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The emergence of nanotechnology as a field of study can be traced back to the
1980s, at which point the means to artificially produce, control, and observe
matter on a nanometer level was made viable. Recent advancements in
technology have enabled us to extend our reach to the nanoscale, which
has presented an unparalleled opportunity to directly target biomolecular
interactions. As a result of these developments, there is a drive to arise intelligent
nanostructures capable of overcoming the obstacles that have impeded the
progress of conventional pharmacological methodologies. After four decades,
the gradual amalgamation of bio- and nanotechnologies is initiating a revolution
in the realm of disease detection, treatment, and monitoring, as well as unsolved
medical predicaments. Although a significant portion of research in the field is
still confined to laboratories, the initial application of nanotechnology as
treatments, vaccines, pharmaceuticals, and diagnostic equipment has now
obtained endorsement for commercialization and clinical practice. The current
issue presents an overview of the latest progress in nanomedical strategies
towards alleviating antibiotic resistance, diagnosing and treating cancer,
addressing neurodegenerative disorders, and an array of applications,
encompassing dentistry and tuberculosis treatment. The current investigation
also scrutinizes the deployment of sophisticated smart nanostructured materials
in fields of application such as regenerative medicine, as well as the
management of targeted and sustained release of pharmaceuticals and
therapeutic interventions. The aforementioned concept exhibits the potential for
revolutionary advancements within the field of immunotherapy, as it introduces
the utilization of implanted vaccine technology to consistently regulate and
augment immune functions. Concurrently with the endeavor to attain the
advantages of nanomedical intervention, it is essential to enhance the unceasing
emphasis on nanotoxicological research and the regulation of nanomedications’
safety. This initiative is crucial in achieving the advancement in medicine that
currently lies within our reach.
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1 Introduction

The fabrication of innovative engineered materials, especially

nanomaterials, has experienced a significant surge within the past

three to four decades. Emerging as versatile materials, they are

utilized in diverse fields such as engineering, waste management,

sports equipment, the electronic industry, optical devices, garments,

food production, and cosmetic formulations, dominating virtually

all sectors of daily living (1–6). The present issue focuses on an

array of novel material applications in medicine facilitated through

the amalgamation of nanotechnology and biotechnology. The

distinctive characteristics of nanoscale materials, namely their

inherent capacity for physiochemical customization and

manipulation, enable the exploration of a vast array of possibilities

within the medical realm. This includes the early identification of

biomarkers, precise targeting of cellular and tissue components,

development of sophisticated drug delivery mechanisms, accurate

staging and evaluation of medical conditions, and treatment of

degenerative ailments. Such capabilities have profound implications

for medical advancements and innovations. Engineered

nanomaterials have been precisely characterized as possessing one

dimension measuring less than 100 nm (7, 8).

In the field of medicine, the definition of a drug is characterized

by a degree of flexibility, wherein it may encompass a diverse range

of formulations such as a nano drug comprising particles measuring

200 nm or greater in size. Moreover, the terminology “nanoparticle”

possesses a comprehensive connotation, encompassing not only

spherically-shaped organic and inorganic nanomaterials but also

cuboidal, star-shaped, needle-like, spheroidal or intricately-

structured forms possessing complex geometries, with an

aerodynamic diameter of less than 100 nm. Certain articles

expound upon the fundamental characteristics of particles within

the respective scope of the subject matter, whilst varying articles

do not prioritize such discourse. The objective of this disclosure is

to ensure that the audience comprehends the broadest

interpretation of this term, as it is utilized in the subsequent

articles (9–12).
1.1 Nanoparticle agonist bacterial infection

The issue of anti-microbial resistance poses a worldwide

challenge that is currently impacting contemporary healthcare

systems. The emergence of antimicrobial resistance across various

classes of antibiotics can be attributed to the suboptimal

prescribing patterns of antibiotics (13). Undoubtedly, this

phenomenon will considerably influence the future effectiveness

and utilization of antibiotics in the realms of community and

hospital care on a worldwide scale (14, 15). The World Health

Organization (WHO) unveiled its inaugural list of antibiotic-

resistant pathogens in February of 2017, detailing a dire need for

the prompt development of novel anti-microbial therapies

(16, 17). Among the twelve pathogens exhibiting resistance, it

was observed that seven strains evinced resistance to beta-lactam

antibiotics. The three pathogens classified as “Critical” exhibit

resistance towards carbapenems specifically imipenem, while four
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other pathogens are resistant to fluoroquinolones, such as

ciprofloxacin, which are extensively employed in the clinical

setting. The aforementioned fact is a source of concern as it

portends challenges not only for prescribing practices but also

regarding the acquisition of appropriate antibiotics for patient

treatment in the future. Despite the current situation, the World

Health Organization (WHO) has expressed that this presents a

favorable circumstance for the research and development (R&D)

industry to innovate novel antibiotics, thereby establishing a

novel target for forthcoming research tactics. Bacteria, which are

classified as prokaryotes due to their lack of a nuclear membrane,

are categorized as either Gram-positive or Gram-negative based

on the structure of their cell wall. A Gram stain is a widely used

laboratory test for classifying bacteria based on the capacity of

the bacterial cell wall to absorb and hold onto crystal violet dye.

Gram positive and Gram negative bacteria differ in the thickness

of their peptidoglycan layers in their cell membranes. As a result,

while Gram negative bacteria lose their crystal violet stain during

the decolorization process, Gram positive bacteria retain it (18).

Gram-positive bacteria are characterized by the presence of a

rigid cell wall comprised of a thick layer of peptidoglycan. This

peptidoglycan is composed of carbohydrate polymers that are

cross-linked by peptide residues (19). Teichoic acid is detected

on the outer surface of Gram-positive bacteria, which endows

them with the capacity to sequester metal ions and function as a

safeguard system against the immune response mounted by the

host organism (20). Lipoteichoic acids are detected in the cellular

membrane, facilitating surface adherence. In contrast, Gram-

negative bacteria possess a peptidoglycan layer that is thinner

and more inflexible, featuring substantially reduced levels of

cross-linking. This layer is enveloped by a lipid membrane that

displays lipopolysaccharides (LPS) on its surface (21).

