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When faced with the prospect of death, some people would prefer a form of long-
term preservation that may allow them to be restored to healthy life in the future, if
technology ever develops to the point that this is feasible and humane. Some
believe that we may have the capacity to perform this type of experimental
preservation today—although it has never been proven—using contemporary
methods to preserve the structure of the brain. The idea is that the
morphomolecular organization of the brain encodes the information required
for psychological properties such as personality and long-term memories. If
these structures in the brain can be maintained intact over time, this could
theoretically provide a bridge to access restorative technologies in the future. To
consider this hypothesis, we first describe possible metrics that can be used to
assess structural brain preservation quality. We next explore several possible
methods to preserve structural information in the brain, including the traditional
cryonics method of cryopreservation, as well as aldehyde-stabilized
cryopreservation and fluid preservation. We focus in-depth on fluid preservation,
which relies on aldehyde fixation to induce chemical gel formation in a wide set
of biomolecules and appears to be a cost-effective method. We describe two
theoretical recovery technologies, alongside several of the ethical and legal
complexities of brain preservation, all of which will require a prudent approach.
We believe contemporary structural brain preservation methods have a non-
negligible chance of allowing successful restoration in the future and that this
deserves serious research efforts by the scientific community.

KEYWORDS

brain preservation, biostasis, connectomics, brain perfusion, fluid preservation,
molecular nanotechnology
Abbreviations

ASC, aldehyde-stabilized cryopreservation; BPF, brain preservation foundation; CPA, cryoprotective agent;
DMSO, dimethyl sulfoxide; Ex, example; FIB-SEM, focused ion beam scanning electron microscopy; M22,
vitrification solution composed of multiple cryoprotectants; NeuN, neuronal nuclear protein; SMI312, a
commercial antibody from Sternberger Monoclonals Incorporated staining for neurofilaments; S-MIX,
standardized measure of ischemic exposure; VM3, vitrification solution composed of multiple cryoprotectants.
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Introduction

Many people desire to live longer in good health, feeling that

they have yet to fully experience life, enjoy its pleasures, share

moments with friends and family, and contribute to the world

(1–6). However, given the inherent difficulties involved in halting

or reversing biological aging, alongside relatively paltry societal

investment in interventive gerontology (7), it is unlikely that

aging will be sufficiently slowed in the next few decades to

significantly extend maximum lifespan (8). On top of that, even

if biological aging became preventable or reversible, there would

always be injuries and diseases that are acutely lethal because

treatment was not available or had not been invented yet.

One hypothetical option for an individual wishing to avoid an

imminently fatal situation would be for the patient to undergo a

suspended animation procedure. In suspended animation, a

person’s body would be preserved for the long-term in a way

known to be able to be reversed at the time of one’s choosing.

However, despite some historical aspirations that it would be

achievable soon (9–11), long-term suspended animation is not

yet possible. The prospect of long-term suspended animation is

still regarded with skepticism by the cryobiology research

community because it is not yet possible to reversibly

cryopreserve large organs such as the heart or brain, let alone an

entire body (12, 13). It is worth noting that there is research

ongoing in areas related to short-term states of suspended

animation, such as torpor and hibernation, that may offer

substantial mechanistic insights (14, 15). However, even if long-

term suspended animation were developed, some people would

not qualify for the initial procedures due to medical barriers. For

example, the “no-reflow phenomenon” that occurs after cardiac

arrest may prevent the complete perfusion of the brain (16, 17).

This leaves a critical question for any acutely lethal condition

now or in the future: What options exist when reversible

suspended animation is not possible?

While demonstrably reversible suspended animation is not an

option, a possible alternative is the structural preservation of the

body, with the goal of retaining the molecular constituents of a

person sufficiently intact for future repair and restoration. The

simple idea here is that although reversible suspended animation

does not currently exist, resuscitation procedures may be

developed in the future, alongside technology to cure the acutely

lethal condition, including trauma, ischemic injury, and chronic

conditions such as biological aging (18–22).

Here, we will focus on the preservation of the brain. The

predominant view among both philosophers and the general

public is that a person survives over time through the continued

existence of psychological properties that define their personal

identity (23–26). As it is the brain which enables the continuity

of memories, beliefs, personality, and other psychological

properties across a person’s lifespan, it is the crucial organ that

must be preserved for a person to survive. We do not discount

the potential value of additionally preserving the rest of the body,

but in this paper, we limit our discussion to brain preservation,

as it is the most essential organ for a person’s survival.
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Experimental preservation with the
potential for recovery

We can imagine a hypothetical procedure that would allow for

brain preservation with verifiable preservation of a person’s

psychological properties. Such a procedure would be able to

preserve the structural information that provides their memories,

personality, cognition, and other valued aspects of their

psychology. However, this proposal has three problems. First, we

do not yet know what exactly the structural correlates of

psychological properties are. While we can currently provide

reasonable estimates, and our confidence in these is constantly

improving as our knowledge of neuroscience improves, they

remain estimates. For example, there is disagreement about

which types of biomolecules are necessary to retain the

information content required for long-term memory recall (27).

Unknown unknowns will remain for this question, at least until

we can reproducibly decode memories from static brains. Second,

no one has yet published a demonstration of a procedure on

humans that can reliably preserve the whole connectome with

traceability intact. Finally, many would consider any strict

threshold for verifiable brain preservation too conservative

because it must rely on our contemporary imaging methods for

visualizing the brain. Imaging methods are almost certain to

improve in the future, thereby improving inference of the

original state of damaged neural structures. If brain preservation

meeting verifiable criteria were the only option allowed, then

lethally injured people who might otherwise have a chance at

future recovery would be unable to access potentially life-

saving procedures.

