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Problem: Leishmaniasis is a disease caused by protozoan parasites of the genus
Leishmania and has a high prevalence and impact on global health. Currently,
the available drugs for its treatment have drawbacks, such as high toxicity,
resistance of the parasite, and high cost. Therefore, the search for new, more
effective, and safe drugs is a priority. The effectiveness of an anti-leishmanial
drug is analyzed through in vitro studies in which a technician manually
counts the intracellular form of the parasite (amastigote) within macrophages,
which is slow, laborious, and prone to errors.
Objective(s): To develop a computational system that facilitates the detection
and counting of amastigotes in microscopy images obtained from in vitro
studies using image processing techniques.
Methodology: Segmentation of objects in the microscope image that might be
Leishmania amastigotes was performed using the multilevel Otsu method on the
saturation component of the hue, saturation, and intensity color model.
In addition, morphological operations and the watershed transform combined
with the weighted external distance transform were used to separate clustered
objects. Then positive (amastigote) objects were detected (and consequently
counted) using a classifier algorithm, the selection of which as well as the
definition of the features to be used were also part of this research. MATLAB
was used for the development of the system.
Results and discussion: The results were evaluated in terms of sensitivity,
precision, and the F-measure and suggested a favorable effectiveness of the
proposed method.
Conclusions: This system can help researchers by allowing large volumes of
images of amastigotes to be counted using an automatic image analysis technique.
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1 Introduction

Leishmaniasis is a disease caused by protozoan parasites of the genus Leishmania and

continues to be a major public health problem in several tropical and subtropical

countries. It is transmitted by the bite of sandfly, mainly Phlebotomus in Europe, Asia,

and Africa, and Lutzomyia in America (1). According to the World Health
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Organization (WHO), leishmaniasis is among the top ten neglected

tropical diseases, with an estimated 1.6 million new cases each year

and between 20,000 and 30,000 deaths (2). There are three main

forms of leishmaniasis: visceral (the most serious form because it

is usually fatal without treatment), cutaneous (the most common,

usually causing skin ulcers), and mucocutaneous (affecting the

mouth, nose, and throat) (2). Currently, there is no available

vaccine for this disease, and the drugs used for its treatment have

serious limitations, such as parasite resistance, high cost, and

strong side effects for the patient (3). Therefore, the search for

new, more effective, and safe drugs is a priority (4, 5).

Leishmania parasites reside inside macrophages (cells of the

immune system), where they differentiate from promastigotes to

amastigotes and multiply, causing cell rupture and afterward

invading other macrophages, which contributes to the disease

progression. Diagnosis of this disease usually involves direct

microscopic examination of tissue or fluid samples to detect the

presence of Leishmania parasites (6).

High-content screening (HCS) systems accelerate the process

of drug discovery through rapid in vitro screenings of compound

libraries in search of anti-leishmanial medicines (7). However,

many laboratories carrying out studies for the development of

anti-leishmanial drugs do not have easy access to HCS

microscopes or specific proprietary software due to their high

cost. They need to use traditional methods, such as manually

counting intracellular parasites after Giemsa staining, which is a

standard and cheap staining method commonly used in

laboratories in developing countries. Nevertheless, this is a time-

consuming, laborious, and subjective task and is prone to errors.

Therefore, the development of an automated method for the

detection of Leishmania parasites in microscopy images can be

an alternative to speed up the parasite counting process in a

large number of images in many laboratories that do not have

this type of technology.

This article presents an approach to assist in the detection and

quantification of macrophages and intracellular amastigotes of

Leishmania parasites in images of Giemsa-stained slide fields

using image processing techniques, and is organized as follows:

the following section (Section 2) presents an overview of the

related literature. Section 3 describes the images used in this

study and the proposed method. Section 4 shows the different

performance metrics. Section 5 discusses the results obtained.

Finally, Section 6 presents the conclusions of the study.
2 Related work

This section presents the main studies related to the automatic

detection of intracellular amastigotes of Leishmania parasites in

microscopy images, showing the methods used, image databases,

results obtained, and main limitations. In addition, some studies

devoted to processing images of other types of parasites, such as

Trypanosoma cruzi, are analyzed due to their relevance to the

subject addressed in this work.

Noguera et al. (8) proposed a semi-automatic approach for

counting T. cruzi amastigotes in Giemsa-stained images using the
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marker-controlled watershed transform as a segmentation

technique and shape features like area and compactness to

identify amastigotes from other cells. They used 100 images and

obtained the following values: a precision of 93.71% ± 11.11%, a

recall of 85.63% ± 10.63%, and an accuracy of 84.62% ± 9.96%.

de Souza Relli et al. (9) proposed a method for automating the

counting of T. cruzi amastigotes in Giemsa-stained images. First, a

morphological filter removes the complex image background;

second, the Fuzzy C-means algorithm is used to segment

collections; third, threshold processing is carried out to preserve

infected cells; and finally, amastigotes are processed by

morphological granulometry and filtered by average. They used

the same images as Noguera et al. (8), but composed of 40

images, and reported similar performance rates.