Methicillin-resistant S. aureus (MRSA) is of particular clinical

importance due to its resistance to multiple antibiotics.

Staphylococcus aureus, a Gram-positive bacterium, exemplifies

unique resistance to various antibiotics, with Methicillin-resistant

MRSA serving as a notable instance of clinical significance. The

layperson frequently associates MRSA with its antibiotic

resistance. MRSA infections necessitate extended therapy

regimens, frequently involving potent antibiotics, and

consequently result in heightened occurrences of patient

hospitalization and public expenditure. Multiple approaches seek

to employ nanotechnology as a means of addressing this

problem (22). Many strategies aim to use nanotechnology to

tackle this issue.

The employment of conventional oral or intravenous

pharmaceuticals to manage microbial infections is linked with a

host of difficulties. The current treatment protocols, characterized

by the administration of substantial doses as a strategy to

guarantee the delivery of adequate quantities to the intended

microbial targets, exhibit drawbacks such as inadequate efficacy

and the potential for adverse reactions, culminating in the

evolution of drug resistance amongst the targeted

microorganisms. The insufficiency of unconventional therapeutic

modalities and tactics to surmount the aforementioned issue has

engendered considerable apprehension among governmental
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organizations, medical experts, and ultimately, the global populace

owing to its conspicuous influence on public health. One viable

strategy for combating this issue involves the utilization of

nanomaterials to augment and potentiate the antimicrobial

effectiveness of both established and innovative medicinal

interventions (23–26). Through mechanisms such as disrupting

the membrane potential and integrity of bacterial cells,

preventing the formation of biofilms and ROS production,

strengthening host immune responses, and blocking RNA and

protein synthesis by inducing intracellular processes, these NPs

primarily reduce the resistance properties of bacteria (Figure 1).

Table 1 mentions several studies conducted in this field.

1.1.1 Nanoparticles for the therapy of tuberculosis
Tuberculosis (TB) could be a zoonotic and anthropozoonotic

infection with a complex pathogenesis, created by microbes from

Mycobacterium tuberculosis complex (MtbC), primarily

M. tuberculosis, and in a lesser sum by the contaminations with

other mycobacteria such as M. bovis, M. canetti, M. caprae,

M. africanum, and sometimes M. microti or Mycobacterium

pinnipedii (35, 36). The present resurgence of TB at a regional
FIGURE 1

The primary mechanisms of nanoparticles’ antimicrobial activity are as follo
producing reactive oxygen species (ROS), which upsets redox homeostasis
and molecules, like DNA and protein, which causes their dysfunction.
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and global level is impeded by factors such as the emergence of

multidrug-resistant strains, intercurrent immunosuppressive

conditions, the high costs and low production outputs of

recently endorsed antitubercular antibiotics, and moderately

effective vaccination measures. As a result, these factors have

hindered progress toward eradicating TB. TB is a global

infectious disease that affects over one-third of the human

population. Despite recent progress in treatment and

prevention, the latest report by the World Health Organization

identifies it as the primary cause of infectious-bacterial deaths

amongst adults, with a staggering 10 million new cases and 1.5

million deaths attributed to TB in 2018 alone. Furthermore, it

has been observed that TB serves as the primary contributing

factor to hospital fatalities in certain regions that are

characterized by a high prevalence of the disease (37).

Nanotechnology and nanoparticle science providing innovative

approaches and new-practical solutions for several critical-issues,

including TB (37–39). Extended treatment durations and

frequently changing drug dosages pose significant obstacles to the

effectiveness of current TB medicines, since they frequently result

in patients not adhering to prescribed regimens or receiving
ws: breaking down the pathogen cell wall, which increases permeability;
and damages cellular structures; and attaching to intracellular structures
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TABLE 1 Nanoparticles against multidrug resistant (MDR) bacteria: mechanisms and characteristics.

Nanoparticles Size
(nm)

Bacteria-targeted & antibiotic
resistant

Anti-bacterial mechanisms Antimicrobial activity/
toxicity factors

References

Au 1–100 Methicillin-resistant
Staphylococcus aureus
(MRSA)

Bacterial membrane and wall injury,
disruption of the respiratory chain,
decreased ATPase, tRNA decline,
membrane potential loss

Size of particles and roughness (27–31)

Ag 1–100 A. baumannii, Pseudomonas Aeruginosa,
MRSA, vancomycin-resistant, extended-
spectrum betalactamase (ESBL)-producing
organisms, MDR Escherichia coli,, Klebsiella
pneumoniae, carbapenemand polymyxin B-
resistant, Staphylococcus epidermidis,
carbapenemresistant P. aeruginosa,
Enterococcus (VRE) and carbapenem-
resistant Enterobacteriaceae (CRE)

ROS production, bacterial membrane
disintegration, cytochrome inhibition,
lipid peroxidation, proton gradient
dissipation, increased membrane
permeability, cell wall synthesis inhibition,
adhesion to the cell surface, ribosome
destabilization, and DNA base
intercalation are all adverse effects of
oxidative stress.

Shape of particles and particle
size

(28–32)

Cu 2–350 MDR E. coli, A. baumannii Degradation of proteins and DNA,
production of reactive oxygen species, lipid
peroxidation, and loss of cell membrane
potential.

Size and particle amount (28, 30–33)

Si 20–400 MRSA ROS-induced cell wall disruption Shape, stability and particle size (28, 31)

Al 10–100 E. coli ROS-induced cell wall disruption – (29, 30)

Fe2O3 1–100 ROS induces oxidative stress, which
consists of O−2, singlet oxygen, OH, and
H2O2.

Strong chemical activity,
tendency to aggregate, oxidation
by air leading to magnetism loss
and dispersibility.

