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Background: Leukemia encompasses various subtypes, each with unique
characteristics and treatment approaches. The challenge lies in developing
targeted therapies that can effectively address the specific genetic mutations or
abnormalities associated with each subtype. Some leukemia cases may become
resistant to existing treatments over time making them less susceptible to
chemotherapy or other standard therapies.
Objective: Developing new treatment strategies to overcome resistance is an
ongoing challenge particularly in Low and Middle Income Countries (LMICs).
Computational studies using COMSOL software could provide an economical,
fast and resourceful approach to the treatment of complicated cancers like
leukemia.
Methods: Using COMSOL Multiphysics software, a continuous flow microfluidic
device capable of delivering anti-leukemia drugs to early-stage leukemia cells
has been computationally modeled using dielectrophoresis (DEP).
Results: The cell size difference enabled the micro-particle drug attachment to
the leukemia cells using hydrodynamic focusing from the dielectrophoretic
force. This point of care application produced a low voltage from numerically
calculated electrical field and flow speed simulations.
Conclusion: Therefore, such a dielectrophoretic low voltage application model
can be used as a computational treatment reference for early-stage leukemia
cells with an approximate size of 5 μm.
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1. Introduction

Due to the prevailing limited data and resources, 80% of the

300,000 children diagnosed with cancer annually emerge from

LMICs (1–3). Worse still, unlike liquid tumors like leukemia, much

of the diagnosis and treatment best suits solid tumors which are

easier to detect and diagnose. Liquid tumors, though also

characterized by genetic abnormalities, may exhibit more complex

molecular profiles, making targeted therapies more challenging to

develop and implement. Additionally, evaluating treatment response

in liquid tumors can be more complex, as circulating cancer cells

may not be as easily quantifiable or measurable using traditional

imaging methods (4). Leukemia encompasses various subtypes, each

with unique characteristics and treatment approaches. The

challenge lies in developing targeted therapies that can effectively

address the specific genetic mutations or abnormalities associated

with each subtype. Some leukemia cases may become resistant to

existing treatments over time (5). This resistance can occur due to

genetic mutations or changes within leukemia cells, making them

less susceptible to chemotherapy or other standard therapies.

Developing new treatment strategies or combination therapies to

overcome resistance is an ongoing challenge.

Leukemia patients are treated using chemotherapy as the

number one treatment method in LMICs. Such a treatment

method renders poor selectivity, low treatment efficacy, hair loss,

muscle weakening, general body weakness and high remission

periods. These effects worsen as the tumor changes from solid to

liquid nature which characterizes leukemia cancer cells (6–8).

Additionally, this leukemia treatment is hampered more by the

infrastructural challenges causing longer travel/wait times and

assessment delays (9, 10–12). As compared to other treatment

methods, many researchers have highlighted Modeling and

Simulation Approaches (MSAs) as phenomenal approaches in

targeting leukemia cells (13–16). These approaches have provided

early detection techniques which are key factors in cancer

treatment hence leading to long-term cancer survival for patients

from the western world (17–21). Although many of these

approaches involve in vitro and in vivo tools, computational tools

have also emerged as preparatory tools capable of providing

deeper insight than in vitro/in vivo tools (22, 23). Additionally,

such computational models can easily provide a stepping

platform for LMICs with limited data and therapeutic results (24).

In comparison to the proposed computational DEP approach,

several leukemia treatment approaches that have been used include

the following; Targeted Therapies (25)—These therapies focus on

targeting specific molecules involved in leukemia growth and

survival. Tyrosine kinase inhibitors (TKIs) have been used for

certain types of leukemia, such as chronic myeloid leukemia

(CML). Imatinib, dasatinib, and nilotinib are examples of TKIs

that have shown promising results. Immunotherapy (26–28)—

Chimeric Antigen Receptor (CAR) T-cell therapy has gained

attention for the treatment of certain leukemias. CAR T-cell

therapy involves modifying a patient’s own immune cells to target

and kill leukemia cells. Approved therapies like Kymriah and

Yescarta have shown remarkable success in treating certain types
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of leukemia and lymphoma. Stem Cell Transplantation (29)—

Allogeneic stem cell transplantation (bone marrow transplant)

remains a crucial treatment option for many leukemia patients.