Yazdanparast et al. (10) developed an open-source software

called INsPECT to automate the infection-level measurement of

Leishmania (intracellular) parasites using DNA fluorescent

images. Their approaches use some morphological operations

and a method called threshold for images with a decreasing

probability density function. This study used fluorescent images

and the article does not provide an evaluation of the method in

terms of the standard measures of effectiveness (sensitivity, F1,

etc.) that would facilitate a comparison with other approaches.

Neves et al. (11) proposed a method for counting macrophages

and parasites in fluorescent images of Leishmania-infected

macrophages based on blob detection, clustering, and separation

using concave regions of the cells’ contours. They used 24 images

and achieved a precision of 81.55% ± 1.09, a recall of 87.62 ±

0.93, and an F-measure of 84.48 ± 0.60 in the parasite detection,

achieving a better performance than those reported by Leal et al.

(12) and Nogueira (13).

Gomes-Alves et al. (7) proposed an automated protocol for the

quantification of the intracellular form of Leishmania spp in

fluorescence images. This protocol was designed to be used in two

image analysis platforms, IN Cell Investigator Developer Toolbox

(commercial) and the free open-source Cell Profiler, and was made

using classical algorithms. The results provide the total number of

macrophages and parasites, the number of infected macrophages,

and the number of parasites per infected macrophage. Moraes and

Alcântara (14) proposed another protocol for the quantification of

the parasite loads of Leishmania parasites in fluorescence images.

The technique can detect and quantify intracellular amastigotes,

obtaining the total number of cells, ratio of infected cells, total

number of parasites, and number of parasites per infected cells.

These last six studies analyzed fluorescence microscopy images;

however, work with optical microscopy images, which is what we

used, has been less addressed and is more accessible for

developing countries. Other methods for segmenting evolutionary

forms of visceral leishmaniasis in microscopic blood smears are

shown in Farahi et al. (15), Salazar et al. (16), and Isaza-Jaimes

et al. (17). The first two studies do not provide evaluations of

their effectiveness in parasite detection and only express the

results in terms of segmentation quality. The third study reports

a percentage of parasite recognition of approximately 80%.

Salazar et al. (16) and Isaza-Jaimes et al. (17) used the same

image dataset provided by Farahi et al. (15).
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Górriz et al. (18) employed a deep learning approach using the

U-Net model for the segmentation of Leishmania parasites and

classified them into promastigotes, amastigotes, and adhered

parasites. Thirty-seven images were used to train the algorithm.

An evaluation of this method in terms of Dice score, precision,

recall, and F1-score resulted in percentages of 77.7%, 75.7%,

82.3%, and 77.7%, respectively, for the amastigote class.

Another recent study regarding the automatic counting of

macrophages and amastigotes is presented by Coelho et al. (19).

This article illustrates quite well what needs to be done but does

not provide a statistical analysis to support the results.

de Araújo Gonçalves et al. (20) provided a comprehensive

survey of computer vision methods for detecting visceral

leishmaniasis in humans. They recognized the lack of image

databases, the scarce use of deep learning techniques, and that

the methodologies that use the segmentation procedure perform

better in terms of accuracy.

de Araújo Gonçalves et al. (21) proposed two different

methodologies that perform an automatic classification of images

as either positive or negative for visceral leishmaniasis in

humans. The first method used a convolutional neural network

(CNN) based on LeNet and trained from scratch and the second

one used a feature extraction with a pretrained CNN and three

classic classifiers [random forest (RF), support vector machine

(SVM), and XGBoost]. They achieved an accuracy of 78.7%, a

precision of 94.1%, a recall of 64.0%, and an F1-score of 99.2%

in their best classification results.

Finally, the same author [Gonçalves et al. (22)] proposed a

deep learning approach using the U-Net model for the

segmentation of visceral Leishmania (VL) parasites in images

from bone marrow, precisely indicating the location of the

amastigotes in the image. In the detection of VL parasites, a Dice

index of 80.4% was obtained, as well as an intersection over

union (IoU) of 75.2%, an accuracy of 99.1%, a precision of

81.5%, a sensitivity of 72.2%, and a specificity of 99.6%.

The development of deep learning techniques, such as

convolutional neural networks, has become an active research

topic in the field of medical image analysis (23). However,

training deep networks requires a large number of annotated

image databases and a lot of computing resources, which is not

currently feasible in developing countries.

Some limitations of the studies presented in the state of the art

are related to the image databases used, which are mostly private.

