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The practice of medicine is rapidly transforming as a result of technological
breakthroughs. Artificial intelligence (AI) systems are becoming more and
more relevant in medicine and orthopaedic surgery as a result of the nearly
exponential growth in computer processing power, cloud based computing,
and development, and refining of medical-task specific software algorithms.
Because of the extensive role of technologies such as medical imaging that
bring high sensitivity, specificity, and positive/negative prognostic value to
management of orthopaedic disorders, the field is particularly ripe for the
application of machine-based integration of imaging studies, among other
applications. Through this review, we seek to promote awareness in the
orthopaedics community of the current accomplishments and projected
uses of AI and ML as described in the literature. We summarize the current
state of the art in the use of ML and AI in five key orthopaedic disciplines:
joint reconstruction, spine, orthopaedic oncology, trauma, and sports
medicine.
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Introduction

Orthopaedic surgery is the field of medicine dedicated to addressing–through

invasive and non-invasive strategies–traumatic and pathological processes affecting the

bones, joints, and adjacent connective tissues facilitating motor function. Because the

skeleton, and subtle skeletal pathology, projects well on photon attenuation-based

radiography and computed tomography (CT), and because soft-tissue injuries are

diagnosed with high sensitivity, specificity, and positive/negative prognostic value tools

such as magnetic resonance imaging (MRI), orthopaedic surgery is a field that is

particularly ripe for the application of machine-based integration of imaging studies,

among other applications. Although the use of computer algorithms to diagnose and

manage orthopaedic disorders dates back to the 20th century, the literature shows

that interest in this area among medical scientists has markedly increased during the

past decade (Figure 1). Improvements in software and hardware technologies, such as
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FIGURE 1

Evolution of the number of total publications and citations whose title, abstract and/or keywords refer to the field of artificial intelligence in
orthopaedics during the last years. Data retrieved from Web-of-science (June 20th, 2022) by using the search term: orthopaedic* AND (Artificial
Intelligence OR Deep Learning OR Machine Learning OR Convolutional Neural Network).
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graphic processing units and cloud computing, has allowed for

substantially faster processing computers and storage of larger

amounts of data, resulting in development of machines

increasingly capable of performing tasks that typically require

human intelligence.

Artificial intelligence (AI) is neither a new discipline nor is its

application to the medical field a new phenomenon. Before the

field was born, many works were pursued that were later

recognized as AI, including statistics-based methods, such as

logistic regression (LR) (1). The term was first coined by John

McCarthy in a proposal to study the concept during a research

event in the summer of 1956 at Dartmouth College. However

the idea of intelligence in machines was investigated prior to

this event including in the works of Alan Turing who raised the

question of “can a machine think?” McCarthy and colleagues

submitted their proposal on the assumption that every feature

of learning or any other trait of intelligence can be characterized

precisely enough for a computer to emulate it (2).”

Today, the field of AI is composed of many sub-branches

(Figure 2), with a particular focus of this study being

machine learning (ML). While other AI branches have had a

significant influence on science and technology, ML is without

a doubt the most intriguing and promising discipline of AI

for medical research applications today. Even though AI and

ML are sometimes used interchangeably in the public, ML

more accurately described as a subset of AI that uses

algorithms with the capacity to “learn.” The overall objective
Frontiers in Medical Technology 02
of machine learning is for computers to adapt without being

instructed on how, in order to predict the value of a desired

output based on a set of inputs. Enabling computers to learn

how to perform tasks on their own, with or without human

guidance on what to do and what not to do (i.e., supervised

vs. unsupervised ML), often in ways that exceeds human

understanding, opens up many potential use cases. While

both supervised and unsupervised machine learning

techniques have been widely used in orthopaedic, each has

advantages and disadvantages. Algorithms in supervised

learning are guided by human-defined ground truth and

compared to unsupervised learning, they are often easier to

implement and have a more understandable decision-making

process. However, creating high quality human-defined

ground truth necessitates a significant manual effort and also

incfeases risk of incorporating human biases into decision

making. Unsupervised learning, as opposed to supervised

learning, derives insights directly from the data, groups the

data, and aids in the formulation of data-driven decisions

without introducing external bias (3, 4).