(29, 31)

ZnO 10–100 K. pneumonia, Enterobacter aerogenes,
E. coli, ESBL-producing E, K. p, MRSA,. coli,
Klebsiella oxytoca

The production of ROS, membrane
disruption, adhesion to the surface of the
neutropenia cell, as well as lipid and
protein damage

Concentration and Particle size (29, 30, 32,
34)

MgO 15–100 E. coli and S. aureus ROS production, lipid peroxidation,
electrostatic interaction, and alkaline
impact

pH, concentration, and Particle
size

(29)
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inadequate care. Regarding extensively drug-resistant (XDR)

tuberculosis (DRT) and multidrug-resistant (MDR) TB, the

primary contributing factor to the illness’s recurrence is the

patient’s noncompliance. Medical researchers are faced with a

difficulty since MDR-TB and XDR-TB are growing increasingly

prevalent in developing countries and pose a significant danger

to world health (40). Novel approaches to drug delivery that

leveraged ligands and nanocarriers were investigated, and a

summary of several nano delivery systems was provided. It is

now quite helpful to employ pulmonary nanodrug delivery

systems as a therapeutic agent to treat tuberculosis (Figure 2). The

advantages of employing nanomaterials to deliver medications for

the treatment of infectious lung disorders include targeted drug

delivery, enhanced drug solubility, and decreased toxicity, fewer

adverse effects compared to standard drug regimens that produce

MDR and XDR, and synergistic therapeutic effects. Table 2

mentions a number of studies conducted in this field.
1.2 Nanoparticle vaccines against infectious
diseases

Vaccination is a medical intervention that involves the

administration of an antigenic substance into an individual’s

body to elicit an immune response and establish adaptive

immunity against a targeted pathogen (61, 62). The efficacy and
Frontiers in Medical Technology 04
cost-efficiency of applying preventive measures to contain

infectious diseases have been convincingly demonstrated.

Numerous consequential maladies such as tetanus, mumps,

measles, smallpox, polio, rubella, pertussis, yellow fever, and

diphtheria have been effectively eliminated or effectively

controlled by means of vaccinations (63, 64). Despite the notable

achievements of vaccination therapies, numerous disease entities

remain devoid of an effective prophylactic tactic. Examples of

such ailments include acquired immunodeficiency syndrome

(AIDS), tuberculosis, malaria, and dengue fever. Consequently,

there is a continual pursuit of novel vaccination formulations

and technologies (65). Vaccine formulations typically comprise

attenuated subunit protein antigens and inactivated

microorganisms that elicit a specific immunological response.

Each system possesses distinct advantages and disadvantages, and

there is often a trade-off between safety and efficacy (66, 67).

Antigen might be encapsulated in the core of the nanoparticles

or attached to their surface. Antibodies, Fab-fragments, peptides,

and other targeting molecules can be used to decorate the surface

of nanoparticles, which can enhance their distribution into

antigen-presenting cells (APCs) and trigger both innate and

adaptive immune responses (Figure 3) (68, 69).

The capacity of NPs to regulate immune responses toward

attaining intended outcomes is imperative in the development

of vaccines leveraging nanotechnology. NPs hold the potential

as a dual-purpose agent in augmenting and intensifying
frontiersin.org
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FIGURE 2

Nanotechnology is being used to develop medicine delivery systems that specifically target alveolar macrophages and granulomas for the treatment
of TB.

TABLE 2 The application of nanoparticles in the diagnosis and treatment of tuberculosis.

Type of nanoparticle Drug delivery/
diagnosis

Target Therapeutic agent/
diagnostic agent

Mode of action References

Au, PLGA-PEG-SAPEG-PLGA Drug delivery Tuberculosis cells Rifampicin Chemotherapy method (41)

Au Diagnosis Tuberculosis 38 antigen Antibody SPR (Surface plasmon resonance) (42)

Au Diagnosis Tuberculosis DNA DNA SPR (Surface plasmon resonance) (43)

Au-SMVLD Treatment Tuberculosis cells SMVLD Bacteriostatic (44)

SPIO Diagnosis Tuberculosis cells Anti- Tuberculosis antibody Magnetoresistive biosensor (45)

SPIO, Au Diagnosis CFP10 Antibody Immunoassay (46, 47)

SPIO, Au, CdS & Carbon quantum dots Diagnosis IFN-γ, TNF-α IL-12, Antibody Immunoassay (48)

SPIO Diagnosis Tuberculosis cells Antibody Contrasting agent (49)

SPIO Drug delivery Tuberculosis cells Isoniazid Chemotherapy method (50)

Silica, beta-glucan Drug delivery Tuberculosis cells Isoniazid Chemotherapy method (51)

PLG Drug delivery Tuberculosis cells Isoniazid Chemotherapy method (52)

Isoniazid, rifampicin, pyrazinamide Drug delivery Tuberculosis cells Rifampicin Chemotherapy method (53–56)

Dendrimer Drug delivery Tuberculosis cells Rifampicin Chemotherapy method (57, 58)

Chitosan Drug delivery Tuberculosis cells Rifampicin Chemotherapy method (59)

Aptamer Diagnosis Ag85A Apt22 Flow cytometry (60)

Sobhani-Nasab et al. 10.3389/fmedt.2023.1330007
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FIGURE 3

Utilizing surface modified nanoparticles to deliver antigenic compounds specifically to APCs. Antigens that are produced inside the body are shown
together with class I major histocompatibility complex (MHC I) on the surface of APCs to CD8+ T lymphocytes. Upon the interaction of MHC I and T-
cell receptor (TCR) in the presence of co-stimulatory molecules and cytokines, the activated CD8+ cells initiate cytotoxicity to eliminate the infected
cells. Furthermore, the antigens are displayed on the surface of the APCs through class II major histocompatibility complex (MHC II) molecules to
activate the helper (CD4+) T cells. Afterward, CD4+ cells stimulate B-cells to generate antimicrobial antibodies.
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protective immunity by serving as both a delivery vehicle and an

immune-stimulatory adjuvant (70, 71). Nano vaccines, which

utilize NPs as carriers or adjuvants, offer several distinct

advantages over conventional vaccines. These advantages

include the ability to decrease the rate of antigenic degradation,

enhance the stability of antigens, immunogenicity and improve

vaccine therapeutic efficacy, facilitate efficient phagocytosis and

rapid processing by, enhance cellular membrane penetrability

and APCs (72). The current research indicates that

nanocarriers, including liposomes, dendrimers, and virosomes,

exhibit properties that enhance cytokine induction and antibody

response. As a result, recent efforts have been directed toward

the development of vaccine delivery strategies employing

these nanocarriers (73). The mentioned nanocarriers represent

a diverse group of nanomaterials, renowned for their distinctive

structural designs, suitable for serving as potential paradigms

for drug delivery modalities. Furthermore, they enhance the

bioavailability of compounds, offer stabilization and

safeguarding of more delicate agents such as proteins, reduce
Frontiers in Medical Technology 06
the occurrence of adverse effects, and facilitate active targeting