It is important to stress the fact that currently the lack of a

public standard database of Giemsa-stained light microscope

images for this kind of study constitutes a limitation when

comparing different methods, and this should be considered in

the analysis of results.

This study presents an automatic approach for the

segmentation and quantification of macrophages and intracellular

amastigotes of Leishmania parasites from Giemsa-stained images

of mice peritoneal macrophage samples using image processing

techniques based on algorithms that do not pose high demands

to the computer facilities needed, which might be a favorable

characteristic in many places where applications like this are
Frontiers in Medical Technology 03
needed. The proposed technique focuses on the separation of

overlapping amastigotes to improve the counting process.

The research reported included the testing of standard classifiers

and sets of features to discriminate amastigotes and artifacts that

might be counted as false positives.
3 Materials and methods

This section presents (1) the proposed methodology for the

segmentation of object candidates to be classified as the

amastigote form of the Leishmania parasite in macrophages, and

(2) the classification process that completes the detection of

amastigotes as true positives. Figure 1 shows a flow chart

representing the main steps in the proposed approach.
3.1 Leishmania parasite culture

The experimental assay was carried out using the following

protocol: the activity on intracellular amastigotes was studied in

24-well culture plates with coverslips and Roswell Park Memorial

Institute culture medium supplemented with 10% fetal bovine

serum and antibiotics (200 u/ml penicillin and 200 µg/ml

streptomycin). A cellular suspension (105 cell/ml) was added to

each well. After 2 h at 33°C and 5% CO2, unadhered cells were

eliminated and adhered macrophages were infected with

stationary phase promastigotes at a 4:1 parasite/macrophage

ratio. After 4 h incubation, the culture medium was discarded to

eliminate free promastigotes. Then, fresh culture medium and the

test compounds were added to reach final concentrations.

After 48 h, the coverslips were removed and the cultures developed

on them were fixed with methanol and stained with Giemsa.
3.2 Image acquisition

The image database was prepared at the Center for the Study of

Chemical Bioactives (CBQ) at Universidad Central “Marta Abreu”

de Las Villas (UCLV). The samples were prepared from in vitro

peritoneal macrophages of BALB/c mice experimentally infected

with Leishmania amazonensis and stained with Giemsa. The

images were acquired with an Accu-Scope 3015 light microscope

under a 100× objective (which combined with the camera lens

results in a 50× optical magnification) with oil immersion and

equipped with a 3.2-megapixel (MP) UCMOS03100KPA digital

camera. Images were stored in a tagged image file format (tiff)

with a resolution of 2,048 × 1,536 pixels. In this study, 46 images

were captured. The ground truth images were prepared with the

help of two experts from CBQ, who manually marked the

locations of the amastigotes in each image. Figure 2 shows an

image of macrophages infected with Leishmania parasites in

which clumped amastigotes are magnified for better visibility.

The green crosses in the locations of the amastigotes represent

the ground truth annotations made by the specialist.
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FIGURE 1

Block diagram showing the main steps in the proposed approach.

FIGURE 2

Giemsa stain image showing the amastigote form of Leishmania in which clumped amastigotes are magnified and the green crosses represent the
manually annotated ground truth in the amastigote locations.
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3.3 Pre-processing

The pre-processing stage is an important step in improving the

quality of the images. First, the original image was converted from

red, green, and blue (RGB) to the hue, saturation, and intensity

(HSI) color space. The HSI color space corresponds closely with

the way humans describe and interpret color and also has the

advantage that it decouples the color and grayscale information

in an image, making it suitable for many techniques

implemented for grayscale images (24). Figure 3 shows (A) the

original image and in (B), (C), and (D) the hue, saturation, and
Frontiers in Medical Technology 04
intensity components in the HSI color space, respectively. As

shown in Figure 3C, the saturation (S) channel shows the purple

color of nuclei and amastigotes as the most saturated regions,

allowing them to be more clearly identified. Therefore, the S

channel was chosen to segment these objects.
3.4 Segmentation

In this study, it was necessary to segment the following objects:

the amastigotes and the nuclei and cytoplasm of macrophages.
frontiersin.org
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FIGURE 3

(A) Original image. (B) H component. (C) S component. (D) I component.

FIGURE 4

(A) Histogram of the image S channel. (B) Multilevel image thresholds using Otsu’s method.
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The S channel image was selected because it could show the

differences between these parts clearly enough. Here, the nuclei

and amastigotes appeared as the brightest region in the image;

therefore, they could be deemed as belonging to a single class

but could be differentiated by their dimensions afterward. The

cytoplasm appeared as a slightly dark gray region and the

background of the image was practically black. These image

characteristics led us to propose a multilevel thresholding

segmentation with two thresholds to separate these different

regions into three classes.

