This research aims to present and assess the Primary Functions of autoinjectors introduced in ISO 11608-1:2022. Investigate the risks in current autoinjector technology, identify and assess risks and benefits associated with Artificial Intelligence (AI) powered autoinjectors, and propose a framework for mitigating these risks. ISO 11608-1:2022 is a standard that specifies requirements and test methods for needle-based injection systems intended to deliver drugs, focusing on design and function to ensure patient safety and product effectiveness. ‘KZH’ is an FDA product code used to classify autoinjectors, for regulatory purposes, ensuring they meet defined safety and efficacy standards before being marketed.
A comprehensive analysis of autoinjectors problems is conducted using data from the United States Food and Drug Administration (FDA) database. This database records medical device reporting events, including those related to autoinjectors, reported by various sources. The analysis focuses on events associated with the product code KZH, covering data from January 1, 2008, to September 30, 2023. This research employs statistical frequency analysis and incorporates pertinent the FDA, United Kingdom, European Commission regulations, and ISO standards.
500 medical device reporting events are assessed for autoinjectors under the KZH code. Ultimately, 188 of these events are confirmed to be associated with autoinjectors, all 500 medical devices were seen to lack AI capabilities. An analysis of these events for traditional mechanical autoinjectors revealed a predominant occurrence of malfunctions (72%) and injuries (26%) among event types. Device problems, such as breakage, defects, jams, and others, accounted for 45% of incidents, while 10% are attributed to patient problems, particularly missed and underdoses.
Traditional autoinjectors are designed to assist patients in medication administration, underscoring the need for quality control, reliability, and design enhancements. AI autoinjectors, sharing this goal, bring additional cybersecurity and software risks, requiring a comprehensive risk management framework that includes standards, tools, training, and ongoing monitoring. The integration of AI promises to improve functionality, enable real-time monitoring, and facilitate remote clinical trials, timely interventions, and tailored medical treatments.