Through this literature review we seek to promote awareness

in the orthopaedics community of the current accomplishments

and projected uses of AI and ML as described in the literature

(Table 1). The following sections summarize the current state

of the art in the use of ML and AI in five key orthopaedic

disciplines: joint reconstruction, spine, orthopaedic oncology,

trauma, and sports medicine (Figure 3).
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FIGURE 2

Illustrating the key disciplines of artificial intelligence (AI), including machine learning (ML) approaches that are influencing orthopaedics research.
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Joint reconstruction

As joint reconstruction is one of the major orthopaedics

subspecialties, it comes as no surprise that this has also been

a key area of studies for AI within orthopaedics. Common use

cases for AI in joint reconstruction have been analyzing

imaging for automated diagnosis, evaluation of implants, and

predicting clinical outcomes, as well as more niche examples

such as streamlining pre-operative workflow for patient

specific implants and implant R&D.
Automated image-based diagnosis

Osteoarthritis (OA) is the most common joint disorder in

the US, affecting 10% of men and 13% of women over the

age of 65 (5). Given this high prevalence, a major area of

focus for ML in the field of orthopaedics has been automating

detection and staging of OA from imaging studies. Xue et al.

and Üreten et al. used a VGG-16 layer deep convolutional

neural network (CNN) to automatically diagnose hip OA

from radiographs (6, 7). The Xue et al. model achieved a high

sensitivity of 95% and specificity of 90.7%, comparable to an

experienced physician. Similarly, Tiulpin et al. used a Deep
Frontiers in Medical Technology 03
Siamese CNN to automatically diagnose and grade knee OA

from radiographs (8). This model also helps to open up the

“black box” of AI by specifically highlighting the key

radiologic features that determine the diagnosis to help build

trust with the physician user.

In addition to making the diagnosis of OA from radiographs,

several studies have utilized AI to further categorize OA severity.

Swiecicki et al. used a Faster R-CNN model on radiographs to

assess severity of knee OA based on the Kellgren-Lawrence

grading system (9). Their model had a similar accuracy to a

panel of radiologists, with improved reproducibility. Kim et al.

performed a similar study using deep learning and found

significantly improved areas under the curve (AUCs) when

combining the image data with information about patient

demographics and medical history (10).

While radiographs are the primary diagnostic tool to

evaluate arthritis, several studies have used MRI to provide

more detailed information. Ashinsky et al. used the machine

learning tool weighted neighbor distance using compound

hierarchy of algorithms representing morphology (WND-

CHRM) to evaluate T2 weighted MRI sequences to identify

medial femoral condyles at risk for progression to

symptomatic OA, as defined by a change in Western Ontario

and McMaster Universities Arthritis (WOMAC) score of >10

within three years (11). This model achieved sensitivity of
frontiersin.org
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TABLE 1 Summarizes selected manuscripts for application of AI in orthopaedics that were discussed in this article, including their purpose, AI
technology that was used, their study population and figures of merit.

Author,
year

Purpose AI technology Study population FoM

Joint Reconstruction

Xue et al. 2017 Hip OA diagnosis VGG-16 Layer CNN 420 hip x-rays SN: 95.0%, SP: 90.7%, AUC: 0.94

Üreten et al.
2020

Hip OA diagnosis VGG-16 Layer CNN 434 hip x-rays SN: 97.6%, SP: 83.0%

Tiulpin et al.
2018

Knee OA diagnosis Deep Siamese CNN 5,960 knee x-rays AUC: 0.93, QWK: 0.83, MSE: 0.48, MCA:
66.7%

Swiecicki et al.
2021

Knee OA Severity VGG-16 Layer CNN 3,200 patients’ knee x-rays and 10,052
exams

QWK: 0.91
MCA: 71.9%

Kim et al. 2020 Knee OA Severity CUDA/cuCNN 3,000 patients’ knee x-rays and exams AUC: 0.75-0.97

Ashinski et al.
2017

Early Knee OA Prediction WND-CHRM 68 subjects with T2-weighted Knee
MRIs and 3 year follow ups

SN: 74%, SP 76%

Pedoia et al.
2019

Early Knee OA Prediction DenseNet CNN 4,384 subjects T2-weighted Knee
MRIs and 3 year follow ups