Otsu’s method (25) is a widely used technique for image

thresholding. This method found the optimal threshold by

maximizing the between-class variance of pixel values, which

effectively separates foreground and background regions. Thus, to

find the thresholds that separated those three regions, we used

the MATLAB built-in function called multithresh, which is an

extension of the original Otsu method for multilevel

thresholding. Figure 4A shows the histogram corresponding to

the pixel distribution of the image Saturation channel and
Frontiers in Medical Technology 05
Figure 4B shows the result of applying this method on the S

channel image. Once the segmented image was obtained, the

next step was to separate these regions to obtain the binary mask

corresponding to each class.

3.4.1 Nuclei segmentation
After obtaining the binary mask of parasites and nuclei regions,

morphological operations were performed on this mask to separate

them and improve the segmentation of the parasites. First, the

morphological opening operation was carried out with an

approximately disk-shaped structuring element (SE) with a

radius of 3 pixels to smooth the contours of nuclei and parasites,

break narrow isthmuses, and eliminate thin protrusions. This

radius size was defined based on the mean size of the

amastigotes and on the resolution of the acquired image. Then, a

morphological hole filling operation was applied to fill any

“holes” caused by the thresholding process, and the objects that

fell in the border of the image were removed. Finally, to separate

the amastigotes from the nuclei, the size of the connected
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FIGURE 5

Nuclei segmentation. (A) Binary mask of the nuclei and parasite regions. (B) Binary mask of the parasite and nuclei regions after applying the
morphological opening operation to fill holes and clear borders. (C) Binary mask of the nuclei regions. (D) Binary mask of the parasite regions.

Portuondo-Mallet et al. 10.3389/fmedt.2024.1360280
components (CCs) was analyzed by means of an area histogram;

then, those objects with an area greater than 10,000 pixels were

considered nuclei and the rest were considered as possible

amastigotes, the binary masks of which would be refined in a

further processing that will be described in a later section. This

process is shown in Figure 5.

3.4.2 Cytoplasm segmentation
To segment the cytoplasm regions, some morphological

operations were applied to refine the initial binary mask of the

cytoplasm obtained by Otsu’s multi-thresholding algorithm. First,

a morphological closing operation was applied with an

approximately disk-shaped structuring element with a radius of 5

pixels to smooth the contour of the cytoplasm. Then, we filled the

holes in the interior of the cytoplasm using a morphological hole

filling operation. As the cytoplasm has a relatively large area,

objects with an area less than 10,000 pixels (area of the nuclei)

were removed using a morphological area opening operation.

The macrophages may have a different shape and size and we

can also find touching macrophages that need to be separated.

The use of the identified nuclei as markers for the watershed

algorithm guarantees the exact number and location of the
Frontiers in Medical Technology 06
macrophages. To separate touching cytoplasm, we used the

location of the nuclei obtained in the previous step as the seed for

the watershed algorithm on the complement of the Saturation

channel previously smoothed with a Gaussian filter. Figure 6

shows the separation process of two macrophages for the

illustration of this procedure.

Then, each of the resulting connected components was analyzed

because regions considered as artifacts may appear due to the stain

used and the multilevel process. Therefore, we kept only those that,

when superimposed with the nuclei mask obtained in the previous

section, produced an intersection, which meant that this

component was really the cytoplasm of a macrophage. Finally, as

the image may contain dead macrophages, the cytoplasm that

belonged to dead macrophages was eliminated, taking into account

that the ratio between the area of the nucleus and the area of the

cytoplasm is less than a threshold, which was determined

experimentally with the value 0.65.

3.4.3 Parasite segmentation
A macrophage was considered infected when it had at least one

amastigote inside its cytoplasm. Then, we made an AND operation

between the binary mask of the amastigotes obtained in Figure 5D
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FIGURE 6

Cytoplasm segmentation. (A) Binary mask of the cytoplasm. (B) Binary mask after the morphological operations of hole filling and area opening.
(C) Nuclei as internal markers on the complement of the Saturation image previously smoothed with a Gaussian filter. (D) Segmentation after
applying the watershed transform.
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with the binary mask of the cytoplasm obtained in Figure 6D, and

the pixels that fell within the cytoplasm regions were considered

possible amastigotes. However, there were some objects that

significantly exceeded the mean size of the amastigotes, because

some amastigotes were grouped or touching and needed to be

separated. The set of processes described so far can be

considered a first coarse classification based on the dimensions of

the segmented structures, and the detected object candidates

considered as amastigotes were subjected to a second stage

involving the use of machine learning classifiers to find the true

positives (amastigotes).
3.4.3.1 Splitting overlapping amastigotes
One challenge in the segmentation of cells in microscopy images is

to separate clustered, overlapped, or touching cells. After obtaining

the binary mask of the possible amastigotes, the next important

step in the proposed technique is the separation of the clusters

into individual objects (possible amastigotes) to obtain a more

accurate quantification. In this study, the marker-controlled

watershed transform was used, based on one of the approaches

proposed by Portuondo-Mallet et al. (26), which used

morphological filtering and the weighted version of the external

distance transform (EDT) [weighted EDT (WEDT)]. The

proposed method includes two steps: (1) the detection of

overlapping objects and (2) the separation of overlapping objects.