(74). Table 3 mentions several studies conducted in this field.
1.3 Nanoparticles in dentistry

NPs are naturally occurring entities that are ubiquitous in the

environment and hold significant utility in various daily

applications. The advancement of nanotechnology has led to a

sharp rise in the use of NPs in cosmetics. Better absorption of

substances through the skin, longer-lasting effects, and increased

stability are just a few of the benefits that come with using NPs.

Currently, sunscreen products use NPs as UV filters most

frequently in cosmetics. Zinc oxide (ZnO) or Titanium dioxide

(TiO2) particles are frequently utilized as ultraviolet filters or as

additives in toothpaste, with a focus on titanium dioxide or

silicates in toothpaste formulations. NPs are ubiquitously found

in numerous edibles, nutritional additions, and spritzers utilized

for veneering, disinfecting, and saturating (82–84). They possess
frontiersin.org
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TABLE 3 Application of different nanoparticles against viral infections.

Virus Nanocarrier
platforms

Constituents Route of
administration

Experimental outcomes Advantage References

HIV Peptide-based
nanofibrous
hydrogel

DNA, Methylamino
group, Naphthalene
acetate, Tyrosine,
Phenylalanine, and
Glycine

Subcutaneous (SC),
Intradermal (ID), and
Intramuscular (IM)

Significantly elevated levels of IFN- and
IL-4 cytokine were detected.

Biological compatibility
and bioassurance

(75)

MCV MCV-like
particles

Polyomavirus capsid
proteins, VP1 (Viral
proteins 1)

IM The seroprevalence of anti-MCV
antibodies was found to be substantially
elevated in mice immunized with MCV
VLPs. Cross-reactive antibodies against
LPV VLPs and BKV VLPs were found
to have a low seroprevalence, accounting
for 4.4% and 2.6% of the reactivity
against MCV VLPs, respectively.

Biodegradable,
biocompatible, and
Nontoxic

(76)

HSV Polymeric NPs Poly (lactic-co
glycolic acid)

Mucosal In response to exposure to the
attenuated viral antigen, the inoculated
fish generate anti-VHSV
immunoglobulin (Ig), activating the
humoral immune response components.
In immunized groups, the percentage of
anti-VHSV inhibition was substantially
higher than in unvaccinated challenged
groups.

Simple to manufacture, low
toxicity, nonimmunogenic,
and biodegradable

(77)

Influenza A
virus

AuNPs Cytosineguanine-rich
oligonucleotide,
AuNPs

Intranasal While M2e was coupled to AuNPs, anti-
M2e serum Ig ratios were observed to
increase.

Enhanced bioavailability
and half-life, reduced
toxicity, and
biocompatibility

(78)

Hepatitis B Polymeric NPs (Poly lactic-
coglycolic acid)
PLGA, (Poly-lactic
acid) PLA

IM and pulmonary Anti-HBsAg antibody concentrations in
PLA and PLGA were significantly higher
than in ordinary HBsAg.

Targeted drug delivery that
is site-specific,
biodegradable and
nonimmunogenic, and has
minimal toxic effects.

(79)

Viral infections Nanogel Cationic alginate-
poly ethylenimine

Intraperitoneal Nanogels significantly increased anti-
OVA IgG1 production, but had little
effect on IgG2a and IgG2b expression.
Nanogels enhanced IgG isotypes and
anti-OVA IgG in a dose-dependent
manner and increased OVA-specific
IFN- by 60-fold.

The achievement of
nonimmunogenic,
exceptionally
biocompatible, controlled
and prolonged drug
delivery

(80)

HPV (Human
papillomavirus)

VLPs (Virus-like
particles)

VLPs, L1, and L2
proteins

– – Specific to the target site,
environmentally friendly,
and nontoxic

(81)
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the ability to enhance, for instance, the preservation of the edibility

and integrity of the comestible, its flavor profile, and its physical

coherence. In certain jurisdictions, silicon dioxide, magnesium

oxide, and titanium dioxide are subject to rigorous evaluation

and authorization as permissible food additives (85). In dentistry,

NPs have gained growing importance as deliberate inclusions in

various products (Figure 4). This materials enhance the

fundamental traits of resin-based composites, such as their

capacity for high polish ability and retention of gloss stability

(86). In addition to their conventional applications, these

materials hold potential value as constituents of scaffolding

frameworks used for tissue engineering purposes (87).

Dental materials that are designed to intentionally release NPs

are relatively infrequent, such as those utilized in occlusion

indicator foils and scanning sprays for computer-aided design or

computer-aided manufacturing (CAD/CAM). Conversely,

nanoparticles may be generated as by-products during milling

procedures employed for filler production (88). Numerous dental
Frontiers in Medical Technology 07
materials, including but not limited to resin-based composites,

cement, and impression materials, are known to comprise fillers.

Consequently, it has been projected that nanoparticles are extant

in roughly 3,500 dental materials. Nanotechnology exhibits

considerable potential for numerous applications in everyday life.