Advances in this field include better matching techniques,

reduced-intensity conditioning regimens, and improved post-

transplant care. New Drug Approvals (30–31)—New drugs

continue to be developed and approved for different types of

leukemia. Venetoclax, for instance, has shown promise in treating

certain cases of chronic lymphocytic leukemia (CLL) and acute

myeloid leukemia (AML). Gene Editing (32)—Emerging

technologies like CRISPR-Cas9 hold potential for treating

leukemia by targeting and modifying specific genes in leukemia

cells. Combination Therapies (33–35)—Researchers are exploring

the use of combination therapies that involve different drugs or

treatment approaches to improve outcomes and reduce resistance.

Minimal Residual Disease (MRD) Monitoring (36, 37)—Advances

in MRD detection allow for more sensitive monitoring of

treatment response. This helps doctors assess the effectiveness of

treatment and make informed decisions about further

interventions. Precision Medicine (38–40)—As our understanding

of the genetic and molecular basis of leukemia improves,

personalized treatment plans based on a patient’s specific genetic

profile are becoming more common. Supportive Care (41, 42)—

Improved supportive care measures, including management of side

effects and infections, have led to better outcomes and quality of

life for leukemia patients undergoing treatment.

Modeling and simulation using software like COMSOL can play

a significant role in providing treatment reference models for

leukemia. By using COMSOL software, researchers can create

computational models that simulate the behavior of leukemia cells,

the interaction with the immune system, and the impact of

various treatment options. These models can help deepen our

understanding of the disease, its progression, and the underlying

mechanisms (43–46). COMSOL software allows for the creation of

patient-specific models based on individual characteristics such as

genetic information, medical history, and diagnostic test results.

These models can be used to predict the response of a specific

patient to different treatment strategies, helping doctors make

informed decisions and design personalized treatment plans.

Simulating the effects of different drug compounds on leukemia

cells using COMSOL can aid in drug development. Researchers

can test virtual compounds in silico, analyze their interactions

with specific cellular targets, and predict their efficacy. This

approach can help identify potential therapeutic agents and

optimize drug dosages before moving to in vitro or clinical trials.

Once a treatment plan is initiated, COMSOL can assist in

monitoring the patient’s response to therapy. By integrating real-

time patient data with the computational model, healthcare

providers can track the progression of leukemia, assess treatment

effectiveness, and predict potential relapses. This information can

guide treatment adjustments and optimize patient outcomes.

COMSOL can facilitate the design and execution of virtual clinical

trials. Instead of relying solely on costly and time-consuming

traditional trials, researchers can simulate the effects of different

treatment protocols on a large virtual patient population. This
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approach enables the evaluation of treatment strategies more

efficiently, potentially accelerating the development and approval

of new therapies. While using COMSOL, DEP where polarizable

particles experience a force when exposed to a non-uniform

electric field can be utilized to manipulate and separate cells or

particles based on their electrical properties, such as their dielectric

properties or surface charge (47, 48). In the context of leukemia

treatment, microfluidic channels with integrated DEP systems

could potentially offer several benefits. For example, DEP can be

used to isolate and separate leukemia cells from blood samples,

allowing for the detection and analysis of circulating tumor cells.

This could aid in the diagnosis and monitoring of leukemia

progression. Additionally, DEP-based microfluidic systems could

enable the precise manipulation and positioning of cells,

facilitating various treatment strategies. For instance, the targeted

delivery of therapeutic agents to leukemia cells or the sorting of

different cell populations based on their response to specific

treatments. The systematic nature and cost-effectiveness of

computational modeling and simulation has facilitated the

understanding of several cancer-related therapies. Experimental

designs are not only time-consuming, but they are also

cumbersome and expensive as compared to computational models.

Therefore, computational models might assist in analyzing the

different leukemia cancer states to reduce the burden posed by the

experimental approaches (49). Our group recently published a

review showing a technological advancement in leukemia

treatment concerning MSAs for HICs. This review characterized

several computational models using various software platforms

and revealed a gap in the usage of such models to enhance

leukemia treatment in LMICs (50). Modeling and simulation using

DEP is among the options that have revolutionized therapy. There

is always a need to observe a specific voltage threshold while

applying the DEP fields. This is because cell membrane

permeabilization only occurs at a critical threshold that can

prevent irreversible damage to the normal cells (51).