Step (1): The detection of overlapping possible amastigotes

To split overlapped objects, first, the image of Figure 7A is

complemented, as shown in Figure 7B, and then, its distance

transform (DT) is computed, as illustrated in Figure 7C. The DT

of a binary image can be defined as the distance from every pixel

to the nearest non-zero-valued pixel (24). The result of DT is a

grayscale image that shows its highest intensity in a point or

patch, which is in general a regional maximum, located farthest

from the background. Then, the obtained grayscale image is

normalized to the range [0 1]. This image is called Idt here.

After calculating the DT, several spurious maxima may appear

as shown in Figure 7D, which can lead to oversegmentation if used

as markers for segmentation with the marker (controlled watershed

transform). To remove the spurious maxima, a two-stage open-
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close alternating sequential filter (ASF) (27), using a disk

structuring element g with radii 1 and 2 in the first and second

filtering stages, respectively, was applied to the distance

transform map shown in Figures 7E,F. The general expression

for this filtering process is:

ASF2CO,g(f ) ¼ ( ((( f � g)†g) � 2g)†2g) (1)

for which in this case f is the Idt image. Here ° and †, respectively,
represent morphological opening and closing. The resulting image

is called Idtco. Then, we determined the regional maxima Irm,

which became the inner markers for the watershed transform.

Figure 7F shows the resulting maxima (inner markers) after

applying this filter with radii 1 and 2, respectively, and

superimposing it on Figure 7A.

Then, once the final regional maxima in Irm were obtained,

each CC in Figure 7A was analyzed to determine how many of

these regional maxima in Irm belong to each CC. This is carried

out by computing a logical AND between these two images and

putting the result of this intersection in Irmcc. If the number of

labeled objects in Irmcc is greater than one, then the CC is

classified as a cluster and should proceed to the splitting process,

otherwise it is considered an isolated possible amastigote. In

Figure 7F, we can observe that the connected components that

have more than one regional maximum are clustered objects, and

the connected components that only have one regional

maximum are isolated possible amastigotes.

Step (2): Splitting overlapped objects (possible amastigotes).

The division of the overlapped possible amastigotes is carried

out using the SplitClusterWEDT algorithm, which has been

described in a previous study (26). This algorithm receives as

input the CCs, the regional maxima of the cluster CC (Irmcc),

and the DT image after the open-close filtering (Idtco). This

procedure iterates for each regional maximum or inner marker

in Irmcc and computes its WEDT, which is the EDT with its

values divided (weighted) by a factor.

The EDT is defined as follows: consider the set B of pixels in

the background (binary level 0) of the binary image. Then, for
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FIGURE 7

Detection of overlapped amastigotes. (A) Cropped binary image containing overlapped amastigotes. (B) Complement of the image in (A). (C) Distance
transform. (D) Regional maxima of the DT superimposed in (A); notice the presence of spurious maxima. (E, F) Regional maxima after a two-stage
open-close alternating sequential filter (internal markers) superimposed in (A).

FIGURE 8

(A) Binary image of a cluster of amastigotes. (B) Regional maxima after morphological filtering. (C) WEDT. (D) Internal and external markers. (E) Split
cluster.
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any point x [ B, EDT(B)(x) is the distance from x to the nearest

pixel pertaining to a marker point (binary level 1), which in

this case is the regional maximum that is being analyzed in the

Irmcc image.

EDT(B)(x) ¼ min{d(x,y) , y [ BC} (2)

The factor used to divide the EDT of each regional maximum

in each cluster is the value of the distance transform in the region

occupied by each regional maximum. This factor contributes in

obtaining a better location of the skeleton by influence zones

(SKIZ) lines when segmenting clustered objects of different sizes.
Frontiers in Medical Technology 08
Then, the algorithm computes the global WEDT map for the

cluster, taking the minimum value of the WEDT in each point of

the plane in which the image is located, which is calculated for

each regional maximum in Irmc. Later, the watershed transform

is calculated on this global WEDT map to obtain the SKIZ lines

and segment the cluster CC. Figure 8 shows this procedure for

one of the connected components featured in Figure 7A.

Finally, the connected components with areas less than a third

of the average area are considered artifacts and removed by an area

open operation. This is necessary for the elimination of small

objects that may interfere in the next steps. At this point,

Figure 9 shows an example of the result of this segmentation, in

which the green line is the amastigote contour and the yellow

point is the reference ground truth mark.
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FIGURE 9

Amastigote contour detection (green) and reference ground truth
marks (yellow).

