelin, serum

samples positive for endogenous ghrelin-aAb were tested in

dilution experiments. To this end, linear dilution of positive

samples with assay buffer was tested over a wide concentration

range (Figure 2). The samples displayed the expected decrease in

signal strength with dilution (Figure 2A). Next, equi-volume

mixtures of a positive and a negative serum were prepared and

signal strength for ghrelin-aAb was determined. The results

indicate little matrix effects, with the majority of mixtures

yielding a signal close to the calculated arithmetic mean of the

positive and negative signal strengths (Figure 2B).
3.3 Comparison of different matrices and
stability towards freezing

In large clinical studies, different sample matrices (serum/

plasma) are used for the analysis of laboratory parameters. For

this reason, samples prepared by different methods of sample
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FIGURE 1

Establishment and verification of the new method and characterization of stability of ghrelin-aAb in serum. (A) A detection assay was designed,
consisting of a secreted alkaline phosphatase (SEAP) in frame to human ghrelin as one fusion protein, to be used as bait for the autoantibodies
(Y-symbol, ghrelin-specific immunoglobulin highlighted in red) that become enriched by protein A-mediated immunoprecipitation. Detection is
achieved by incubation with a chemiluminescent substrate (CSPD), and relative light units (RLU) are recorded by a luminometer. After the
establishment of stable clones expressing SEAP-ghrelin fusion protein, the signal detection method and certain matrix characteristics were
characterized. (B) Increasing signal strength (RLU) was observed with increasing amount of commercial anti-ghrelin antibody in the new assay,
supporting its general suitability to detect and quantify ghrelin-aAb. (B) Signal stability of positive samples was tested by incubation for 5 days and
10 days at room temperature or 4°C. The comparison to the initial signal strength indicates high stability of ghrelin-aAb in serum under
these conditions.

FIGURE 2

Characterization of ghrelin-aAb signal decline with dilution. Signal strength was tested with positive serum samples in dilution experiments with assay
buffer or negative serum samples. (A) Five positive serum samples (subjects A–E) were diluted with assay buffer to 50%, 25%, 12.5% and 0.1% of the
original composition. The signals declined steadily with increasing dilution. (B) Five different ghrelin-aAb positive serum samples were diluted 1:1 with a
negative serum sample each. Signal strength for ghrelin-aAb declined strongly, towards the arithmetic mean of both samples, indicating little to no
matrix effects.
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collection (serum, EDTA as anticoagulant, heparin as

anticoagulant, citrate as anticoagulant) from two positive and a

negative individual were compared side-by-side to characterize

the suitability of different matrices for the ghrelin-aAb assay

(Figure 3). Inhomogeneous results were obtained, with serum

yielding the highest RLU from a positive donor (Figure 3A). The

analysis of large-scale observational and intervention studies

from stored samples often involves several freezing and thawing
Frontiers in Medical Technology 04
steps, before a specific analytical measurement can be conducted.

Samples with one or no previous freezing cycle are rarely

available, and were thus not included in the analysis. In order to

test the stability of the ghrelin-aAb signals towards repeated

freezing, a positive sample underwent a series of freeze-thaw

cycles. Signal intensity was calculated as percentage of the

maximum. The results indicate a gradual but moderate signal

loss under these conditions (Figure 3B).
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3.4 Ghrelin-aAb prevalence in healthy
subjects and diabetic patients

Next, three human cohorts of serum samples were analyzed

with the newly generated ghrelin-aAb assay, comprising healthy

men and women (n = 400, 50% female), and patients with T1DM

(n = 121, 50% female) or T2DM (n = 124, 47% female).

Comparing the signal strengths obtained, a highly skewed

distribution was observed with several samples displaying strong
FIGURE 3

Comparison of serum and plasma matrices and effects of freezing on ghrel
from repeated freezing were compared with respect to ghrelin-aAb signals,
account. (A) Signals varied when ghrelin-aAb signals from serum were com
citrate as an anticoagulant. Serum and EDTA-plasma turned out to gene
qualifying as the preferential matrix for ghrelin-aAb analysis. (B) Signal stren
aAb were still detected with more than 85% of the original signal strength a

FIGURE 4

Analysis of ghrelin-aAb in healthy controls and diabetic patients. The signals f
A BI of 1.0 denotes the average signal strength in the low half of all sample
IQR), the threshold for positivity starts at a BI of 6.2. (B) Applying this thre
prevalence for ghrelin-aAb is similar in healthy subjects and patients with
positive samples indicates no significant differences between controls and
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responses. Signals were normalized according to the average

background noise, i.e., the mean of the lower 50% of samples

analyzed, which received a binding index (BI) of 1.0. After

converting all signals to BI values, the threshold value for

separating negative from positive samples was calculated by a

mathematical outlier criterion (Figure 4A). Applying this

criterion (BI = 6.2), the prevalence in the group of healthy

subjects and patients with T1DM or T2DM was similar,

i.e., 11.3%–12.8% of the samples analyzed were positive for
in-aAb signal strength. Different matrices from human blood and effects
taking both total signal strength and variation of the measurement into
pared with matched plasma preparations containing EDTA, heparin or

rate the most stable signals, with serum yielding higher RLU and thus
gth declined upon multiple cycles of freezing and thawing, but ghrelin-
fter 4 freeze-thaw cycles.