Dielectrophoretic field parameters should therefore be adapted to

each leukemic cell size to preserve the viability of the normal cells.

Table 1 presents a summary of different dielectrophoretic models

with their respective threshold voltages and therapeutic use.

Unfortunately, most of these models are in-vitro using

polymers that would require dedicated resources, specialized

skills, and more time to implement. Such challenges have

motivated our work to come up with a novel computational

model that can provide useful insights and formulations for

leukemia treatment in LMICs.
2. Methods

By exploiting the fact that the smallest leukemia cell can be

around 5 micrometers in size (74) and can easily be seen by light

microscopes (75) commonly used in LMICs, it is possible to

provide a treatment reference for such early-stage leukemia cells.

This can be through simulating and studying size-based

attachment of anti-cancer microdrugs to the tiniest leukemia cells

using a DEP force. When the electric field is computed in the
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frequency domain, the dielectrophoretic force feature adds

contribution (Equation 1) to the total force exerted on the

particles. Both leukemia and the iron-oxide particles onto which

the drug is conjugated are assumed to be spherical. The

following parameter values are additionally assumed while

simulating the drug attachment as shown in Table 2 (48),

Fdep ¼ 2pr3p10 real (1�r ) real
1�r,p�1

�
r

1�r,pþ21�r

 !
D[Erms]

2 (1)

where

• rp = radius of a spherical particle in the field,

• 10 = 8.854187817·10−12 F/m is the vacuum permittivity,

• 1�r =complex relative permittivity of the buffer,

• 1�r,p = complex relative permittivity of the particle,

• Erms = root mean square electric field.

The shell sub-node is used to model the drugs that are

conjugated onto the micro iron-oxide particles. This sub-node is

added to the dielectrophoretic force node to model the

dielectrophoretic force on particles with thin dielectric shells. The

electrical conductivity of the drug is different from the electrical

conductivity of the iron-oxide particle to easily simulate the drug

attachment application. When computing the dielectrophoretic

force, the complex permittivity (1�r,p) of the particle is replaced by

the equivalent complex relative permittivity (1�eq) of a

homogeneous particle comprising both the shell (drug) and the

interior of the particle. Therefore, the equivalent relative

permittivity (1�eq) in Equation 2 substitutes for (1�r,p) in Equation

1 to compute the DEP force (48).

1�eq ¼ 1�s

r0
ri

� �3

þ 2
1�r,p � 1�r,s
1�r,p þ 21�r,s

 !

r0
ri

� �3

� 1�r,p � 1�r,s
1�r,p þ 21�r,s

 ! (2)

where

r0 and ri = outer and inner radii of the shell, respectively,

1�r,p = complex relative permittivity of the particle,

1�r,s = complex relative permittivity of the outer shell.
3. Results

Figure 1A shows a proposed Y- configuration model design

that can be used to deliver the anti-cancer drugs to the leukemia

cells using the dielectrophoretic force. The proposed simulation

model partly resembles a physical model previously fabricated for

functionalizing nanoparticles (78). By convention, the left and

right sides of the channel are taken in the direction the particles

see while flowing. The model assumes a planar liquid electrode

pattern at the bottom with dead-end chambers positioned

perpendicularly to the main channel, as defined by Mernier et al.
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TABLE 1 Micro-fluidic models using either dielectrophoretic or constant voltage potentials and their corresponding therapeutic uses.

Voltage potential
type used

Potential therapeutic study Voltage potential Model output Reference

Dielectrophoretic
potential

Delivery of bioactive molecules, including
Dexamethasone, from conductive polymers

−0.8 V to 1.4 V Self-adjusting Dexamethasone drug release
system for more than 3 weeks

Carli et al. (52)

Constant potential The drug loading capacity of polypyrrole nanowire
network for controlled drug release

−0.7 V for 30 min Cyclic voltametric drug release model Jiang et al. (53)

Dielectrophoretic
potential

Carbon nanotube (CNT) for conducting polymer
composite electrodes for drug delivery applications

0.3 V, −0.5 V, −0.7 V
and −0.9 V for 2 min

A single walled CNT with increased drug
release from 1.4,126–1.8864 mg/cm

Xiao et al. (54)