SN: 77.0%, SP: 77.9%, AUC: 0.824

Borjali et al.
2019

Detection of Implant Loosening Deep CNN 40 hip x-rays SN: 94%, SP: 96%, AUC

Yi et al. 2020 Knee Implant Detection and
Identification

Deep CNN 511 knee x-rays SN: 100%, SP: 100%, AUC 1.00 for native
vs. TKA vs. UKA and descrimination
between implant models

Yi et al. 2020 Shoulder Implant Detection and
Identification

Deep CNN 482 shoulder x-rays AUC: 1.00 for detection of implant; AUC:
0.97 for differentiation between TSA and
RTSA; AUC: 0.86-1.00 for discrimination
between implant models

Ramkumar
et al. 2019

Prediction of Length of Stay and
Inpatient Costs for THA

Naive Baysian Model 122,334 THA surgery patients’
records

AUC: 0.87 for LOS
AUC 0.71 for payment

Navarro et al.
2018

Prediction of Length of Stay and
Inpatient Costs for TKA

Naive Baysian Model 141,446 TKA surgery patients’
records

AUC: 0.78 for LOS
AUC 0.74 for payment

Fontana et al.
2019

Prediction of MCID of PROMs after
Arthroplasty

Lasso, Random Forest,
and SVM

7,239 THA and 6,480 TKA surgeries AUC: 0.60-0.89

Lambrechts
et al. 2022

Improving Presurgical Planning
Workflow

Lasso and SVM 5,409 TKA surgeries 39.7% improvement in number of
corrections to presurgical plan

Eskinazi et al.
2015

Implant Optimization ANN ∼1000× faster computational time; ∼7×
more accurate

Cilla et al. 2017 Implant Optimization ANN and SVM Decreased strain in optimized implant,
SVM showed higher accuracy

Spine

Hetherington
et.al., 2017

Automatic spine level identification Deep learning-
AlexNet, GoogLeNet,
ResNet-50, SqueezeNet

Ultrasound images of L1-S1 vertebral
bodies from 20 participants

AC: 88-91% between different algorithms

Glocker et al.
2012

Automatic localization and
identification of vertebrae

Deep learning- random
forest

200 CT images Localization error: 6-8.5 mm
Identification rate: 81%

Chen et al. 2015 Automatic localization and
identification of vertebrae

Deep learning- random
forest and CNN

MICCAI 2014 vertebral localization
challenge: 302 annotated spine CT
with post-op and pathologic cases

Localization error: 1.6-2 mm

Bounds et al.
1988

classifying back pain in four categories
of simple, radicular, pathologic, and
back pain with significant
psychological overlay

Multilayer perceptron
network

Clinical symptoms and past medical
history of 200 patients with back pain

AC: 77-82%

Ghosh et al.
2011

Image based diagnosis of lumbar
herniation

five different classifiers
including SVM

35 lumbar MRI AC: 80-94% between different classifiers

Hao et al. 2013 Image based diagnosis of lumbar
herniation

Deep learning- SVM MRI of 162
disks from 27 patients

AC: 92%

Oncology

Han et al. 2018 To predict survival rates of patients
with synovial sarcoma

Deep learning - Neural
Network

Clinical and demographic data - 242
patients from 3 institutions

ROC AUC: 0.81

(continued)
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TABLE 1 Continued

Author,
year

Purpose AI technology Study population FoM

He et al. 2020 To differentiate benign vs intermediate
vs malignant primary bone tumors

Deep learning
-efficientNet-B0 CNN

1356 Plain radiographs from 5
institutions

AC:73.4% on external validation

Eweje et al. 2021 To differentiate benign vs malignant
primary bone tumors

Deep learning
-efficientNet-B0 CNN

T1- and T2- weighted MRI - 1,060
lesions - 4 institutions

AC:73%
ROC AUC: 0.82

He et al. 2019 To predict local recurrence of giant
cell tumor of bone after intralesional
curettage