Diverse scientific entities at the global level, including both

research collectives and national/international agencies, have

invested significant efforts in the development of this innovative

and auspicious technology (89, 90). Table 4 mentions several

studies conducted in this field.
1.4 Nanoparticles for cancer therapy

Cancer denotes a comprehensive class of ailments that are typified

by the unregulated proliferation of cells and their invasiveness into

surrounding tissues (108, 109). Considerable endeavors spanning

multiple years have been devoted to identifying diverse risk elements
frontiersin.org
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FIGURE 4

Utilizations of organic and inorganic NPs in dental care and treatment. NPs are utilized in dental inventions and diagnostic procedures. NPs are utilized
in the development of oral disease preventative medications, prostheses, and dental implants. Nanomaterials have the ability to provide oral fluids or
medications, effectively preventing and treating certain oral diseases such as oral cancer, while significantly promoting oral healthcare.
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associated with cancer. The etiology of certain cancers has been

notably linked to particular acquired factors within the environment,

including radiation and pollution. Adopting an unhealthy lifestyle,

marked by bad dietary habits, consumption of tobacco products,

smoking, stress, and absence of physical activity, profoundly

influences the determination of cancer risk (110, 111). Although

external factors have been widely acknowledged as significant

contributors to carcinogenesis, the precise impact of somatic

mutations in proto-oncogenes, alterations in tumor suppressor gene

expression, and variations in the genes involved in DNA repair

mechanisms remain a challenging proposition to assess accurately. A

mere 5%-10% of cancer instances correlate with genetic inheritance

(112). The progression of chronological age is deemed a pivotal

determinant for the onset of cancer and its diverse manifestations.

The traditional therapeutic modalities employed in the management

of cancer consist of several methods which include surgical

intervention, radiation therapy, chemotherapy, targeted therapy,

hormone therapy and immunotherapy (113, 114). Radiation therapy

and Chemotherapy exhibit cytostatic and cytotoxic capabilities

(115). Frequently associated with severe adverse reactions and a

significantly elevated chance of relapse, these methodologies
Frontiers in Medical Technology 08
constitute a notable concern within the medical community. The

administration of this agent is commonly associated with the

occurrence of suppression of bone marrow, neuropathies, skin

disorders, and gastrointestinal, alopecia, and fatigue as the prevailing

manifestations of treatment-related adverse effects. Moreover, the

administration of certain drugs may entail unique adverse effects,

such as anthracyclines and bleomycin-induced cardiotoxicity and

pulmonary toxicity. The progress in precision medicine has been

bolstered by the emergence of targeted therapy. Despite the

advances in therapeutic interventions, numerous inescapable

detrimental repercussions, such as the emergence of multi-drug

resistance, continue to impede the effectiveness of the treatment

regimens (116, 117). Immunotherapeutic agents have exhibited

auspicious outcomes not only in the treatment of primary cancer

but also in their ability to prevent distant metastasis and diminish

the frequency of recurrence (118). Notwithstanding, immunotherapy

constitutes a significant factor precipitating autoimmune diseases.

Moreover, scholarly investigations and empirical findings posit that

immunotherapy exhibits a comparatively lower efficacy in

addressing solid tumors in contrast to lymphoma (119). The cancers

under consideration manifest an anomalous extracellular matrix
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TABLE 4 The application of nanoparticles in the field of dentistry.

Nanoparticles Applications in dentistry Advantages Toxicity and adverse effects References
Carbon Nanotubes dental filling, a protective layer

applied to the surface of teeth.
A significant surface area facilitates the
delivery of active substances to viable cells,
while also exhibiting strong adhesion to the
tooth surfaces, as well as the surfaces of
dentin and cementum.

The reactivity of carbon nanotubes (CNTs)
is significantly influenced by factors such as
their structure, size, surface characteristics,
and purity. Under certain circumstances,
nanotubes have the ability to elicit
inflammatory and fibrotic responses by
traversing membrane barriers.

(91, 92)

Graphene The application of a dental coating that is
appropriate for implantation purposes, with
the aim of reducing biofilm formation.

The attributes of cost-effectiveness, fracture
resistance, and low density are associated
with the formation of a homogeneous
crystal lattice, as well as the potential for
treating bacterial biofilm.

The toxicity of graphene is contingent
upon its specific characteristics, including
its structure, size, and oxidative state. The
processing procedures involved in post-
synthesis can introduce metallic
contaminants, which have the potential to
elicit varying levels of toxicological
reactions.

(93, 94)

Hydroxy apatite
(HAp)

Dental hypersensitivity can be decreased by
substances that possess the ability to serve
as cavity fillers. Additionally, these
substances can postpone the process of
auxiliary demineralization and facilitate the
healing of enamel surfaces.

The nano-sized hydroxyapatite (HAp)
particles exhibit a high degree of integration
into the tooth tubules. The composition
exhibits similarities to teeth and bone,
displaying biocompatibility and the ability
to be adsorbed onto the enamel surface of
teeth. Its primary function is to provide
protection to the teeth by forming a
synthetic enamel film, thereby addressing
periodontal deficiencies.

Protein-particle complexes can form as a
result of their binding with proteins, and
afterwards undergo elimination by
macrophages within tissues. The
aforementioned particles were transported
and distributed within the body’s
circulatory system, ultimately reaching and
dispersing within the pulmonary system,
spleen, and hepatic system.
The toxicity of NPs has the potential to
impact the inflammatory response,
signaling system, and oxidative stress.

(95, 96)

Zirconia The substance has the ability to decrease the
attachment of bacteria to the surface of the
tooth, thus offering a safeguard against
dental caries. Additionally, it serves as an
efficient agent for polishing.

Teeth exhibit comparable mechanical
qualities and coloration, possess minimal
cytotoxicity, demonstrate favorable
biocompatibility, and display notable
resistance to breakage.

Zirconium oxide NPs have been found to
potentially provide both short-term and
long-term dangers. For instance, exposure
to these nanomaterials has been associated
with considerable DNA damage in human
T-cells and the induction of apoptosis, as
well as the reduction of cell proliferation in
human mesothelioma and mouse fibroblast
cell lines. Additionally, it was shown that
this phenomenon has the ability to initiate
cellular oxidative stress, ultimately resulting
in cell death. Research findings have
demonstrated that these NPs possess the
ability to halt the progression of the cell
cycle, in addition to their capacity to
traverse different physiological barriers,
hence leading to detrimental consequences.