Dielectrophoretic
potential

Investigate the active ionic liquids that can be used
for polypyrrole electrosynthesis in controlled drug
delivery

0.6 V, 1.2 V, or 1.5 V for
2h

Increased drug release rates with a negative
potential increase and anionic nature

Carquigny et al.
(55)

Dielectrophoretic
potential

Drug release study pattern from a polypyrrole
microchip

0.5 V, −0.8 V, and
−1.0 V for 24 h

Implantable drug release microchip based on
polypyrrole

Ge et al. (56)

Constant potential Generates polymeric nanostructures in a 2D space to
be used as conductive polymers

3 V for a maximum of
150s

A conductive polymeric nanostructure for
use in 2D space

Dallas and
Georgakilas (57)

Constant potential A redox chemistry method for drug delivery and
sensing while using electroactive polymers

−0.7 V for 700 s First time quantifiable self regualating ATP
release from polymers

Pernaut and
Reynolds (58)

Dielectrophoretic
potential

Polyaniline filaments used in Mesoporous channel
host conduction

0.0 V after 10 min and
then −0.6 V after 20min

Design of conductive filaments of polyaniline
at an absorption frequency of 2.6 GHz

Wu and Bein (59)

Dielectrophoretic
potential

Controlled release of heparin from polypyrrole -poly
(vinyl-alcohol) assembly by electrical stimulation

Electric current pulses
ranging from 0 mA to

3.5 mA

Developed a surface modification technique
for heparin release

Li et al. (60)

Dielectrophoretic
potential

Potential application method for controlled
synthesis of polymers involved in micro/
nanostructures

−0.6 V to 0.9 V Various potential applications of micro/
nanostructures as conducting polymers

Bajpai et al. (61)

Constant potential Incorporation of sulphonated cyclodextrins into
polypyrrole: an approach for the electro-controlled
delivering of neutral drugs

−0.5 V for 600 s An electro-approach for delivering neutral
drugs into polypyrrole

Bidan et al. (62)

Dielectrophoretic
potential

Electrochemical growth of polypyrrole
microcontainers

−0.6 to 0.9 V Designed high film/electrolyte double layer
capacitive charges on the polypyrrole films

Qu et al. (63)

Dielectrophoretic
potential

Facile fabrication of polymer and carbon
nanocapsules using polypyrrole core/shell
nanomaterials

0.7 V to −0.5 V with a
gap of 14 min

Fabricated core/shell nanomaterials using
polypyrrole

Jang et al. (64)

Dielectrophoretic
potential

Polymer nanostructures and their applications in
conducting biosensors

−1.2 V to 0.4 V Conducting biosensors designed from
polymer nanostrctures

Xia et al. (65)

Constant potential Electrically controlled drug delivery studies from
biotin-doped conductive polypyrrole

−0.5 V for 12 min An electrically controlled drug delivery
system from biotin-doped conductive
polypyrrole

George et al. (66)

Dielectrophoretic
potential

Electrochemically enhanced peptide-directed
assembly of functional supramolecular polymers for
enhanced drug delivery

−0.8 V to 1 V Electrically triggered drug release from
molecular tongue-twisters

Hardy et al. (67)

Dielectrophoretic
potential

Ultra-low-voltage triggered the release of an anti-
cancer drug from polypyrrole nanoparticles

−0.8 V to 0.4 V for
15 min

Designed an Ultra-low-voltage trigger for the
release of an anti-cancer drug from
polypyrrole nanoparticles

Samanta et al.
(68)

Dielectrophoretic
potential

Development of a controlled release system for
risperidone using polypyrrole: mechanistic studies

−0.6 V to 0.6 V for 120 s Designed a controlled release system for
risperidone using polypyrrole

Svirskis et al. (69)

Dielectrophoretic
potential

Physical and performance evaluation of polypyrrole
drug delivery systems

−0.6 V to 0.6 V at 0.5 Hz An electrical risperidone drug delivery
implant system from polypyrrole

Svirskis et al. (70)

Dielectrophoretic
potential

Electrochemical release of acetylcholine from
supercritical carbon dioxide (scCO2)polymer films