Instead of verifiable brain preservation, we can imagine a

brain preservation procedure that has the potential to preserve

valued aspects of psychological information. Such procedures

are available today. In this review, we propose that a reasonable

option given our currently available technology is to make our

best effort to determine what are the necessary structural

components of valued information in the brain and attempt to

preserve them. We refer to this approach as “experimental brain

preservation” because it involves techniques that are based on

current neuroscientific theories but have not yet been proven to

successfully preserve the information required for psychological

properties in humans. The main distinction between verifiable

and experimental brain preservation is the level of certainty in

preserving the information required for psychological properties

(Table 1). Verifiable preservation is defined as demonstrable

retention of these properties, while experimental preservation

makes a best effort to preserve them, acknowledging the

uncertainties involved in our current understanding and

technological capabilities. An experimental brain preservation

procedure acts as a potential bridge to future medical

capabilities, subject to uncertainty about its likelihood of

success, rather than being a form of definite survival. Critically,

while people preserved in such a manner are legally dead, they

may not yet be dead according to the loss of personal identity

or the information-theoretic criteria of death, which is the point
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TABLE 1 Differences between verifiable and experimental brain preservation procedures.

Aspect Verifiable brain preservation Experimental brain preservation
Definition A procedure that demonstrably preserves a

person’s psychological properties
A procedure that attempts to preserve valued aspects of psychological information, but
without guaranteed success

Certainty of preservation High—preservation of psychological properties
can be verified

Uncertain but possible—unable to verify whether the procedure retains critical information,
but attempts to do so consistent with our best current understanding

Basis of preservation Known and verified structural correlates of
psychological properties

Best current estimates of necessary structural components

Current availability Not yet possible with current knowledge and
technology

Available with current technology

Imaging requirements for
verification

Relies on contemporary imaging methods for
verification

May benefit from future improvements in imaging technology

Threshold for
implementation

Strict—must meet verifiable criteria More flexible—allows for attempts even with uncertainty

Potential for future
recovery

High certainty of potential recovery Uncertain, but provides a possible bridge to future medical capabilities

Accessibility Limited due to strict inclusion criteria Accessible to a wider group of individuals
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at which the brain has been damaged so severely that all

information it once contained about valued psychological

properties such as memories can no longer be inferred

(20, 21, 28–30). The question may not be binary because

degrees of survival are possible (31). Given the dissatisfaction in

the medical community with the current legal and clinical

definitions of death (148), it is prudent to not ignore

interventions which might be compatible with saving lives

under plausible alternative definitions (32).
What structures in the brain need to
be preserved?

If the brain required continuous neural activity for

maintenance of valued psychological properties, then brain

preservation would be a much more difficult problem. However,

for long-term memories and personality, three pieces of evidence

point against this hypothesis. First, research on C. elegans and

rabbit hippocampal slices indicates that biological time can be

paused via cryopreservation without losing correlates of long-

term memory, suggesting that key aspects of cognitive function

can be preserved despite temporary cessation of molecular

motion (33, 34). Second, in the surgical procedure of deep

hypothermic circulatory arrest, brain electrical activity ceases

temporarily without major impact on long-term memory or

personality (35). Finally, cases of cardiac arrest induced by

hypothermia, such as in avalanche survivors, further show that

extended periods without brain blood flow, while temporarily

halting electrical activity, do not necessarily lead to loss of long-

term memories or personality traits (36). Instead, it is the

information contained within the structures that are important,

while the functions of the brain can be paused and restarted.

Short-term memory recall, on the other hand, is more likely to

be dependent on labile functional states of brain cells, and it is

less likely for there to be a current way to preserve this (37). It is

critical to emphasize that contemporary brain preservation is

unlikely to be able to preserve all psychological states in the

brain. Instead, it is only likely to be possible to preserve
Frontiers in Medical Technology 03
information that is encoded via more stable structures, such as

that required for long-term memory recall and personality traits.

By structures in the brain, we refer to both individual

biomolecules and their spatial relationships, which compose the

morphologic features that can be measured via microscopy.

In humans, long-term memories can be accessed in less than a

second in a process that involves communication between multiple

brain regions that are millimeters to centimeters apart (38). A

wealth of evidence suggests that the only neural process that could

instantiate such a rapid and widespread process of long-term

memory recall is rapid electrochemical ion flow through the

connectome—i.e., the complete map of brain cell connections (39–

41). While the connectome provides a morphological basis, it is

very likely that certain biomolecules such as ion channels, ion

pumps, and neurotransmitter receptors also play a crucial role in

mediating memory recall and other cognitive functions. Thus, it is

the extent of preservation of the biomolecule-annotated connectome

that makes the most sense as a metric for evaluating the quality of

a brain preservation procedure. However, contemporary

preservation procedures do not require flawless maintenance of the

biomolecule-annotated connectome to be potentially sufficient to

retain the information required for long-term memory recall. For

example, biomolecular information in the brain is largely

redundant, organized into highly correlated sets of modules and

sub-modules (42). Theoretically, even if some biomolecules in a

module were damaged or destroyed, their approximate relative

levels could be predicted to some degree of accuracy via profiling

the remaining biomolecules in the module (43). Morphological

information such as cell membrane shape can also be predicted

through inference of the breakdown and diffusion patterns of the

biomolecules that compose them, such as cell surface proteins,

which can provide a unique barcode to each cell (44). Additionally,

many neural structures are not completely stable over time but

rather evolve during life, even as memories remain roughly intact,

allowing a degree of leniency in the required precision in inference

of the original states (45, 46). Therefore, the most important

metric—albeit an elusive one—is our ability to infer the original

states of the biomolecule-annotated connectome that are critical for

the information in valued psychological properties.
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In the 2010s, Kenneth Hayworth at the Brain Preservation

Foundation (BPF) put forth a prize to develop a brain

preservation technique capable of maintaining the brain’s

ultrastructure for at least a century (47). There were two primary

criteria, assessed by electron microscopy: (a) connectome

traceability, i.e., the ability to unambiguously trace neurites across

sequential image sections, and (b) whether cell membranes and

components such as organelles and vesicles looked as expected,

judged against the established knowledge of neuroscience. Setting

a high bar such as this is a very useful aspirational goal, but it

risks inadvertently overlooking methods that produce damage

that may still be recoverable with the aid of future technologies.