(97–99)

Silica The dental filling agent is utilized for tooth
polishing and serves as a preventive
measure against dental cavities.
Additionally, it possesses antibacterial
properties and is employed in the treatment
of dental hypersensitivity.

Biocompatible materials provide a low
toxicological impact, have low density, and
demonstrate notable adsorption capabilities.
Furthermore, these materials are
particularly advantageous due to their cost-
effectiveness. When utilized as a polishing
agent, it has been shown that the use of this
substance leads to a decrease in the
roughness of the tooth surface.

The toxicological consequences are
contingent upon the method of entry and
the physiochemical properties. Recent
research studies have demonstrated that
silica NPs have the potential to generate
silicosis, similar to crystalline particles, and
can also contribute to the development of
lung cancer.
Silica nanoparticles (SiNPs) elicit cytotoxic
effects. In addition, it has been observed
that this phenomenon can also lead to the
occurrence of oxidative stress and trigger
apoptosis, with the extent of these effects
being influenced by the size and dosage of
the substance. Several studies have also
documented the genotoxic effects of SiNPs,
including DNA damage and modulation of
genes involved in apoptosis and autophagy.
Additionally, SiNPs have been found to
have immunotoxic effects.

(100–102)

Titania Mainly dental implants The long-term impact on dental implants is
influenced by surface modification, which
offers several benefits such as reduced
bacterial adherence and enhanced hardness.

Fine particles (FPs) exhibit less toxicity
compared to non-particulate pollutants
(NPs). The substance is introduced into the
body via the process of inhaling.

(103–105)

(Continued)
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TABLE 4 Continued

Nanoparticles Applications in dentistry Advantages Toxicity and adverse effects References
Epidemiological research have indicated
that individuals employed in TiO2

producing facilities are afflicted with
cancer. Titanium dioxide nanoparticles
(TiO2 NPs) have the ability to accumulate
within the brain via traversing the blood-
brain barrier, specifically in the cortex and
hippocampus regions. Exposure to TiO2
induces activation of microglia, formation
of reactive oxygen species (ROS), and
activation of signaling pathways that
contribute to cellular apoptosis and
inflammation.

Silver Antimicrobial drugs are utilized in the field
of dentistry to combat microbial infections.
Dental restorative materials are employed to
restore the structure and function of
damaged teeth. Dental prosthetics refer to
artificial devices used to replace missing
teeth or oral structures. Dental implants are
specifically designed to serve as permanent
fixtures within the oral cavity.

It is well-documented that the substance in
question has the ability to reduce bacterial
colonization and promote oral health. This
efficacy is attributed to its reduced
molecular size, which facilitates its
penetration through bacterial membranes.
The material exhibits biocompatibility, with
minimal toxicity and prolonged
antibacterial efficacy.

Silver nanoparticles (AgNPs) have been
found to elicit harmful effects. Prolonged
exposure to silver has the potential to
induce a medical condition known as
argyria. The adverse impacts of silver
nanoparticles (AgNPs) can be attributed to
the generation of reactive oxygen species
(ROS). Both silver ions and silver
nanoparticles (AgNPs) are implicated in
the manifestation of toxicity. Silver
nanoparticles (Ag NPs) are implicated in
the generation of oxidative stress and
genotoxicity, activation of lysosomal acid
phosphatase (AcP), disruption of actin,
stimulation of hemocyte phagocytosis, and
inhibition of Na-K-ATPase.

(106, 107)
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(ECM) that presents a formidable hurdle for the infiltration of immune

cells (120). This statement suggests that recent developments in

targeted therapies and immunotherapies have introduced

interventions that disrupt vital signaling pathways implicated in both

malignant and homeostatic properties within the epidermis and

dermis. As a consequence, the implementation of these therapies

may lead to adverse dermatologic events (dAEs) (121). About the

aforementioned particulars, there has been an upsurge in the need

for the development of innovative approaches toward attaining

accurate cancer therapy in recent times. Contemporary undertakings

have been initiated to tackle the constraints of prevailing therapeutic

methodologies by employing nanoparticles (Figure 5) (122–129).

Nanoparticle-mediated drug delivery systems have been observed to

offer advantages in the treatment and control of cancer by exhibiting

favorable pharmacokinetics, accurate targeting, diminished adverse

effects, and mitigated drug resistance (130, 131).

Following the recent strides in the field of nanotechnology,

numerous nanotherapeutic medications have been successfully

commercialized and extensively promoted. Furthermore, an

abundance of these drugs has advanced to clinical trials since 2010.

Advances in the field of drug delivery systems and combatting multi-

drug resistance (MDR) in the context of tumorigenesis have been

achieved through the development of nanotherapeutic drugs. Such

drugs have facilitated the pursuit of combination therapy and

effectively inhibited resistance mechanisms associated with drug

treatments (132). In the 1960s, an initial endeavor was taken to

implement the use of nanotechnology within the field of medicine,

specifically at the esteemed academic institution of ETH Zurich, it is
Frontiers in Medical Technology 10
a Swiss public research university located in Zürich (133). This

amalgamation has demonstrated enhanced efficacy in the

development of diverse diagnostic equipment and superior therapies.

NPs have been documented to possess a significant ability to

penetrate deep tissues, thereby promoting the enhancement of the

permeability and retention (EPR) phenomenon. Moreover, it should

be noted that the surface characteristics of a substance exert a

significant influence on its bioavailability and half-life, primarily by

facilitating its passage across epithelial fenestrations (134). An

instance of this phenomenon is observed in the use of NPs that have

undergone coating with polyethylene glycol (PEG), a hydrophilic

polymer, which generates a decreased tendency for opsonization and

also manages to evade clearance by the immune system (135).