1 V to −1 V for 24 h An electronically triggered release model of
acetylcholine from scCO2 polymer films

Löffler et al. (71)

Constant potential Drug delivery study of Micro/nanostructures as
conducting polymers

0.5 V for the 30 s Micro/nanostructures for drug delivery
through conducting polymers

Uppalapati et al.
(72)

Dielectrophoretic
potential

Design study of a nanostructured sustainable
platform in energy applications for conducting
polymers

0.4 V, 0.5 V or 0.6 V for
20 min

A nanostructured sustainable platform used
in energy applications for conducting
polymers

Ghosh et al. (73)
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(79). Such chambers help in providing homogeneous electrical

fields over the total channel height while keeping a simple

process flow with a single planar metal layer. DEP signals are

applied on liquid electrodes placed on both sides of the channel

as partly described by Tornay et al. (80). The dielectrophoretic

force attracts the leukemic cells to the micro drug particles

during the movement process. The proposed model assumes a

buffer flow to focus the cell towards the right side of the channel
Frontiers in Medical Technology 04
using the dielectrophoretic force. As the cells considered here

have sizes larger than 500 nm, their diffusion in the attachment

section can be considered to be negligible (80).

The force vectors used to calculate the trajectory of the particles

are obtained by data post-processing using COMSOL software

version 6.0 and calibrating the particle position with the steady-

state velocity. The model uses the following physics interfaces to

carry out the numerical simulations. (1) Electric Currents to model
frontiersin.org
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TABLE 2 Parameter values used in the simulation.

Parameter description Parameter
value

Reference

Electric field frequency 100 kHz Piacentini et al. (48), Egger and
Donath (76), Park et al. (77)

Buffer medium conductivity 55 ms/m Piacentini et al. (48)

Buffer relative permittivity 80 Piacentini et al. (48)

Buffer density 1,000 kg/m3 Piacentini et al. (48)

Buffer dynamic viscosity 0.001 Pa.s Piacentini et al. (48)

Particle density (leukemia
cells and the drug particles)

1,050 kg/m3 Egger and Donath (76)

Leukemia cell diameter 5 μm Hao et al. (74)

Iron-oxide particle diameter 1.8 μm Piacentini et al. (48)

Leukemia cell conductivity 0.31 s/m Piacentini et al. (48), Egger and
Donath (76), Park et al. (77)

Iron-oxide particle
conductivity

0.25 s/m Piacentini et al. (48), Egger and
Donath (76), Park et al. (77)

Leukemia relative permittivity 59 Piacentini et al. (48), Egger and
Donath (76), Park et al. (77)

Iron-oxide particle relative
permittivity

50 Piacentini et al. (48), Egger and
Donath (76), Park et al. (77)

Leukemia shell electrical
conductivity (antibody)

1 μs/m Piacentini et al. (48)

Drug shell electrical
conductivity (antigen)

1 μs/m Piacentini et al. (48)

Leukemia shell relative
permittivity

4.44 Egger and Donath (76)

Iron-oxide particle shell
relative permittivity

6 Egger and Donath (76)

Leukemia shell thickness 9 nm Piacentini et al. (48)

Iron-oxide particle shell
thickness

8 nm Piacentini et al. (48)
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the electric field in the microchannel, (2) Creeping flow to model the

fluid flow and (3) Particle tracing for fluid flow to compute the

trajectories of the leukemia cells and the micro-drug under the

influence of hydrodynamic focusing and dielectrophoretic forces.

Our group simulated three parameters in studying the drug

attachment to the leukemia cells using this model and these

included; (1) Dielectrophoretic peak-to-peak voltage, (2) Leukemia

cell size and (3) Iron-oxide particle size conjugated with the drug.

Starting with the 5 μm leukemia cell size as our reference early-

stage size of leukemia cell and 1.8 μm iron-oxide particle size

conjugated with the drug, 9 Vpp was applied and the simulation

ran for approximately 3 min. More voltages were applied ranging

from 9 Vpp to 19 Vpp beyond which no attachment could be

registered. Various leukemia cell sizes were also simulated ranging

from 5 μm to 10 μm while keeping a constant 1.8 μm iron-oxide

particle size and constant peak-to-peak voltage. Iron-oxide particle

sizes were also simulated ranging from 1.8 μm to 5 μm while

keeping a constant 5 μm leukemia cell size and constant peak-to-

peak voltage. All these simulation values were performed up to a

point when no drug attachment could be attained.