TABLE 1 Features used to classify possible amastigote objects.

No. Description
1 Circularity

2 Major axis length

3 Minor axis length

4 Energy

5 K, Red

6 Mean, Hue

7 Kurtosis, saturation

8 Entropy, saturation

9 Standard deviation, red

10 Entropy, red

11 Kurtosis, green
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3.4.4 Final detection of amastigotes
So far, the described procedures were intended to detect the

objects considered as possible amastigotes using mainly data

related to the dimensions of the segmented objects. Given that

the amastigotes exhibit some particular characteristics that

differentiate them from possible spurious artifacts that cannot be

distinguished only from data associated with their size and

geometry, the experimental data taken from 46 annotated images,

the processing of which resulted in 1,141 possible amastigotes

from the first coarse classification described previously, were

subjected to a feature extraction process.

3.4.4.1 Feature extraction and selection
First, a set of 66 features associated with the possible amastigotes

based on shape, texture, and intensity were extracted. Based on

shape, eight features were extracted: area, perimeter, eccentricity,

circularity, solidity, major axis length, minor axes length, and

equivalent diameter. Based on texture, four features were

extracted: contrast, correlation, energy, and homogeneity

obtained from the gray-level co-occurrence matrix (GLCM) (28)

for the cropped image of the bounding box of the segmented

region in RGB converted to grayscale. Based on intensity, eight

features were obtained for each color component of the RGB and

HSI color space. These were mean, variance, standard deviation,

skewness, kurtosis, smoothness, entropy, and the third moment.

In addition, other intensity features were extracted: foreground–

background contrast in red, foreground–background contrast in

green, and foreground–background contrast in blue (29). Finally,

another simple definition of contrast was extracted for each color

component of the RGB color space:

K ¼ G� Ge

Ge

where G and Ge denote the mean gray value in the region and in

the neighborhood, respectively.

In an attempt to optimize the dimensionality of the feature

set, a subset of features was selected from the feature set using
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Waikato Environment for Knowledge Analysis (WEKA)

version 3.8.6 (30). In this case, a wrapper method was selected

(WrapperSubsetEval with the BestFirst method as a search

method and J48 classifier). This selected 11 features, which are

listed in Table 1. All the features were normalized with the

normalize filter to the interval [0,1].
3.4.4.2 Classification
A set of three different classic classifiers, k-nearest neighbors

(kNN), SVM, and RF, were compared to assess the results. In

the case of kNN and SVM, various alternatives in their

parameters (K = 1, 3 for kNN, and PolyKernel and Puk for

SVM) were tested. The comparison amount of all the

classifiers was performed using stratified tenfold cross

validation, which ensures that each fold contains

approximately the same proportions of different classes for all

experiments as a measure of finding accuracy. Then, the

results were analyzed to determine which of the schemes was

(statistically) better than the other schemes. The indexes of

effectiveness reported were the correctly classified instances

(accuracy), incorrectly classified instances, TP rate, FP rate,

F-measure, and kappa statistic. The experiments with

classifiers were performed using WEKA and the results

obtained by them are presented in the next section.
3.5 Evaluation

Results were assessed through comparisons between the

automatically classified images and the corresponding

manually annotated ones. True positive (TP) represents the

number of manually labeled amastigotes correctly identified by

the classifier algorithm, false negative (FN) denotes the

number of manually labeled amastigotes not found by the

algorithm, and false positive (FP) represents the number of

amastigotes obtained by the algorithm without a

corresponding manually labeled amastigote. The performance

of amastigote detection was evaluated in terms of recall (also

known as sensitivity), precision (also called the positive
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FIGURE 10

Segmentation result. The blue line is the outline of the macrophage, the red line is the nucleus contour, the green lines are the contours of the
amastigotes and the yellow points are the reference ground truth marks. (A) Two touching macrophages are correctly separated. (B) Some
artifacts produced by staining and a dead macrophage are properly removed. (C) Result of the detection and evaluation of amastigotes inside the
macrophages.
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predictive value), and the F-measure, which were computed

using Equations 3–5:

recall ¼ TP
(TPþ FN)

(3)

precision ¼ TP
(TPþ FP)

(4)

F-measure ¼ 2� TP
(2� TPþ FPþ FN)

(5)
4 Results

The processing was performed using MATLAB (R2019a

version) on a computer with an Intel© Core © i7-6700 CPU @

3.40–3.41 GHz, with 8 GB of RAM and a 64-bit Windows 10 Pro

operating system. To evaluate the proposed segmentation and

classification method, tests were performed on 46 images

containing 157 macrophages. The 1,141 segmented regions
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(possible amastigotes) were composed of 975 amastigotes and

166 non-amastigotes based on the annotation made by the expert.