Take, for instance, vacuolization, which is a common

postmortem artifact (48). Vacuolization can compress neural

structures, preventing their visualization via contemporary

electron microscopy approaches. However, crucially, this might

not significantly damage the actual information content within

the biomolecule-annotated connectome (49). Similarly, synaptic

or dense-core vesicles might degrade or disperse postmortem, yet

the biomolecules that constitute these vesicles and dictate their

organization will still be present in the local area for a window of

time even after they can no longer be seen under the

microscope. Future biomolecular mapping techniques could

potentially still infer this information to a sufficient degree of

accuracy based on visualizing the breakdown products and

building a physical model of how their degradation occurred.

An alternative metric is to visualize brain tissue in multiple

ways and evaluate whether each form of preservation damage

present—i.e., each deviation from the expected morphology

in vivo—is likely to indicate a true loss of information content in

the biomolecule-annotated connectome. For example, fixation

methods can alter the volume of the extracellular space from the

in vivo estimate, but this can be recovered with reconstructive

algorithms (50). To be clear, though, this is not an argument for

complacency. Each of these structural inference methods can and

should be tested in the near-term. The eventual goal should be

to improve preservation methods to achieve the gold standards

of connectome traceability and in vivo morphologic preservation

quality without the need for inference. Additionally, as our

knowledge of the neuroscience of memory improves in the

future, our procedures for testing preservation quality should also

be modified as necessary. Ideally, collaborative research should be

performed with experts in memory retrieval, brain preservation,

microscopy, biomolecular profiling, and other related fields, so

that preservation methods are corroborated and improved in an

iterative process over time.
Contemporary methods for brain
preservation

Among other factors, our estimates for the time that will be

necessary to wait while in preservation depends on how long it is

expected to take for restoration technology to be developed, if

this ever becomes possible. Opinions on this will vary

significantly. Following the BPF prize criteria, 100 years of
Frontiers in Medical Technology 04
storage could be considered a reasonable initial goal. We

delineate five categories of methods that could potentially

preserve the brain for this amount of time, each with upsides

and downsides (Table 2; Figure 1).

Cryopreservation without cryoprotectants (i.e., “unprotected”

cryopreservation) is a widely available and easy to perform

method, but it leads to unavoidable ice damage and associated

morphologic artifacts, and for this reason it is not favored for

morphologic preservation in brain banking (51). Ice formation

not only causes morphological damage but also significant

alterations to biomolecules. These alterations include changes in

biomolecule location, as the mechanical effects of ice can tear cell

membranes, leading to leakage of intracellular contents (60).

Furthermore, ice formation can induce conformational changes

in proteins by disrupting their hydration shells (61). In cryonics,

researchers generally perfuse cryoprotectants in order to mitigate

ice damage, which in some cases can be entirely prevented,

causing the brain to convert to a glassy or vitrified state (33, 52,

62, 63). Cryonics can be considered a type of brain preservation

that uses cryopreservation. The use of cryoprotectants in the

cryopreservation of the brain has been explored in several

studies, alongside measurements of histologic outcomes, with

different outcomes (Table 3).

Notably, the effectiveness of cryopreservation depends not only

on the formulation of cryoprotectant but also on the overall

procedure in which it is distributed to the brain tissue. High

concentrations of cryoprotectants must be introduced gradually

in a graded fashion to minimize osmotic damage. As a result,

cryopreservation protocols are complex, involving optimization of

cooling and warming rates, as well as the precise management of

cryoprotectant concentration gradients (67). While cryoprotectant

perfusion has shown promise for structural preservation in thin

brain tissue samples (57), the 3D ultrastructure of whole brains

after cryopreservation with perfusion of cryoprotectants, such as

would be assessed with volumetric electron microscopy, has not

yet been characterized in the scientific literature. This is an

important area for future research.

The use of fixation followed by cryopreservation combines two

powerful preservation methods, which may be helpful for

maintaining structural stability over the long-term in case one of

them is unsuccessful. In the published procedure of aldehyde-

stabilized cryopreservation (ASC), perfusion of the chemical

preservative glutaraldehyde and the blood-brain barrier modifier

sodium dodecyl sulphate is followed by perfusion of the

cryoprotectant ethylene glycol (53). The use of ASC to preserve

an intact pig brain was judged to have met the Brain

Preservation Prize’s requirement of electron microscopy-based

connectome preservation quality, which was awarded in 2018

(68). However, this same level of whole connectome preservation

quality has not yet been demonstrated in a human brain using

this method. The mechanism through which aldehyde fixation

mitigates structural damage during cryopreservation with

cryoprotectants is not fully established, but likely involves (a)

stabilizing membranes to mitigate damage due to dehydration

and osmosis (69), (b) stabilizing blood vessels to improve

cryoprotectant perfusion, and/or (c) increasing the cellular
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TABLE 2 Procedural description, examples, and trade-offs among classes of structural brain preservation methods.