Furthermore, the modularity of the release kinetics of therapeutic

substances or active components can be achieved through the

manipulation of particle polymer attributes. Collectively, the unique

characteristics exhibited by nanoparticles play a pivotal role in

modulating their therapeutic efficacy in the management and

treatment of cancer. Table 5 mentions several studies conducted in

this field.
1.5 Nanoparticle approaches in
neurodegenerative diseases

The brain assumes the mantle of being the most intricate organ

in the human anatomy. The entity in question is intricately involved

in the regulation of various cognitive, behavioral, and emotional
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FIGURE 5

The application of nanoparticles in the field of cancer. At present, several platforms are under investigation for their potential use in both cancer
therapy and diagnosis.
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activities. The organ in question is susceptible to various disorders

and afflictions, ranging from physical trauma to malignancies and

cognitive degenerative conditions. Neurological disorders are the

primary contributors to impairment and a significant factor in

mortality. Neurodegenerative disorders pose a significant risk to

human welfare. The prevalence of age-dependent disorders has

escalated, attributable to the rise in elderly populations witnessed

in recent times. Prominent cases of neurodegenerative illnesses

include Alzheimer’s disease, Parkinson’s disease, Huntington’s

disease, amyotrophic lateral sclerosis, frontotemporal dementia,

and spinocerebellar ataxias. Many illnesses exhibit varying

pathophysiological mechanisms; some result in cognitive

dysfunction and memory impairments, while others disrupt an

individual’s motor, communication, and respiratory functions

(160, 161). Numerous medications, which have demonstrated

promise in enhancing cerebral architecture and operation in

animal models, encounter a plethora of difficulties such as

distribution, selectivity, and toxicity. For a considerable duration,

researchers have encountered the formidable obstacles of

formulating pharmaceutical substances capable of penetrating the

physiological impediment of the blood-brain barrier, as well as
Frontiers in Medical Technology 11
navigating the electrical and chemical defenses of the brain, while

simultaneously achieving targeted localization with minimal

deleterious consequences. In recent times, nanotechnology has

surfaced as a crucial methodology for the alteration and

manipulation of diverse entities at the atomic scale to achieve

targeted properties. The utilization of this particular methodology

has demonstrated its efficacy in both diagnosis and treatment of

cerebral diseases and disorders by improving drug delivery and

enhancing their effectiveness. Given the present significance and

ongoing advancements in research, technology may greatly

improve healthcare systems by providing user-friendly and highly

effective diagnosis and treatment approaches (162, 163). Table 6

mentions several studies conducted in this field.
1.6 Nanoparticles in tissue repair and
regeneration

The practice of tissue and organ transplantation has been

hindered by numerous challenges, including limited access to

donors, the requirement for immunosuppression, as well as low
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https://doi.org/10.3389/fmedt.2023.1330007
https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org/


TABLE 5 Nanoparticles and cancer cell death mechanisms.

Nanoparticles Cell lines Mechanism of action References
DNA-modified magnetic MCF-7 The inhibition of RNA marker expression (136)

Au, Ag hPBMCs Cytokine production and complement activation (137)

Gold NP-tagged toxin MCF-7 Reduced expression of CDK-4 and MAPK (138)

Au@ZIF-8 EMT-6 ROS production (139)

Fe3O4@AuNC@erlotinib PANC-1 Targeting selectively excessively expressed EGFR (140)

Iron oxide was functionalized with GOx and
PDA

4T1, MCF-10A and MDA-
MB-231

Photothermal treatment and ROS-mediated injury (141)

V2O5 B16F10, A549, and PANC1 ROS-dependent apoptosis (142)

Fe3O4 HepG2 RAS signaling through ATP-citrate lyase (143)

Fe@Fe3O4@heparin 4T1, HUVEC cell ROS production (144)

PEGylated rhodium nanodots CT-26 Reduced levels of TNF- and IL-6 (145)

Au B16 Increased expression of Caspase 3, Caspase 9, Bid, and Bax, and decreased
expression of BCl2.

(146)

Au NPs-PEG-RNase A conjugate SW-480 ROS production (147)

Au B16 F10 Apoptosis mediated by the mitochondrial path (148)

RBC membrane-coated PLGA Pancreatic ductal
adenocarcinoma

Modification of tumor microenvironment (149)

PEGylated ZnO PANC1 ROS-dependent apoptosis (150)

ZnO THP-1 Mitochondrial membrane degradation and increased reactive oxygen species (151)

Ag HeLa SubG1 arrest and apoptosis/necrosis of cells (122, 149)

Pt A549 Apoptosis induction and cell cycle arrest (152)

TiO2 LL2 Oxidative stress as well as cytokine activation (153)

MoS2 nanoflakes MDA-MB-231 Selective ROS synthesis and photothermal treatment (154)

Pt Human foreskin fibroblast cell DNA damage and DNA replication inhibition (155)

CeO2 Mouse fibrosarcoma cell line ROS-dependent apoptosis (156)

CeO2 A549 ROS-dependent apoptosis (157)

ZnO MCF-7 Increased expression of caspase-8 and p53 (158)

TiO2 HepG2, IMR-90, MCF-7 and
A549

Oxidative stress (159)
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success rates due to the rejection of the transplanted material.

Consequently, the field of tissue engineering and regenerative

medicine (TERM) has recently been experiencing a significant rise

in interest as an alternative solution. This multidisciplinary field

continues to rapidly expand. The interdisciplinary fields of biology,

materials science, and engineering have been synthesized to

facilitate the production and design of synthetic structures that

mimic natural tissues and organs. These structures are not limited

to implantable devices, but can also include miniature, modeled

versions of the aforementioned organs (194). Achieving a

biomimetic extracellular matrix (ECM) composition in a tissue’s

three-dimensional (3D) scaffold for cells that is endowed with

suitable mechanical strength, facile monitoring of cellular activities,

and provision of bioactive agents, necessitates a nanoscale

methodology over a macroscopic one, for optimal performance.