Figures 10, 11 show examples of the segmentation results, in

which the blue line is the outline of the macrophage, the red line

is the nucleus contour, the green lines are the amastigote

contours, and the yellow points are the reference ground truth

marks for evaluation purposes. Figure 10A shows two touching

macrophages that were correctly separated. In Figure 10B, some

artifacts produced by staining and a dead macrophage are

properly removed. Figure 10C shows the result of the

segmentation of amastigotes inside the macrophages, with the

annotation made by the specialist. A significant cause of a FN is

shown in Figure 11; it was possible that the amastigotes were

very close to each other or to the macrophage nucleus and the

algorithm could not separate them, resulting in one FN.

The processing using classifiers is intended to improve the

segmentation stage mainly in the reduction of FPs. The results of

the classification process were obtained using WEKA Explorer

and WEKA Experimenter with the segmented regions acquired

in the segmentation phase.

The classification results acquired using the 11 features

obtained using the WrapperSubsetEval feature selection method
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FIGURE 11

Examples of FNs and FPs obtained with the proposed approach.

TABLE 2 Weighted average of the classifiers used to detect the amastigotes from the set of possible amastigotes using the 11 selected features and
tenfold cross validation.

Classifier Correctly classified
instance % (accuracy)

Incorrectly classified
instances (%)

TP
rate

FP
rate

Precision Recall F-measure Kappa
statistic

kNN, K = 1 90.3593 9.6407 0.904 0.371 0.897 0.904 0.899 0.5786

kNN, K = 3 92.1122 7.8878 0.921 0.408 0.919 0.921 0.912 0.6178

SVM, PolyKernel 91.411 8.589 0.914 0.479 0.916 0.914 0.900 0.5572

SVM, Puk 92.4628 7.5372 0.925 0.403 0.924 0.925 0.916 0.6326

RF 93.3392 6.6608 0.933 0.306 0.930 0.933 0.929 0.7007

The bold represents the best result for the accuracy.
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(with the BestFirst method, as a search method and J48 classifier)

with the segmented regions are shown in Table 2. In this case, the

performance measures used in a tenfold cross-validation

experiment were the correctly classified instances (accuracy),

incorrectly classified instances, TP rate, FP rate, F-measure, and

kappa statistic. Notice that the best performance was obtained by

the random forest classifier, with an accuracy of 93.3%.

WEKA Experimenter allows more than one classifier to be

tested simultaneously to classify the dataset. We tested the

dataset by running the tenfold cross-validation test mode. The

corrected paired t-test mode was used to verify the performance

of each classifier by comparing the accuracy. The test used a 0.05

two-tailed confidence level and the results obtained with this test

showed that there were no statistically significant differences

between kNN, K = 3 and SVM, Puk with respect to random

forest, respectively.

From a total of 975 amastigotes, 958 were correctly detected by

the random forest classifier, which obtained the best results among

those tested, and only 17 amastigotes were not detected. In

addition, 107 were correctly detected as non-amastigotes and

only 59 were considered false positives, improving the result of
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the segmentation phase. Table 3 shows confusion matrices

obtained for the algorithms random forest, kNN with K = 3, and

SVM with Puk.
5 Discussion

One aspect of the algorithms proposed in this study that

deserves some clarification is the use of some parameters that are

hard coded, i.e., not calculated from the primary data. The value

of the size of the structuring elements (SE) (in terms of, for

example, the radii of the various SEs) used for morphological

operations as: opening with a discrete disk-shaped SE to smooth

the contour of nuclei, break narrow isthmuses and eliminate thin

protrusions; closing to smooth the contour of the cytoplasm; hole

filling and open-close ASF, is closely related to the dimensions in

pixels of the structures present in the images. This can also be

said for the case of the 10,000 pixels threshold used in the area

opening when segmenting the cytoplasm. The size of objects in

pixels is determined by the relationship between microscope

magnification (equivalent to 50× here) and camera resolution in
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TABLE 3 Confusion matrices from the classification results for random
forest, kNN, K = 3 and SVM, Puk classifiers.

RF, % accuracy = 93.3392 kNN, K = 3,
%

accuracy =
92.1122

SVM, Puk,
% accuracy
= 92.4628

Classified as → a b a b a b

Amastigote a 958 17 a 964 11 a 967 8

Non-amastigote b 59 107 b 79 87 b 78 88
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pixels (2,048 × 1,536 pixels, 3.2 MP), and this size can be

proportionally adjusted when using different values of these

parameters, and the heuristically obtained values used in this

study do not necessarily constitute a lack of generality.