Method Procedure Upsides Downsides
Unprotected
cryopreservation

• Sub-zero cooling of brain tissue in the
absence of cryoprotectants

• Variations: cooling rate, storage
temperature

• Ex: (51)

• Widely available initial preservation procedure
• Biomolecule distributions will be altered, but

minimal direct chemical changes

• Inevitable ice damage causes morphologic
artifacts

• Any unplanned rewarming would damage
cell morphology

• Long-term storage requires significant cost

Cryopreservation with
CPAs

• Cryoprotectants perfused during
cooling, potentially allowing
vitrification

• Variations: CPAs used, cooling rate
• Ex: (52)

• After CPAs are removed, tissue microstructure
looks intact

• CPAs tend to minimally alter biomolecules
• Plausibly on the shortest path to suspended

animation

• Cryoprotectant toxicity
• Relies on high-quality perfusion to avoid ice

damage, which can be challenging
postmortem

• Long-term storage requires significant cost

Fixation and
cryopreservation

• Chemical fixation and subsequent
CPA-based cryopreservation

• Variations: CPAs perfused or
immersed

• Ex: (53)

• Connectome preservation by vitrification after
fixation shown in mammals (Brain Preservation
Foundation, 2018)

• Fallback of chemical preservation if low
temperature storage fails

• Can be reliant on perfusion quality
• Long-term storage requires significant cost
• Reversing crosslinks is well beyond our

current technology (also applies to all
methods below)

Fluid preservation • Fixation, then long-term storage in a
liquid preservative solution

• Variations: fixation method,
chemicals used, storage temperature

• Ex: (54)

• Simple and inexpensive
• Widely used with a large infrastructure in place
• Appears to retain morphology and classes of

biomolecules for decades

• Chemical reactions over time will alter
biomolecules

• Some degree of loss of biomolecules that are
not directly crosslinked

• Possible storage artifacts

Polymer embedding • Fixation, then processing and
embedding

• Variations: paraffin, epoxy, polyester,
etc. for embedding

• Ex: (55)

• Can have excellent ultrastructural preservation
• Minimal chemical reactions occur during storage

• Biomolecular extraction during embedding
procedures

• Challenging to perform on human brain
scale without sectioning first

• Can be expensive

CPA, cryoprotective agent; Ex, example.
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permeability of cryoprotectants. Biochemically, fixation with

glutaraldehyde rapidly cross-links biomolecules within minutes,

retaining most cytoplasmic proteins in place (70). This is

obviously highly toxic to cells and is expected to kill cells by

contemporary metrics of viability. On the other hand,

glutaraldehyde fixation is not expected to cause the direct loss of

most macromolecules from brain tissue (71). Studies of sample

preparation for electron microscopy have instead found that

biomolecular extraction primarily occurs during subsequent

processing steps, especially dehydration (72). However, the

conformation of biomolecules can be altered due to crosslinking

by glutaraldehyde (73). Finally, it is worth noting that small

molecule distributions, such as electrochemical gradients across

cell membranes, are likely to be altered following any method of

extracorporeal perfusion, as also occurs in the reversible surgical

procedure of total body washout (74). This alteration of small

molecule distributions is a shared limitation across perfusion-

based brain preservation procedures, including ASC.

In the polymer embedding method, fixation is performed and

then the brain is processed for embedding in a material that can

solidify, such as paraffin or a type of resin (55). There are

numerous embedding agents and procedures that could

potentially be used for preserving the structure of the brain

(Table 4) (75–79). These include traditional paraffin embedding,

more specialized techniques with epoxy or acrylic resins that are

typically used for electron microscopy, as well as embedding

agents are commonly used for plastination, such as silicone,

epoxy, or polyester (80). Although polymer embedding can lead

to high-quality morphologic preservation, it generally requires

the extraction of lipids and is challenging to perform on
Frontiers in Medical Technology 05
specimens the size of the human brain without distortions.

Because of limitations in their incubation times, some resins

might require the brain tissue to be sectioned into smaller pieces

before embedding, which would lead to damage at the cut

interfaces (81). Other techniques, like plastination, have shown

promise for embedding larger specimens, including whole

organs. But even when using plastination methods, brain tissue is

usually cut into sheets prior to embedding (82). The degree of

ultrastructural preservation achieved in plastination is also

uncertain, especially for the brain, and especially when the tissue

is dehydrated at −25°C, which can cause damage due to ice

crystal formation (83). A key advantage of polymer embedding

methods is that they have the potential to allow for preservation

over very long timescales without any required upkeep. This is

particularly true for epoxy resins, which are thought to have

excellent long-term stability following the crosslinking

polymerization reaction (84). Because the degree of

ultrastructural preservation and biomolecular retention can vary

significantly between different polymer embedding methods, and

they have not been widely tested on tissues the size of the whole

human brain, careful consideration and further research would

be indicated if one were designing a polymer embedding

procedure for brain preservation.
Rationale and steps of whole brain
fluid preservation

We next discuss fluid preservation in-depth. In the method of

fluid preservation, the initial fixation is performed, then the brain is
frontiersin.org
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FIGURE 1

Example images showing morphology preservation in brain tissue preserved with different methods. (A) Image from (56). Crisscross linear clefts due to
ice artifact in bovine cerebellar tissue, because of freezing and thawing without cryoprotectant. (B) Image from (57). Focused ion beam scanning
electron microscopy (FIB-SEM) of a 200 µm brain tissue section cryoprotected in 20% bovine serum albumin and vitrified using high-pressure
freezing, demonstrating preservation of myelin (yellow region), potential nuclear pore complexes (red), mitochondria (blue), and a synapse (pink).
Scale bar: 1 µm. (C) Image from (53). Electron microscopy of rabbit brain fixed with 3% glutaraldehyde, cryoprotected with 65% ethylene glycol,
vitrified, rewarmed, and cryoprotectant removed, demonstrating well-preserved structures. Scale bar: 1 µm. (D) Image from (58). Formalin-fixed
human cortical tissue stained for pan-axonal neurofilaments with SMI312 after storage in fixative for 25 years, demonstrating intact neurons. Scale
bar: 50 µm. (E) Image from (59). Perfusion-fixed mouse brain tissue that was dissected, paraffin embedded, and stained with NeuN, demonstrating
expected neuronal morphology. Scale bar: 50 µm. All images reproduced under a Creative Commons license, available here: https://
creativecommons.org/licenses/by/4.0/.
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TABLE 3 Selected cryoprotective agents that have been used for structural brain preservation and their reported effects.

