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Introduction

Animal models have been developed for many human diseases including

cardiovascular, respiratory, hepatic, renal, ophthalmic, metabolic, neurologic,

neurodegenerative, neuropsychiatric, inflammatory, and infectious diseases or

conditions. Their use has proved crucial in developing treatments for a large number of

human diseases and testing implantable devices. While a single animal model may not

show all the main pathophysiological changes in different human diseases, they are the

most valuable tool for studying treatment strategies prior to performing clinical trials.

Cell culture and molecular biology studies are used to support the findings from the

use of animal models. Selective breeding, genetic modification, and advances in

molecular imaging provide a better understanding of disease processes and insights into

possible new interventions. There are several areas in which future research using

animal models could make an important contribution to understanding disease

processes and possible new treatment strategies.
Use of nanoparticles

Incorporation of therapeutic molecules into nanoparticles may be suitable for the

treatment of neurodegenerative diseases and brain injury (1). Animal models of

Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, ischemic stroke,

amyotrophic lateral sclerosis, traumatic brain injury, multiple sclerosis, epilepsy have

been developed (2–8) and could be used to test the effect of administering

nanoparticles intravascularly or directly into the brain. The nanoparticles could be

loaded with therapeutic agents such as neurotrophins (e.g., neurotrophin 3, brain-

derived neurotrophic factor) and growth factors (9), cerium oxide or made of graphene

(10), or be used as magneto-electric nanoparticles (11). The latter can be subjected to

ac-magnetic field stimulation and cause stimulation of neurons in regions of the brain

that the nanoparticles are guided to. It has the potential for deep brain stimulation in

animal models of Parkinson’s disease. In neurodegenerative diseases, passage of

nanoparticles through the blood-brain barrier is facilitated due to damage occurring to

the blood-brain barrier (12, 13). Nanoparticles have been used for the treatment of

cancer (14, 15), liver fibrosis (16), and diabetes (17). Mouse, rat, and monkey models

have been developed for many neurodegenerative diseases, and for example

magnetically guided delivery of magneto-electric nanoparticles was tested in the brains

of mice and their distribution to different cell types (11).
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Use of bioactive scaffolds

Incorporation of therapeutic molecules into mini scaffolds to

form bioactive scaffolds can be used for the treatment of

neurodegenerative diseases, multiple sclerosis, epilepsy, traumatic

brain injury, stroke (18), skin regeneration (19), cartilage/bone

repair (20–22), cardiac repair (23), and soft tissue repair (24).

Metal nanoparticles-based scaffolds have been used for bone

tissue regeneration (25). Studies on skin regeneration may be

performed using small or large laboratory animals (e.g., mouse,

piglet), while cartilage/bone repair can be examined using large

laboratory animals (e.g., dog, sheep). In a recent review of

biomaterial and tissue engineering strategies for the treatment of

brain neurodegeneration (26), a wide variety of biomaterials had

been used including nanoparticles, carbon nanotubes for cell

engraftment, microspheres and microscale scaffolds,

functionalized composite scaffolds, self-assembling peptides as

scaffolds, and micro-tissue engineered neural constructs, and

were tested in mouse and rat models. In vitro studies involving

measurement of neural aggregate + axon length, and in vivo

studies examining neurorestorative effects of biomaterial and

tissue-engineered constructs using animal models of traumatic

brain injury or Parkinson’s disease have been reported. Alginate

fibres have recently received attention as a possible treatment

modality of amyotrophic lateral sclerosis. Alginate fibres cross-

linked with strontium and loaded with methylene blue can

enhance the survival of motor neurons (27). Also, in vitro

models of traumatic brain injury can be used to test therapeutic

materials. Monocultures of cortical neurons can be established,

and an injury created using a pipette tip or needle. Complex in

vitro systems have been developed such as a mixed glial/polyglial

culture system in which astrocytes, oligodendrocytes and

microglia are present in reproducible ratios. This model is suited

to studying glial responses to therapeutic materials. The model

has evolved to include the neuronal population alongside

multiple glial cells and has been used to study delivery of

nanoparticles to the injury site (28).
Use of liposomes

Liposomes are nanosized vesicles consisting of a phospholipid

bilayer membrane enclosing an aqueous compartment. The

structure of the lipid bilayer membrane enables liposomes to

immobilize both hydrophilic drugs in their aqueous core and

hydrophobic drugs within the lipid bilayer, and they have great

potential as smart drug delivery systems (SDDSs). They are

highly biocompatible, biodegradable, and non-toxic to the body.

In addition, they have high drug loading capacity and high

solubility in water and blood. Incorporation of chemotherapeutic

drugs into liposomes that can be injected into the vascular

system and can be released upon breakdown of the liposomes by

ultrasound/laser irradiation (29–31) has been used in treating

tumors, and several successful liposomal formulations for cancer

treatment are currently available (30). Upon injection into the

bloodstream, serum proteins (called opsonin proteins) bind to
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the surfaces of liposomes, making them susceptible to phagocytic

attack and removing them from the blood circulation and

lowering their accumulation at targeted diseased sites. By coating

liposomes with hydrophilic molecules such as polyethylene

glycol, the adsorption of opsonin proteins on their surface is

reduced, thus protecting them from phagocytic attack, increasing

their circulation times to more than a day, delivering the

entrapped chemotherapeutics at the targeted tumor sites, and

decreasing cytotoxic effects on normal cells. Liposomes carrying

therapeutic drugs have the potential to treat heart conditions

(e.g., angina, coronary artery disease caused by atherosclerosis),

kidney disease, and liver disease. Liposomes can cross the blood-

brain barrier using receptor-mediated transcytosis (32) and could

be used to treat neurodegenerative diseases (e.g., Alzheimer’s

disease, Parkinson’s disease) (33) for which animal models have

been developed (2–8). Liposome nanoparticles conjugated with

lactoferrin to deliver neuronal growth factors across the blood-

brain barrier had a protective effect against amyloid beta-induced

neurotoxicity in vitro (34). A magnetic (Fe3O4-nimodipine)

liposomal delivery system was developed by modifying

nimodipine with polyethylene glycol-coated Fe3O4. In a rat

model of Parkinson’s disease, enhanced protection of

dopaminergic neurons was observed by reducing the

neurotoxicity through nimodipine incorporated in liposomes (35).
Use of stimuli-responsive carriers