rom the full set of samples were converted to relative binding indices (BI).
s analyzed. (A) Applying a mathematical outlier criterion (P75 + 1.5-times
shold, or a higher threshold of BI > 10 for highly positive samples, the
T1DM or T2DM. (C) A tabular overview on the number of ghrelin-aAb
patients, or men and women.
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ghrelin-aAb (Figure 4B). Choosing a higher threshold for very

positive samples exceeding a BI > 10, again no difference in

prevalence was observed (Figure 4C). The percentage of females

among the ghrelin-aAb positive samples was 55% in healthy

subjects, 60% in T1DM, and 50% in T2DM.
3.5 Comparison of ghrelin-aAb signals from
serum and purified immunoglobulins

Finally, five different ghrelin-aAb-positive serum samples were

selected and their Ig prepared. The measurements were conducted

with the original serum samples along with the isolated Ig

preparations. The order of positive samples (as % of max) was

the same between the serum samples and the isolated Ig

(Table 1), indicating that the signals obtained are due to the Ig-

mediated precipitation of the SEAP-ghrelin reporter fusion

protein, and likely not from other Ig-unrelated components that

may be present in human serum samples, supporting the

analytical quality of the ghrelin-aAb assay.
4 Discussion

In this study, we present the establishment and first

characterization of a novel assay capable of detecting and

quantifying ghrelin-aAb in human serum using a fusion protein

precipitation method. The analysis of aAb to endocrine signals,

receptors or transporters constitutes a specific challenge, as

these biomolecules usually undergo intensive posttranslational

modifications, including proteolytic processing, glycation or even

acylation as in case of ghrelin (24). For this reason, screening

assays using short linear peptides or recombinant prokaryotic

protein often fail to provide conclusive signals, and biological tests

pose specific requirements on the sample and preparation of

detector molecules (25). The analytical assay presented here takes

advantage of full-length ghrelin expressed via the secretory

pathway in a human cell line, thereby yielding a high probability

of correct folding and modifications. However, on the one hand,

as a fusion protein with an enzymatically active reporter molecule,

the N-terminus of the antigen is not as well accessible to ghrelin-

aAb as that of the natural hormone itself. On the other hand, the

use of a fusion protein of ghrelin with SEAP enables a

straightforward assay that does not depend on a rather unspecific

detection of antibodies recognizing the Fc part of all possible
TABLE 1 Comparison of crude serum and isolated Ig preparations in the
ghrelin-aAb assay.

Sample Ghrelin-
aAb in
serum
(RLU)

Relative
ghrelin-aAb
in serum (%
of max)

Ghrelin-
aAb in

isolated Ig
(RLU)

Relative
ghrelin-aAb
in Ig (% of

max)
1 84,739 27 64,052 30

2 30,270 10 9,865 5

3 314,813 100 209,527 100

4 9,069 3 1,957 1

5 70,409 22 43,563 21
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antibodies in a given test tube, thereby reducing noise and yielding

higher and more specific signals (26). This notion is supported by

the consistent results with the commercial anti-ghrelin antibody,

verifying the basic test principle, and enabling a universal

comparison of different ghrelin-aAb tests by using the same

commercial source of antibodies as a positive calibrator. Such

standards along with certified reference materials offer the chance

to directly standardize different detection and quantification

methods to enable cross-method validation experiments (27).

Concerning ghrelin-aAb characteristics, serum turned out to be

the most suitable matrix for analysis, in line with other similar

analyses (28). Importantly, ghrelin-aAb signals were stable over

at least 10 days at room temperature and 4°C, enabling regular

collection and sending of samples from the place of clinical care

to the analytical site. Some effects of the matrix in the analyses

of equi-volume mixtures were observed, along with a decline of

signal strength upon repeated freezing, which highlights that

some more characterization and stabilization experiments are

needed in case large clinical studies are to be analyzed. As the

comparison of serum as matrix with plasma preparations

indicated considerable differences, the analyses of large cohorts

of samples need to be conducted with one specific matrix only,

and a direct comparison of signal strengths from serum and

plasma samples is not possible.