Cryoprotective
agent

Biospecimen preserved and CPA
delivery method

Reported histologic outcome

15% glycerol Perfusion-based cryoprotection of cat brains Close to normal cell arrangements with Nissl staining (64)

10% DMSO Immersion cryoprotection of rat embryonic brain
tissue

Histologically normal-appearing tissue with cresyl violet staining (65)

M22 vitrification solution Perfusion-based cryoprotection of rabbit brains Shrunken but reportedly preserved cells, images difficult to interpret (52)

VM3 vitrification solution Immersion cryoprotection of thin rat hippocampal
slices

High-quality ultrastructure essentially equivalent to controls, with adequate uptake of
CPA in the vitrification procedure (66)

13% glycerol, 13% DMSO Perfusion-based cryoprotection of rat brains Preserved synaptic immunostaining, fainter NeuN staining, shrinkage of neurons (63)

DMSO, dimethyl sulfoxide; M22 and VM3, vitrification solutions composed of multiple cryoprotectants; NeuN, neuronal nuclei, a neuronal marker protein; CPA, cryoprotective agent.

TABLE 4 Upsides and downsides of potential embedding agents for brain preservation.

Embedding
agent

Upsides Downsides

Paraffin • Widely used, relatively inexpensive
• Long-term preservation data available
• Protein antigens well-preserved
• Can be performed on large sample volumes

• Necessitates removal of lipids (applicable for all, to some degree)
• Unclear degree of ultrastructure preservation
• To our knowledge, no volumetric electron microscopy data is available for paraffin

embedded brain tissue
• Causes tissue shrinkage

Celloidin • Decreased need for heating, less tissue shrinkage
• Possibly better preservation of internal structures than

paraffin

• Very long infiltration times, months for large tissues
• Blocks must be maintained in liquid ethanol
• Flammable, potentially dangerous

Epoxies • Standard method used for high-quality ultrastructure
preservation

• Easy to verify preservation quality with electron
microscopy

• Potential for very long-term stability with storage at
ambient temperature

• Highly viscous resins, require long and high temperature infiltration
• Can damage protein antigenicity
• No established protocols for embedding specimens the size of human brain, so

would require sectioning prior to embedding

Acrylates • Some allow for good tissue infiltration of large samples
• Can polymerize at low temperature
• Can have high ultrastructural preservation
• Often better biomolecular preservation

• Challenging to cure large samples via UV radiation
• Often reported to not yield as high of ultrastructure preservation quality as epoxy

resins
• Questions about long-term stability, e.g., may require storage in desiccator

Plastination agents • Has been used to preserve whole brains and even whole
bodies

• Methods designed to be relatively cheap and widely
accessible

• • Protocols often include or can be adapted for use with
epoxy or polyester resins

• Histological preservation is poorly characterized, as this is usually not the goal
• Some protocols still require sectioning brains into slices
• Can cause substantial shrinkage
• Very long-term stability unestablished
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stored long-term in a liquid preservative solution. This method has

several advantages. There is a large infrastructure in place

worldwide to perform the relevant procedures, due to overlap

with the fields of pathology and brain banking. It is simple,

which is important because complexity presents its own risks. It

is broadly considered a good method for morphologic

preservation (54, 85). It is by far the most well-studied and

commonly practiced method of banking whole human brains for

histology studies, with tens of thousands of brains banked in this

manner across the world (86, 87). Because the cost is so low, we

could easily envision a time when philanthropic funds are able to

pay for this procedure for all those who desire it. Therefore, it

deserves serious consideration as a brain preservation method.

Notably, by discussing this method, our goal is certainly not to

disparage other preservation methods, which we consider to be

worthy of significant further research as well.

We present a basic flowchart for the steps involved in whole

brain fluid preservation with the goal of potential recovery
Frontiers in Medical Technology 07
(Figure 2). The first step is stabilization and transport. Any

postmortem delay prior to fixative reaching brain tissue should

be minimized as much as possible. However, available evidence

suggests that the biomolecule-annotated connectome does not

degrade immediately, but rather decomposes over a timescale

of hours to days (48, 88). This is especially the case if the

brain is cooled to refrigeration temperatures of about 4°C,

which should be initiated as soon as possible. This should not

imply that procedures should not be carried out with the

utmost urgency, but that we should be hesitant to forgo

preservation efforts unless there is clear evidence of complete

neural structure degradation.

Perfusing fixatives by using pressure to drive liquid

preservatives through the cerebrovascular system has the

potential to distribute chemicals rapidly across the brain and is

considered the “gold standard” for preservation in laboratory

animals (89–91). Despite the no-reflow phenomenon, many

investigators have reported that perfusion after hours of
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FIGURE 2

Flowchart for one way of implementing a whole brain fluid
preservation procedure with the goal of potential restoration.
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postmortem delay is still useful to help distribute fixatives (90).