Deep learning-
Inception v3, LR

MRI, age, tumor location - 56 patients AC: 75.5%, SN: 85.7%

Zhang et al.
2018

Segmentation of osteosarcoma on CT
images

Deep learning-
multiple supervised
residual network

CT images - 23 patients DSC: 89.2%

Lindgren et al.
2019

Automatic segmentation for tumor
burden calculation from prostate
cancer bony metastasis

Deep learning- CNN 18F-sodium fluoride PET/CT - 48
patients

70% concordance index for prediction of
overall survival

Trauma

Author, year Purpose AI technology Study population FoM

Olczak et al.
2017

Fracture detection Deep learning
networks

256,000 wrist, hand, and ankle
radiographs

>90% accuracy for identifying laterality,
body part, and view
83% accuracy for fracture detection

Adams et al.
2019

Neck of femur fracture detection GoogLeNet and
AlexNet Deep CNN

805 hip radiographs Accuracy: 85.3-90.6%, AUC: 0.89-0.98

Urakawa et al.
2019

Intertrochanteric hip fracture
detection

VGG-16 CNN 3,346 hip radiographs Accuracy: 95.5
SN: 93.9%, SP: 97.4%

Gan et al. 2019 Distal radius fracture detection Faster R-CNN and
Inception-v4 CNN

2,340 AP wrist radiographs AUC: 0.96

Chung et al.
2018

Proximal humerus fracture detection ResNet-152 deep CNN 1,891 shoulder radiographs Accuracy: 96%, AUC: 0.97-1.00 for
fracture detection
Accuracy: 65-86%, AUC: 0.90-0.98 for
classification by fracture type

Pranata et al.
2019

Calcaneus fracture detection ResNet and VGG deep
CNN

1,931 foot CT images Accuracy: 98%

Krogue et al
2020

Hip fracture detection DenseNet CNN 1,118 hip and pelvic radiographs Accuracy: 93.7%, SN: 93.2%, SP: 94.2%.
Improvement in physician performance
when aided

Lindsey et al.
2018

Fracture detection Deep convolutional
neural network
(DCNN)

135,845 radiographs of a variety of
body parts (wrist,foot, elbow,
shoulder, knee, spine, femur, ankle,
humerus, pelvis, hip, and tibia)

AUC: 0.990
SN: 93.9%, SP: 94.5%. Improvement in
emergency medicine MD SN from 82.7%
to 94.5%, SP from 87.4% to 94.1%.

Karnuta et al.
2019

Post-operative length of stay and cost
prediction for hip fracture

Bayes machine-
learning algorithm

98,562 Medicare patients who
underwent operative management for
hip fracture

Accuracy: 76.5% for length of stay and
79.0% for cost. AUC: 0.88 for length of
stay and 0.89 for cost.

Stojadinovic
et al. 2011

Fracture non-union prediction Bayesian belief network 349 patients with delayed fracture
union or a nonunion

Mean AUC: 0.66, PPV: 0.86, NPV: 0.29

Sports Medicine

Štajduhar et al.
2017

Anterior cruciate ligament (ACL)
injury detection

Support vector
machine (SVM) and
random forests models

969 sagittal knee MRs AUC: 0.894 for injury detection and 0.943
complete-rupture detection

Bien et al. 2018 ACL and meniscal tears detection MRNet CNN 1,370 knee MRIs AUC: 0.937, SN: 0.879, SP: 0.714,
Accuracy: 0.850 for abnormality detection

Chang et al.
2019

Complete ACL tear detection ResNet-derived CNN Knee MRIs from 260 patients AUC: 0.971, SN: 0.967, SP: 1.00, PPV:
0.938, NPV: 1.0

Roblot et al.
2019

Meniscus tear detection Fast-region CNN
(RCNN) and faster-
RCNN

1,123 MR images of the knee AUC: 0.90

FoM, figures of merit; AC, accuracy;ROC, receiver operator characteristic; AUC, area under the curve; SN, sensitivity; SP, specificity; DSC, dice similarity coefficient;

QWK, quadratic weighted Kappa; MSE, mean square error; MCA, multi-class accuracy.
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FIGURE 3