Another possible source of difference between the method used

in this study and those that might be obtained with a different set

of images is the possible variation in color tones that could appear

due to the sample preparation process or the light source used in

the microscope. These differences could be solved by using color

constancy techniques in an image pre-processing stage. This

topic will be addressed in the continuation of this research.

The results obtained by the proposed method were compared

with other state-of-the art methods cited in the present article. It

is worth mentioning that in the literature review carried out, we

found that there are few published studies on this subject and

the image databases used in these studies are private and almost

all of the images were obtained by fluorescence microscopy.

Therefore, despite the fact that these studies did not use the

same image database and, moreover, some included images of

different types (fluorescence microscopy instead of light

microscopy) and different parasites (amastigotes of T. cruzi

instead of Leishmania), the global results can provide an idea of

how the values obtained in the experiments reported in this

article compare with those obtained in other studies in this field.

Table 4 shows the comparison of our best results obtained with

the random forest classifier with those presented in the previous

discussion on the state of the art.
TABLE 4 Performance of the proposed detection method compared with
others reported in the literature.

Author Microscopy
technique

Parasite R
(%)

P
(%)

F
(%)

Noguera et al. (8) Light T. cruzi 85.63 93.71 89.49a

Neves et al. (11) Fluorescence Leishmania 87.62 81.55 84.48

de Souza Relli
et al. (9)

Light T. cruzi 78.39 84.83 75.44

Górriz et al. (18) Light Leishmania 82.3 75.7 77.7

de Araújo
Gonçalves
et al. (21)

Light Leishmania 64.0 94.12 76.19

Gonçalves
et al. (22)

Light Leishmania 72.2 81.5 76.57a

Proposed method Light Leishmania 93.3 93.0 92.9

P, precision; R, recall; F, F-measure.

The bold represents the best results.
aNot available in the original study but as R and P are known and F = 2PR/(P + R), this

measure was calculated to complete this table.

Frontiers in Medical Technology 12
The method proposed by Noguera et al. (8), although it differs

in the type of parasite, is similar to ours as they performed

detection and counting of parasites and used the same type of

image. However, they performed a semi-automatic method,

whereas our method is fully automated and in terms of recall

obtained better results.

The method proposed by de Souza Relli et al. (9) is similar to

that of Noguera et al. (8) in the sense that it involves the detection

and counting of the same type of parasite but with the difference

that this is an automated method. They used the same images as

Noguera et al. (8) and their performance measures were a little

lower than those of Noguera et al. (8).

The method proposed by Neves et al. (11) allows the counting

of macrophages and amastigotes of Leishmania; however, they used

fluorescence microscopy images to make the process easier but

when the objects are very close, separation may not be possible

because important concave regions are not present.

The approach proposed by Górriz et al. (18), de Araújo

Gonçalves et al. (21), and Gonçalves et al. (22) uses deep

learning techniques. Górriz et al. (18) obtained promising results

with just 37 images. de Araújo Gonçalves et al. (21) and

Gonçalves et al. (22) obtained better results in terms of precision

rather than recall. These are recent studies and it is significant to

note their work in this field.

Training CNN models requires a large number of annotated

image databases to obtain reliable results and a great deal of

computing resource, which is not currently feasible in developing

countries. Unfortunately, there are no publicly available databases

of annotated images of these parasites in macrophages.

As can be seen, the results obtained in this study are favorable

and perform better in recall and the F-measure than those

presented in the state of the art. In addition, this method can

provide good performance without a large image dataset or input

image-size constraints, unlike deep learning methods.
6 Conclusion

In this study, an automated system for counting macrophages

and intracellular amastigotes of Leishmania parasites in Giemsa-

stained images using image processing techniques was proposed.

The proposed approach is based on multilevel Otsu thresholding

segmentation of the saturation component of the HSI color

space, morphological operations, and the use of the watershed

transform combined with the weighted external distance

transform to split clusters or overlapping amastigotes. The results

were evaluated in terms of sensitivity, precision, and the

F-measure, which suggested a favorable effectiveness of the

proposed method. The proposed method can assist in

determining the Leishmania infection rate and makes the

counting process in laboratories more expeditious.

The results presented here open the way to addressing some

important extensions of this study. Among them we can mention

the following: (1) quantifying a Leishmania sp. that does not live

within enlarge parasitophorous vacuoles (PVs), instead of L.

amazonensis, e.g., L. braziliensis and Leishmania major; (2) The
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classical quantification with this new approach using an in vitro

incubation with a reference drug, such as amphotericin B, to

obtain a table stating the differences in terms of intracellular

numbers of amastigotes, the rate of infection, and the infectivity

index, in addition to the time consumed for analysis; and (3)

studying how this methodology would work when comparing

different macrophages that are routinely used in in vitro assays

(murine macrophage cell line vs. primary macrophages).
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