How rapidly cerebral perfusion degrades in the postmortem

period, and how this can be mitigated, is an open question

worthy of future research efforts. Regardless of whether perfusion

is available and successful, a subsequent step in the algorithm is

brain extraction. Although extraction can potentially be a source

of damage, this damage can be minimized through the use of

careful technique (92, 93). Indeed, most of our accumulated

knowledge of human neurohistology has come from brains that

have been extracted from the skull. Traumatic handling of the

brain can introduce known artifacts such as “dark neurons”, but

this artifact likely result from a reversible gel-gel phase transition,

and is not expected to cause discontinuities in the plasma

membrane that would prevent connectome inference (94, 95).

The next step in the procedure is immersing the brain in a

preservative fluid that penetrates from the surface inward. An

immersion step is used because perfusion alone is not reliable in

many cases, even in ideal laboratory animal experiments (96).

Alternatively, if perfusion is not available, then immersion
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fixation is the only option. The main problem with immersion

fixation is that the depth of fluid penetration is proportional to

the square root of time, so inner brain regions will undergo a

degree of decomposition before fixative reaches the tissue (97). It

may take weeks or months before immersion fixation is

complete, during which cellular structure may be degrading (98).

Consistent with this, some investigators report decomposition in

the inner brain regions of immersion fixed brains (90, 99). On

the other hand, other studies report acceptable histologic quality

in inner brain regions following an adequate amount of time for

immersion fixation (100, 101). This is especially the case in

studies that make use of the brain’s ventricular system to help

distribute fixative during immersion (102, 103). The differences

between studies may be partly due to the use of refrigeration,

which slows down decomposition during immersion fixation to a

substantial degree (104). Also, this may be partially a question of

what metric different studies are using to evaluate the resulting

histology. Research using more quantitative metrics of histology

quality and evaluation of larger samples of brain tissue are

needed to better address outstanding questions about the quality

of immersion fixation. For example, total equivalent

normothermic ischemia for different areas of the brain during

immersion fixation can be calculated by a measure called the

S-MIX (Standardized Measure of Ischemic Exposure), which can

be correlated with expected structural changes at different

timepoints of ischemic exposure (105).

Following fixation comes a potential transfer to a storage

solution that is optimized for long-term preservation, preferably

at low, but non-freezing temperatures. The only reason that fluid

preservation is a plausible long-term brain preservation method

is that crosslinking fixation alone is an extremely powerful

preservation method (106, 107). The topic of fluid preservation

was recently the subject of a comprehensive review (108). Briefly,

fluid preservation dramatically strengthens native gel-like

networks in cells and the extracellular matrix, effectively

converting the brain into a series of interconnected chemical gels

(109). The initial fixation procedure largely crosslinks proteins,

but over time the fixation process retains a larger set of

biomolecules, which is likely why profiling studies suggest that

biomolecular content can be retained for years (110–112).

Morphologic features on microscopy have also often been

reported to be preserved for at least several decades (85, 113,

114). On the other hand, a minority of studies have identified

morphological storage artifacts, which may be related to a long-

term drift of non-crosslinked molecules such as a subset of lipids

(115, 116). Fluid preservation can be enhanced through

mitigating molecular drift by increasing the viscosity of the

maintenance fluid, such as by adding glycerol (117). An

alternative option is to perform tissue clearing prior to long-term

preservation (118). This would remove the lipids in the brain,

but offer several advantages, including repeated non-invasive

imaging, and potentially reduced oxidative damage over time

(119). It is plausible that there are multiple fluid preservatives

that could accomplish the same goal of retaining enough

structural information in the biomolecule-annotated connectome

over the long-term, but this is not well established, and more
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TABLE 5 Summary of expected preservation effects on key components of the biomolecule-annotated connectome.

Structural
feature

Unprotected cryo-
preservation

Cryo-preservation
with CPAs

Fixation and cryo-
preservation

Fluid preservation Polymer
embedding

Cell membrane
shape

• Expected to be lost in
many areas throughout
the brain due to ice
damage

• Could be retained, but
ultrastructural preservation
is unproven in whole
mammalian brains

• Found to preserve the
connectome via electron
microscopy in the pig
brain

• Not yet shown in human
brains

• Largely expected to be
intact, with certain artifacts
found over time in some
studies (108)

• Largely expected to be
intact using epoxy
methods

• But currently unable
to infiltrate whole
brain with epoxy

Proteins • Mostly present
• May aggregate, move, or

change conformation
with ice damage

• Mostly present
• May have conformation

changes due to CPAs, but
likely minimal

• Mostly present
• Both location and

composition expected to
be unchanged

• Conformation may be
altered

• Mostly present
• May be change to chemical

composition
• Conformation may be

altered

• Mostly present
• Harsh solvent

treatment could affect
conformation and
composition

Nucleic acids • Mostly present, but may
be damaged due to ice
formation

• Mostly present, not
expected to have major
changes

• Mostly present
• Molecules are fixed, so

unable to dissociate
them for DNA
sequencing

• Mostly present
• May accumulate damage

over time, unclear degree

• Likely mostly present
• Uncertain effects of

processing on DNA
content

Lipids • Mostly present, but may
be damaged due to ice
formation

• Mostly present, not
expected to have major
changes

• Mostly present, not
expected to have major
changes

• Mostly retained but
inaccessible

• Subset may be lost or
chemically altered

• Subset retained due to
osmium fixation

• But many lipids are
expected to be
extracted
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research on the topic is needed (120). If in the future it is

determined that a very long period of storage of the fixed brain

in a liquid solvent leads to significant damage to the

biomolecule-annotated connectome, then it would be possible to

switch the brains preserved in liquid to a different preservation

method, such as cryopreservation or polymer embedding.
Effects of preservation methods on
key brain structures