Common applications of AI in orthopaedics.
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74% and specificity of 76%, though was limited in sample size

and only evaluated a single compartment. A more generalized

model of the whole knee was created by Pedoia et al. using

DenseNet, a densely connected CNN, which used T2 weighted

MRI sequences to diagnose knee OA prior to visible

radiographic changes (12). When combined with patient

demographics of age, gender, BMI, and Knee injury and

Osteoarthritis Outcome Score (KOOS), their model

demonstrated sensitivity of 76.99% and specificity of 77.94%

among several thousand patients in the Osteoarthritis

Initiative baseline dataset.
Automated implant evaluation

One major cause of failure of arthroplasty implants is

mechanical loosening, which can be caused by inadequate

initial fixation, loss of fixation over time, biological loss of

fixation due to osteolysis, and/or periprosthetic infection (13,

14). Following joint replacement, it is critical to evaluate

implant imagingfor hardware complications. Borjali et al.

trained a deep CNN to detect mechanical loosening of total

hip implants from radiographs (15). This model achieved

significantly higher sensitivity of 94% and similar specificity of

96% as compared to an experienced orthopaedic surgeon.

They also created outputs of saliency maps showing the key

areas the model used to make the diagnosis, helping to build

trust in the results.
Frontiers in Medical Technology 06
In addition, if revision becomes necessary, identifing the

specific implant used in the primary surgery is a key step in

preoperative planning, however, roughly 10% of implants are

unable to be identified preoperatively (16). Yi et al. addressed

this issue with a ResNet deep CNN to characterize knee

radiographs based on presence or absence of knee

arthroplasty, classification of total vs. unicompartmental knee

arthroplasty, and differentiation between two different

manufacturers’ implant products (17). Yi et al. conducted a

similar study for shoulder arthroplasty, discriminating

between native, total arthroplasty, and reverse arthroplasty

shoulders, as well as differentiating between five different

models of implants (18). This particular use case for ML has

the potential to offer time savings for surgeons during pre-

operative planning of revision cases.
Clinical outcome prediction

Another area of focus for ML in joint reconstruction has

been prediction of surgical outcomes. Given the particular

reimbursement challenges in joint replacement with

Medicare’s Comprehensive Care for Joint Replacement (CJR)

bundled reimbursement model, Ramkumar et al. proposed a

value-based, patient-specific payment model using pre-

operative outcome forecasting in hip and knee arthroplasty

(19, 20). They used a Bayesian approach to accurately predict

length of stay and cost following total knee and hip
frontiersin.org
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arthroplasty based on patient characteristics including age,

ethnicity, gender, and comorbidities and proposed tiered

patient specific reimbursement to more fairly account for

patient complexity as compared to CJR. Examining clinical

outcomes, Harris et al. used a Least Absolute Shrinkage and

Selection Operator (LASSO) model to make moderately

accurate predictions of 30 day mortality and cardiac

complications following total joint replacement (21). Fontana

et al. focused on prediction of longer term patient reported

outcome measures (PROMs) and identification of patients at

risk of not achieving meaningful gains to facilitate presurgical

decision support (22). They compared three ML algorithms,

support vector machine (SVM), LASSO, and random forest,

finding they all had similar fair-to-good predictive power in 2

year meaningful gains in PROMs when analyzed before

surgery. Tools such as these have the potential to be powerful

resources for patients and physicians for medical decision

making, as they can avoid bias and heuristics, time constraints

of physicians, while offering decision aids, identification of

modifiable risk factors, and prognostication of outcomes and

complications (23). However, use in real-world scenarios will

likely require tools with higher levels of accuracy, as well as

addressing issues with interpretability, integration with

electronic health records, ongoing monitoring and validation

of results, and ethical concerns.
Improving surgeon workflow

One growing trend in orthopaedic arthroplasty has been the

use of patient specific implants, allowing for potentially superior

outcomes, though involves more work during pre-operative

planning (24). Lambrechts et al. developed a novel application

for ML in patient-specific joint replacement by using ML to

automate patient- and surgeon-specific preoperative planning

(25). Combining LASSO and SVM approaches, the AI-based

preoperative plans were significantly improved as compared to

the manufacturer’s plans by requiring fewer manual corrections

by the surgeon, thus streamlining the surgeons’ preoperative

workflow and reducing time needed to make corrections.
Implant research and development