Our major hypothesis concerned a potentially relevant role of

ghrelin-aAb in type 1 or type 2 diabetes mellitus. By analyzing a

considerable number of cases along with a high number of

controls, we succeeded in identifying ghrelin-aAb positive samples

by using a robust and prudent criterion for positivity. However,

the results indicated a similar prevalence of ghrelin-aAb in all

three cohorts of samples, with a rather uniform prevalence of

11%–13% in the examined groups using a mathematical criterion-

based threshold, or a range of 4.3%–6.4% when applying a

stringent threshold of at least 10-times signal strength above

control. For most autoimmune diseases, there is a sex difference in

prevalence, and women are usually more frequently affected than

men (29). We did not observe a similar sex difference for

the occurrence of ghrelin-aAb in our cohort, with a fraction of

50%–60% of the positive individuals being female.

These results are partly in line and partly in disagreement with

the published results from other studies using different

technologies for the detection and quantification of ghrelin-aAb.

A seminal paper described an increased presence of anti-

hypothalamic autoantibodies in patients with anorexia nervosa as

compared to controls, and a negative correlation of the

autoantibody titers with BMI in the study group (30).

Unfortunately, specific autoantigenic targets could not be

differentiated or analyzed separately. A study on ghrelin-aAb in

patients with rheumatoid arthritis identified positive subjects in

both the group of patients and of controls, with some negative

relation of free and total IgG ghrelin-aAb in the patients,

potentially reflecting the effects of immunosuppressive therapy by

MTX (19). A study in young subjects reported a slightly higher

prevalence of ghrelin-aAb in female as compared to male

adolescents, a positive correlation with the waist-hip ratio, but no

relation to body fat percentage or body mass index (14).
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Interestingly, enjoyment of food was negatively associated with

ghrelin-aAb in the female participants (14). This observation

accords to experimental studies, where polyclonal anti-ghrelin

antibodies were applied intravenously and caused dose-dependent

inhibition of feeding and food intake in rats (31).

In humans, immunization against ghrelin had entered Phase I

and IIa trials as an anti-obesity therapy (32, 33), albeit without

conclusive results. The underlying notion is not perfectly in line

with an enhanced stability of ghrelin-aAb as shown in an

observational analysis in humans, where the isolated ghrelin-aAb

displayed an increased orexigenic effect and stimulated overeating

upon interventional testing in experimental mice (20). Especially

this report prompted our interest and contributed to our

hypothesis on a postulated role of ghrelin-aAb in diabetes, as it

may associate with overweight and overeating. Yet, because of the

many different and incongruent findings at hand, it becomes

obvious that additional and sufficiently powered cohort studies

and analyses are needed to provide a more insightful picture on

the covariates and readouts that are relevant for assessing the

effects of ghrelin-aAb in human subjects. To this end, the newly

developed assay may be of value.

In summary, we report the development and first intensive

characterization of a quantitative assay capable of detecting

ghrelin-aAb in human serum samples by immunoprecipitation of

a reporter-ghrelin fusion protein. Among the strengths of our

study is the characterization of signal stability regarding matrix,

storage, and re-freezing. By using full-length human ghrelin

produced in a human cell line, directly fused with a reporter

enzyme in frame, the signals detected are likely specific for

natural autoimmunity to ghrelin and quantitative in nature, as

similarly tested before with other antigenic fusion proteins for

detection of difficult endocrine target molecules (34–36).

Among the notable limitations of our assay is the dependence

on protein A-mediated precipitation, which primarily selects for

immunoglobulins of the IgG class. Other types of

immunoglobulins may also play a relevant role, in particular in

response to acute stimuli like viral infections, that may be

involved as primary stimulus for ghrelin-aAb development (15).

However, testing for IgG-mediated autoimmunity appears

suitable for understanding long-term effects, in particular when

applied to slowly developing chronic diseases like diabetes

mellitus (37). Further limitations are given by the lack of specific

clinical parameters from the diabetic patients analyzed, as data

safety only allowed for a minimal set of information to be shared

with the commercial service provider from whom the samples

were obtained. Even though, the sample size was above 100 per

group, it is still a limited number, particularly in view of the

4.3%–6.4% of highly positive subjects only, necessitating further

studies with more intense characterization of clinical parameters

and increased size of the study groups to be compared. Given

the undisputable prime role of ghrelin in control of appetite,

metabolism, thermogenesis, taste sensation and even the

composition of the microbiota, several more relevant hypotheses

can be put forward on where and when autoimmunity to ghrelin

signaling may be of clinical relevance (38–40). With the newly

generated knowledge on the prerequisites and reproducibility of
Frontiers in Medical Technology 07
the quantitative immunoprecipitation assay for ghrelin-aAb, such

an endeavor on testing different and sufficiently sized cohorts of

controls and patients appears feasible and promising, and should

be conducted using the appropriate controls, calibrators, and

available reference materials.
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