The biomolecule-annotated connectome can be conceptualized

as having two primary components: the morphological structures

that define the connectome itself, and the biomolecules that

annotate these structures and mediate their functions. The most

critical morphological aspect of the connectome is the shape of

cell membranes. This defines neuronal and glial boundaries,

including those of specialized structures such as synapses,

dendrites, axons, myelin, and astrocyte processes that enable cell-

to-cell communication. These structures collectively define the

physical “wiring diagram” of the brain and dictate the paths that

electrochemical signals take as they propagate through neural

circuits. Importantly, cell membranes share relatively similar

biomolecular compositions, so evaluating the morphologic

preservation quality of one type of cell membrane provides

insight into how other types of cell membranes are also likely to

be preserved with a given procedure. Annotating these

morphological structures are several key classes of biomolecules.

The key informational features of biomolecules are their relative

location, their atomic composition, and their conformations.

Proteins, such as receptors, ion channels, scaffolding proteins,

and enzymes, are critical for mediating electrical and chemical

signal transmission. Lipids, the primary constituents of cell
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membranes and myelin, also affect ion flow through several

mechanisms, including by modulating protein function (121).

Nucleic acids, including genomic DNA and various RNA species,

while not directly affecting rapid ion flow, can play an important

role as a source of information about cell function if other

structures are damaged. Notably, a DNA-associated innate

immunity pathway has been found to play a role in memory

formation, suggestive of additional roles that nucleic acids can

play in cognition (122). Together, these biomolecules influence

the functional properties of the connectome and mediate the

dynamic activity patterns that are thought to underlie memory

recall and other forms of cognition. Although labile small

molecules and ions themselves are clearly also critical for ion

flow, their distributions can be lost in certain situations without

loss of stored long-term memories, for example, in cortical

spreading depression or temporary cerebral ischemia (123, 124).

The more stable macromolecules appear to be more critical to

preserve. Therefore, the “parts list” we focus on as our current

best guess for the key components of the biomolecule-annotated

connectome are the cell membrane morphologies and the

proteins, lipids, and nucleic acids that annotate them.

For each of the brain preservation methods described, we can

estimate how they would preserve each of these components of

the biomolecule-annotated connectome. We focus on a

hypothetical ideal case, where the procedure is started

immediately at the time of legal death without any atypical

impairments to perfusion. The expected preservation quality in

non-ideal cases may differ and depends on the specific deviations

from the ideal scenario. With the notable exception of

unprotected cryopreservation, each preservation method has

different relative strengths and limitations (Table 5).

Although unprotected cryopreservation has the ostensible

upside of not inducing any damage due to exogenous chemicals,
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this is misleading because the inevitable ice formation when

cryopreserving whole human brains in this manner would lead

to substantial damage to both individual biomolecules and the

morphological features they compose. Cryopreservation with

CPAs, on the other hand, shows promise for structural

preservation. Additionally, it does not induce any biomolecular

alterations due to crosslinking. However, the ultrastructural-level

preservation quality following cryopreservation with CPAs is

unproven in whole mammalian brains. All methods using

chemical fixation offer excellent initial morphologic preservation.

Fixation combined with cryopreservation in the procedure of

ASC is the only technique that has been shown to preserve the

connectome of a mammalian brain, alongside an accepted

argument that this storage approach could maintain the

preservation for at least 100 years (68). Fluid preservation has

been found to maintain most structures studied, but can

introduce chemical alterations to biomolecules over time,

requiring further research to determine the effects of these

changes on key neural structures over long periods. Polymer

embedding, particularly with epoxy resins, shows excellent

potential for ultrastructure preservation. However, it causes lipid

extraction and cannot be applied to whole brain specimens,

thereby requiring sectioning and leading to cutting damage. It is

important to note that this is a highly dynamic field. As a result,

this summary of preservation quality should be considered

preliminary and is expected to be updated in the future as our

knowledge of brain preservation improves.

The preservation outcomes in this table are what might be

expected in a hypothetical ideal procedure started immediately at

the time of legal death. Note that this table represents a

generalized overview, and the actual preservation quality may

vary depending on the specific implementation of each method.

The information presented is preliminary and likely to be

updated as more experiments are performed and our knowledge

of brain preservation improves.
Potential future restoration
technologies

Regardless of the structural brain preservation method used,

there are two major classes of restoration methods that have

been proposed over the years: molecular nanotechnology-based

approaches and whole brain emulation approaches. Regarding

nanotechnology approaches, the first step would likely involve

detailed molecular imaging and modeling, which would allow

computer-based inference of the most likely original states of

the biomolecules and guide the restoration procedure (125).

Notably, the major extant nanotechnology approaches that have

been proposed for repair following brain preservation via

cryopreservation have stipulated that it would also be possible

to repair aldehyde crosslinks, similar to other forms of

molecular damage occurring in brain preservation (19, 20, 126).

Such a technology would need to not only sense the chemical

bonds formed by an aldehyde crosslink, but also to sense the

broader chemical milieu so as to recognize that it is an artificial
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link between biomolecules, and thereby distinguish it from any

such bonds that also occur in vivo. At that point, the

crosslinking bonds could be cut, and the aldehyde removed. Of

course, this is impossible today and any such future technology

is quite far away. Moreover, we do not yet even have a full

understanding of the molecular mechanisms of aldehyde

crosslinking (127). However, crosslinks are already ubiquitous

in our cells and able to be repaired via reactions catalyzed by

endogenous enzymes, emphasizing that their removal is clearly

physically possible (128, 129). Conditional on such advanced

nanotechnology being available, which is highly uncertain, the

key question for recovery will likely be the degree to which

valued structural information such as that mediating memories

and personality is preserved.