Attraction by positive DEP is used here in combination with

hydrodynamic focusing to enable particle attachment (80).

Figure 1B shows the drug attachment simulations from 1.8 μm,

2.5 μm, 3.5 μm, to 4.5 μm iron-oxide particle sizes conjugated with a

drug at 9 V peak-to-peak. The simulations were also taken at a

constant leukemia cell size of 5 μm. A control model clearly shows
Frontiers in Medical Technology 05
no attachment of the drug to the leukemia cells without DEP

force. The simulations also indicate a general decrease in the drug

attachment points from 624 μm to 157 μm with an increase in the

iron-oxide particle size from 1.8 μm to 4.5 μm. Finally, the model

reaches a final point with a 5 μm iron-oxide particle size from

which no drug was attached to the leukemia cells.

Figure 1C shows a cross-section of drug attachment points

onto a 5 μm leukemia cell using various iron-oxide particle sizes

onto which a drug is conjugated. Although there was a steady

decrease in the attachment points as the peak-to-peak voltages

increased, all the various iron-oxide particle sizes were able to

deliver the drug to the 5 μm leukemia cell.

Figure 1D shows a cross-section of drug attachment points onto

various leukemia cell sizes using different peak-to-peak voltages.

These results show a tremendous decrease (improved attachment

efficiency) in the attachment points with an increase in the

voltages. The results additionally show a drug attachment failure

as the cells increased in size with an increase in the voltage potential.
4. Discussion

The electrical conductivity of iron-oxide particles is due to the

de-localization of π-electrons along the π-conjugated backbone.

Such delocalized electrons get stabilized by dopant ions to the

oxidized leukemia cells and then create a continuous conduction

flow. During such a flow, the drug conjugated onto the micro

iron-oxide particle undergoes a redox reaction with the leukemia

cells leading to a drug attachment onto this cell (81). Such drugs

are mainly released by electrostatic repulsion caused by an

applied potential that reduces the iron-oxide particles to attach

the drug to the leukemia cells. The drug attachment rate depends

on the morphology of the iron-oxide particle (including its size

and density) and its electromechanical properties. The

parameters used during this simulation protocol (especially the

peak-to-peak voltages and the size variations) directly affect the

electrical properties of the iron-oxide particles and the preceding

drug attachment rate. Although other parameters like the pH

and the surrounding temperatures can also affect the drug

attachment patterns, the peak-to-peak voltages and the particle

sizes can additionally be customized in various drug attachment

studies (82). This simulation protocol similarly affects the drug

attachment rate as it does the response of the particles to the

electric field. The drug conjugated onto the iron-oxide particle

was designed with a tiny thickness to become non-electroactive

at applied voltage potentials during the drug attachment onsets

(83). This tiny thickness was aimed at providing a neutrally

charged drug that easily attaches to the iron-oxide particles

without being limited by either the positive or the negative

charges (84). Dielectrophoretic fields may have different effects

on cellular structures related to pulse durations and strengths.

Such fields cause the cell membrane effects to decrease while

increasing the intracellular effects to enhance the attachment

process (85). Furthermore, increasing the iron-oxide particle

diameter with the dielectrophoretic voltage enhanced the

attachment efficiency as shown in Figures 1C,D. However, in
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FIGURE 1

(A) Schematic geometry of the dielectrophoretic micromodel used for drug attachment to the leukemia cells (B) simulations showing drug attachment points
for 1.8 μm, 2.5 μm, 3.5 μm, and 4.5 μm iron-oxide particle sizes conjugated with a drug at a 9 V peak-to-peak (C) a histogram showing drug attachment points
from the drug conjugated onto various iron-oxide particle sizes to a 5 μm leukemia cell along the micro-channel at different peak-to-peak voltages (D) a
histogram showing drug attachment points onto various leukemia cell sizes along the micro-channel at different peak-to-peak voltages.
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Figure 1D, due to a further increase in leukemia cell particles from

6 μm to 10 μm at a constant iron oxide micro particle size of

1.8 μm, there was no drug attachment.