Many important food bioactive compounds have applications in

health promotion and disease prevention. However, these

compounds have low chemical stability and bioavailability.

Recently there has been a major research effort to develop

advanced delivery systems of natural bioactive molecules. Stimuli-

responsive carriers have potential for improving delivery and

release of intact bioactive phytochemicals to target sites in response

to certain stimuli or combinations of them (e.g., pH, temperature,

oxidant, enzyme, irradiation), thereby increasing therapeutic

outcomes and reducing side effects (36). Hybrid formulations (e.g.,

organic-inorganic complexes) and multi-stimuli responsive

formulations have been investigated for smart-delivery of food

bioactive compounds such as quercetin, curcumin, resveratrol. In

the extracellular tissues of many solid tumors the pH is around 6.5

while in healthy tissues it is 7.4–7.5. The use of certain polymers

whose conformation or solubility properties are altered under

particular pH conditions would result in fast nutrachemical release

at a specific site. In these carriers, the pH-sensitive polymers with

functional groups (e.g., carboxylic acids, amines) can act as proton

donors or acceptors in response to changes in environmental pH.

Protonation of polymers in acidic conditions causes structural

deformation and alteration in hydrophobicity of the polymers,

thereby enhancing the release of the encapsulated compounds.

Other approaches involve the application of acid-labile linkages or

polymers, ionizable chemical groups, and gas-generating precursors

(37). A possible application could be to deliver pH-sensitive

polymers to the stomach to treat gastric disease. Stimuli-responsive

nanogels or hydrogel nanoparticles have application in cancer
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therapy, delivery of antiviral drugs, delivery of vaccines, and

treatment of diabetes (38). Such systems recognize either internal

physiological cues (e.g., pH, temperature, redox e.g., glutathione)

(36) or respond to externally applied stimuli (e.g., temperature,

magnetic fields, photons, ultrasound waves). These stimuli-

responsive nanogels have an internal hydrophilic nature for drug

and biomolecule encapsulation, enhanced stability for blood

circulation, and controlled release of the loaded drug or biomolecule.
Use of colon-targeted drug delivery
systems (smart pellets)

Colonic drug delivery systems have been used to treat intestinal

diseases such as colorectal carcinoma, ulcerative colitis,

diverticulitis, Crohn’s disease, and irritable bowel syndrome. By

reducing unwanted adsorption in other regions of the

gastrointestinal tract and ensuring that the whole drug dose is

specifically delivered to the colon, colon-specific drug delivery

improves therapeutic effectiveness. Most colon-targeted drug

delivery systems are either responsive to the pH of the colon or

to enzymes produced by intestinal microbiota. Smart pellets have

been developed for controlled delivery of drugs to the

gastrointestinal tract, e.g., 5-fluorouracil to treat colorectal

carcinoma. Polymer-based formulations were based on

hydroxyethyl methacrylate copolymerized with methacrylic acid.

The system was optimized to deliver 5-fluorouracil to the colon

by preventing/delaying the release of 5-fluorouracil within the

first 5–6 h following oral administration to ensure drug arrival to

the colonic region. This enhances therapeutic outcome, reduces

dosing and undesirable side effects, and increases patient

compliance. Six drug-loaded formulations were produced with a

drug entrapment efficiency of approximately 91% in the

formulations. Less than 27% total drug release occurred for all

formulations after 5 h in the in vitro release study, and the

highest total release after 24 h was 69% (39). In vivo studies of

smart pellets for administering drugs to the colon have been

performed in rats and rabbits.
Use of smart pills and ingestible sensors

Smart pills can be used to monitor patients with chronic

diseases such as heart disease, gastrointestinal disorders, and

diabetes, during surgeries, in critical care settings, or in studying

physical responses during physical activities such as sports

performance (40). Smart pills can also be used for drug delivery.
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A microchip sensor in the pill monitors the effectiveness of the

drug and alters the dosage to ensure the optimal amount is taken

for the condition being treated. This can decrease side effects and

improve treatment outcomes. Smart pills have the potential to

reduce healthcare costs (41). Ingestible sensors or smart pills

have been developed for the imaging of esophagus/stomach/small

intestine (as a gastrointestinal tract diagnostic tool), sensing

different types of gases to provide metabolic and digestive

information, monitoring medication compliance or absorption of

medication (e.g., in schizophrenia patients), and electrochemical

signal sensing (on stools as a gastrointestinal tract diagnostic

tool) (42, 43). Animal models that have been used for studying

gastrointestinal disease include mice, rats, guinea-pigs, dogs,

pigs (44–46).

This Speciality Grand Challenge is a personal opinion of some

of the new treatment modalities that can be explored using animal

models of disease. More details on the applications are available in

the cited references and may include the animal models that have

been used. Other important challenges are included in the mission

and scope of this section, which aims through the use of animal

models to improve patient health outcomes.
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