The other most frequently discussed restoration strategy is

whole brain emulation. In one version of this method, the brain

tissue would first be processed, sectioned, and imaged in detail at

the molecular level (130). Next, software would reconstruct the

original state of the brain prior to damage due to the dying and

preservation processes. Finally, the person would either be

revived with a machine body to operate in our physical world or

with a digital body in a digital world. A major concern with

whole brain emulation is that people are concerned about losing

control over one’s body autonomy and becoming indefinitely

trapped in an undesirable or even abusive situation. This is an

understandable concern deserving of serious consideration.

However, in our view, this would require societal collapse or a

dramatic regression of protections for civil rights, which would

also affect any humans living at the time, making it a generalized

argument against any form of potential life extension. Absent

dystopian changes to society, any realistic restoration procedure

in a civilized society will be highly regulated to ensure that the

revived individual retains control over their body autonomy.

It is critical to note that the proposals for both whole brain

emulation and nanotechnology are highly speculative and face

numerous limitations that are far beyond our current scientific

understanding and engineering capabilities. The gap between our

present situation and the level of technology required for such

interventions is immense and may prove insurmountable. Upon

deciding to preserve their brain today, a person can choose to

record their preferences for how and when the restoration

process would be performed, if it ever becomes possible. In the

future, any organization that performs restoration should clearly

be highly regulated. The decision-making team would ideally be

required to consider the individual’s preferences regarding

restoration to the maximal extent possible, given the technology

and resources available to them.
Legal and ethical aspects of brain
preservation

Clearly, brain preservation must be performed in a way

consistent with societal laws and ethical standards. We refer the

interested reader to some of the many previous thorough

discussions of these topics (131–135). Briefly, we will highlight
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several areas in which legal and ethical aspects of the field interact

with the brain preservation procedure.

First, there are several forms of legal delays occurring before the

procedure that can prevent people from achieving adequate

preservation quality. It is clear that significant damage begins

within minutes (48). Barriers to prevent the procedure from

beginning include forensic investigation protocols, hospital

policies, and in some cases, mandated forensic autopsy. The

organ donation for transplantation field has dealt with similar

problems, and in many jurisdictions has achieved a good

working relationship between their interests and those of medical

examiners and coroners, allowing donation to proceed in most

cases (136). One source notes that there has not been any

recorded cases found in medical and legal publications where the

process of obtaining organs has hindered a criminal investigation

(137). With enough societal interest, the brain preservation field

could achieve a similar collaboration with medical examiners and

coroners, to allow high-quality brain preservation without

preventing adequate forensic investigation when necessary.

From an ethical perspective, it is critical for people choosing the

procedure to understand that significant uncertainty surrounds the

capability of current brain preservation procedures to maintain

psychological information for future recovery. Given its dependence

on future molecular imaging technologies, it is not currently

possible to decide with certainty where the line between

meaningful and futile brain preservation lies. It should also

certainly not be mistaken for a form of long-term suspended

animation, i.e., a procedure readily reversible with contemporary

technology. It is imperative that any marketing materials, such as a

website, explicitly convey these uncertainties to prevent offering

false hope and inducing harm. There needs to be informed consent

to ensure that people choosing the procedure are aware that any

long-term outcomes are unknown. Further, the procedures must

only be initiated after other interventions have either failed or been

declined (138), and must conform with local laws.

Finally, it is essential to discuss some of the ethical obligations

of brain preservation organizations. The initial cryonics

organizations were very poorly run, leading to thawing and

decomposition of the bodies and their information-theoretic

death, regardless of the quality of the initial cryopreservation

(139). It is essential for brain preservation organizations to

maintain stability, including adequate funding, to prevent a

similar tragedy in the future. It is also essential for the people

working for the organizations to care for the preserved brain as a

human person, not as human remains (140). Making the choice

for brain preservation is a courageous and pro-social decision

that benefits others, by stimulating research and decreasing social

stigma around the practice. This choice needs to be respected

and honored by any organization choosing to engage in

brain preservation.
Discussion

Proponents of cryonics and chemical brain preservation

have been advancing arguments supporting these practices for
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several decades (18, 19, 52, 62, 132, 141). In recent years,

there is increasing evidence from neuroscience suggesting that

memories are most likely encoded in the brain’s intricate

structures, including its synaptic connectivity (142–144).

Recent studies using novel tissue clearing methods have also

corroborated the preservation of neural circuitry in brains

preserved in formaldehyde for many years, thus raising the

prospects for the fluid preservation method in particular (145,

146). As a result, it makes sense to seriously consider methods

of experimental brain preservation as an option upon legal

death as a potential bridge to health restoration technologies

that may be developed in the future. Moreover, research in

this area will potentially have spillover benefits to other fields,

including improvements in methods to study brain disorders

and neural ischemia (104), improvements in techniques for

organ banking (12), and enabling human space exploration

(147). While there is clearly still uncertainty about whether

technology will ever develop to render restoration possible, not

allowing preservation at legal death to those who are

interested could mean missing a fleeting chance to potentially

save lives. Therefore, despite challenges in procedural

optimization and ethical considerations that must be taken

into account, we believe it is a valid approach to provide this

option now to those who are informed and willing.

Additionally, the more people who choose to pursue structural

brain preservation procedures, the more affordable, accessible,

and effective they are likely to become. Given the importance

of scientific validation, a primary focus should be on

coordinated research efforts to improve the preservation

methods and test whether they are effectively preserving the

structures in the brain thought to be required for valued

psychological properties to be maintained.
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