The surface area to volume (SAV) ratio plays a crucial role in

the attachment of iron-oxide micro particles to micro-sized

leukemia cells during targeted drug simulations. In the context of

drug delivery, it determines the available surface area for

interactions between the particles and the cells (86, 87). A higher

SAV ratio means a larger surface area relative to the volume of

the particles. This increased surface area provides more sites for

attachment and enhances the probability of interaction between

the iron-oxide micro particles and the leukemia cells.

Consequently, a higher SAV ratio can promote more effective

and efficient attachment of the particles to the cells, leading to

improved targeted drug delivery.

The attachment process relies on various factors, including

surface chemistry, charge, and ligand functionalization of the

particles, as well as the characteristics of the target cells (88, 89–

91). However, assuming all other factors remain constant, a

higher SAV ratio generally facilitates greater contact between the

particles and the leukemia cells, increasing the likelihood of

successful attachment. This phenomenon explains the reason as

to why no attachment occurred between 1.8 μm iron oxide

particles and leukemia cell particles greater than 6 μm. Therefore,

by maximizing the SAV ratio, researchers can enhance the
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binding efficiency of iron-oxide micro particles to leukemia cells

during targeted drug simulations, ultimately improving the

efficacy of drug delivery systems designed for treating leukemia

or other diseases.

Although our proposed model is computationally microfluidic,

it rhymes well with physically designed models that have used DEP

with whole blood samples. DEP has been studied as a method to

isolate Circulating Tumor Cells (CTCs) from whole blood

samples based on their different electrical properties compared to

normal blood cells (92). Once isolated, these CTCs can be

analyzed for genetic mutations, drug susceptibility, and other

factors that can guide treatment decisions. A separation test was

conducted with live K562 cells, achieving a high separation

efficiency of 94.74% using the DEP force at 7 Vp-p with 10 kHz.

Separation efficiencies were evaluated for treated samples at 12

and 24-h durations, achieving high efficiencies of 94.71% and

93.25%, respectively. Other researchers have employed DEP

analysis to delve into the underlying mechanisms governing

separation and apoptosis principles at both gene and cellular

levels using different leukemia cells (93, 94). The discernible

variations in cell membrane capacitance and cytoplasmic

conductivity, as identified by DEP analysis, offer the potential for

the early detection of apoptosis. This technology holds the

promise of aiding physicians in promptly detecting apoptosis,

facilitating more timely and tailored patient treatments. As the
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field continues to evolve, the advancement of this technology could

pave the way for increasingly individualized and personalized

therapeutic approaches for patients.

The cost of leukemia treatment can vary significantly

depending on several factors, including the type of leukemia, the

stage of the disease, the specific treatment regimen prescribed,

the location of treatment, the duration of treatment, and the

healthcare system of the country. Leukemia treatment costs can

encompass a wide range of expenses, such as consultations,

diagnostic tests, medications, hospital stays, procedures,

supportive care, and follow-up appointments. It’s important to

note that leukemia treatment costs can be substantial, and they

can create financial burdens for patients and their families.

Although different attempts have been implored to reduce the

leukemia treatment costs (25, 95–98), the overall prices may still

be unaffordable to the LMICs, hence necessitating cheaper and

affordable options. While our proposed model may not directly

lower the costs of medications or medical procedures, it can help

make the treatment process more efficient and targeted,

potentially leading to cost savings in the long run. The setup

involves acquisition of a one-time strong computer that could

cost approximately $1,500, COMSOL yearly software license and

modules that could cost $3,500. Such a setup could support as

many patients as possible and could provide pre-treatment

guidance to the Physicians.
5. Conclusion

We have computationally developed a simulation model able to

deliver micro-drugs to the early-stage leukemia cells. The device

uses a combination of flow focusing and DEP to deliver these

drugs to the cells depending on their size. The electrical field and

flow speed have been calculated by numerical simulations.

Furthermore, the use of relatively low voltages makes it suitable

for point-of-care applications. In a broader perspective, the

proposed model can be used to deliver micro-drugs to other

cancer cell types featuring similar differences in size. Such a

model provides a favorable discussion about the efficacy, safety

and the affordability plans of the therapy before implementing it

to the patient.
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