NPs have the potential to offer an efficacious means of regulating

scaffolds’ properties, including precise manipulation of their

mechanical strength and the provision of controlled bioactive

agent delivery (195, 196). Furthermore, several disadvantages and

constraints, namely low solubility, unstable bioactivity, and

truncated circulation half-life of bioactive molecules (e.g., growth

factors, cytokines, inhibitors, genes, drugs, etc.), as well as contrast

agents, have positioned NPs as among the most appropriate

alternatives for the delivery and monitoring of bioactive agents in

various applications (124, 197).
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The ramifications of nanotechnology have resulted in a

fundamental transformation of conventional and rudimentary

modalities in TERM towards more intricate and productive

mechanisms. In the realm of tissue engineering and regenerative

medicine, nanoscale products, including nanofibers and

nanopatterned surfaces, have been employed to influence cellular

behavior alongside NPs. The employment of concurrent

therapeutic and imaging mechanisms, incorporation of

unconventional biomaterials possessing enhanced

spatiotemporal management within scaffolds, manipulation of

the discharge of diverse bioactive agents—notably growth

factors—to govern the trajectory of stem cells and

morphogenesis, regulation of the mechanical potency of

scaffolds for hard tissue utilization, and reduction of toxicity

and improvement of biocompatibility via tissue-targeted

administration constitute a range of potential uses for NPs in

TERM (198, 199). NPs can be developed utilizing a diverse

range of materials, including ceramics, metals, and both natural

and synthetic polymers. Nanostructured materials have emerged

as highly favored candidates in tissue engineering and TERM

due to their advantageous attributes, such as elevated

penetration capability, amplified surface area with customizable

surface properties, and compositional variability. These

properties render them highly effective for a range of

applications in TERM, including imaging, strength
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TABLE 7 Nanoparticles and their uses, particularly for skin regeneration and rejuvenation.

Nanoparticle Description Function/use References
Silver and gold Sizes ranging from 1.1 to 1.6 nm In vivo skin healing in rat models.

This study aims to investigate methods to increase cell proliferation in
vitro and promote full-thickness wound healing.

(201, 202)

Gold Biosynthesized gold nanoparticles (AuNPs) exhibit a high
degree of biocompatibility and are associated with a reduced
incidence of adverse effects.

The process of granulation tissue production.
The topic of discussion pertains to the activity of antimicrobial agents.
The properties of skin regeneration. Incorporating a capacity to
diminish the appearance of wrinkles. Enhance skin lightening, facilitate
skin healing, exhibit a cleansing action, diminish inflammation and
reactive oxygen species (ROS) levels, and decelerate collagen depletion
and the breakdown of elastin.

(203–205)

Silver – This study aims to investigate the potential effects of certain
interventions on keratocyte and fibroblast proliferation, modulation of
the innate immune system, wound healing pace, and the rate of scarring.
The topic of discussion pertains to the activity of antimicrobial agents.

(206–208)

Nanoceria 3–5 nm-sized spherical cerium oxide Low doses have the ability to reverse the effects of UVA-induced photo
toxicity, migration, and proliferation.

(209, 210)

Copper (Cu and
CuS)

The particles under consideration have diameters of 20, 40,
and 80 nanometers, respectively, and exhibit a spherical
morphology.

The promotion of endothelial cell migration and proliferation, which is
dependent on size and dose, facilitates the accelerated healing of full-
thickness skin wounds. In vitro, there was an observed elevation in the
expression of collagen 1A1, along with a concurrent augmentation in the
production of neovascularization in rat models.

(211–213)

Zinc ferrite
(ZnFe2O4)

– The antimicrobial action is achieved through the utilization of several
pathways.

(214, 215)

Silver sulfadiazine – The antimicrobial action, namely targeting biofilms, is of particular
interest.

(216, 217)

Sobhani-Nasab et al. 10.3389/fmedt.2023.1330007
reinforcement, bioink, antimicrobial activity, and bioactive agent

carrier functions (200). Table 7 mentions several studies

conducted in this field.
1.7 Toxicology of nanoparticles

The successful implementation of nanomedicine and

attainment of its medical efficacy hinges upon the

comprehension of the toxicity about nanomaterials.

Nanostructures demonstrate significant prospects in the field of

medicine due to their capacity to exhibit chemical and biological

activity, as well as their capability to access areas that traditional

techniques are unable to reach. Specifically, nanostructures can

be administered via inhalation, ingestion, or translocation

through the skin, and once within the body, can permeate

tissues, cells, and physical barriers. This allows for the potential

to traverse across biological barriers, such as the blood-brain

barrier, and to reach vital organs. Nanostructures still carry the

risk of unintentional bodily injury, regardless of any potential

benefits. Over the course of twenty years, the field of

nanotoxicology has demonstrated that the intricate interactions

between nanomaterials and cellular, animal, human, and

environmental systems are exceedingly intricate (218). These

entities have been associated with a variety of detrimental health

effects, including cellular apoptosis, inflammation, exacerbation

of asthmatic symptoms, fibrosis, chronic lung diseases marked by

persistent inflammation, and carcinogenic processes. Significantly,

the aforementioned toxicological investigations have underscored

the imperative need to shun certain physical and functional

characteristics of artificially designed nanomaterials. The
Frontiers in Medical Technology 15
conscientious application of responsible research and innovation

in the realm of nanomedicine is legitimately anchored in the

paramountcy accorded to nanotoxicity and nanotoxicology as its

focal points of inquiry. The field of nanotoxicology is one that

experts, regulatory agencies, and researchers can work together to

investigate. Investigating this interdisciplinary area provides a

means for different stakeholders to work together, which will aid

in the ongoing discussions about the proper regulation and safe

use of NPs (219, 220). Table 8 mentions several studies

conducted in this field.
2 Summary

There are a lot of chances to modify and control the activity of

cells and tissues at the nanoscale in the rapidly developing field of

nanotechnology. The combination of bio- and nanotechnologies is

transforming the approaches used to identify, treat, and track

illnesses, thereby addressing both present-day and future medical

issues. This issue showcases noteworthy advancements in the

field of nanomedicine, which covers a wide range of medical

issues such as tissue regeneration, dental health, cancer,

tuberculosis, antibiotic resistance, and vaccination efficacy. NPs

can, however, inadvertently cause harm to individuals even if

they have advantageous qualities that make them very helpful in

medical applications. Finding the precise physicochemical

characteristics of NPs linked to toxicity is the main goal of the

study of nanotoxicology, which ultimately aims to direct the

creation of safe nanomaterials. Optimizing the safety profile of

nanomaterials meant for use in medical contexts is the main goal

of this field of study.
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