Within the orthopaedic medical device industry, the market

for arthroplasty implants is generally mature, with

manufacturers often struggling to differentiate their products

in terms of clinical benefit over competitors. Recently, several

studies have examined ML’s role in R&D and optimization of

arthroplasty implants. Eskinazi et al. streamlined a deformable

joint contact model by using a feed-forward artificial neural

network (ANN) model to estimate thousands of loading

conditions for an artificial knee implant (26). The ANN
Frontiers in Medical Technology 07
computed contact forces and torques more accurately and

nearly 1,000 times faster than the traditional elastic

foundation modeling method, removing a significant hurdle

for regular use of this technique in implant optimization. Cilla

et al. used two different machine learning techniques, SVM

and ANN, in combination with Finite Element to assess their

utility in optimizing short stem hip implant geometry (27).

Both techniques significantly reduced computational time,

with SVM providing a higher degree of accuracy in stress

shielding quantification compared to ANN. Further

investigation into implant optimization could help to improve

the long term performance of orthopaedic implants and

potentially further differentiate products on the market.
Spine

Based on the number of research publications in the field,

spine surgery has been another of the major areas of AI

research in orthopaedics. Some of the more explored topics

include diagnosing spinal pathologies from clinical or imaging

information and predicting postoperative complications.
Automated image localization and
labeling

The initial step in developing algorithms for detecting and

classifying pathologic abnormalities on imaging is to locate

anatomical structures. In orthopaedic spine surgery, due to

intricate structural pathologies and anatomical variations in

vertebral bodies, localization can also directly help with clinical

procedures by enhancing accuracy and speed. Hetherington

et al. developed multiple CNN algorithms (AlexNet,

GoogLeNet, ResNet-50, SqueezeNet) for real-time identification

of the vertebral level on ultrasound images. Authors reported a

detection accuracy of 88%–91% between different algorithms

for accuracy in classification of vertebral bodies. Translational

applications of such algorithms would be beneficial in

neuraxial anesthesia and analgesia, including spinal and

epidural needle insertions and facet joint injections, in addition

to reducing risk of surgery at the wrong spine level (28). This

could improve accuracy over methods such as palpation and

loss-of-resistance, while reducing radiation exposure over

fluoroscopic guided treatments (29).

Localization has also been applied to images with spinal

pathologies. Glocker et al. used a classification random forest

to determine the location of vertebral centroid on CT images

from patients with severe scoliosis, sagittal deformity, and

presence of fixation devices. They reported a mean

localization error of between 6 and 8.5 mm (30). Chen et al.

used a two step method to first localize the center of each

intervertebral discs and then segment the discs utilizing a
frontiersin.org
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random forest classifier and deep CNN. Their method showed

significant improvement to other previous non-deep learning

methods with an average localization error for the centroid of

the intervertebral disk of 1.6–2 mm (31).

Today, cutting-edge techniques for locating and labeling

spinal structures perform as-well-as experienced human

observers. In fact, many commercially available picture

archiving and communication systems (PACS) and medical

imaging software include these features (32).
Automated image-based diagnosis

Diagnosing spine pathologies has been a major focus of AI

research in spine orthopaedics. The use of ML for diagnosing

spine pathologies dates back to the 1980s. In a 1988 study,

Bounds et al. reported diagnostic accuracy of 77%–82% for

training a multilayer perceptron for classifying back pain in

four categories of simple, radicular, pathologic (e.g., tumor,

infection, inflammation), and back pain with significant

psychological overlay based on clinical symptoms and

previous medical history (33).

A variety of AI methods have been explored for image-

based diagnosis of spine pathologies, such as non-ML

approaches derived from traditional image processing

techniques, as well as basic ML techniques like Bayesian

classifiers (34, 35). Most of these methods use image pixel

value (CT Hounsfield Unit or MRI signal intensity) and

texture information to train and test diagnostic algorithms.

Ghosh et al. used MRI trained on numerous different

classifiers, including an SVM, to classify intervertebral discs as

degenerated or normal. Accuracy ranged from 80 to 94

percent, with SVM being the most accurate (36). Hao et al.

used morphological information, such as the shape of the

disc, in addition to image pixel value and texture information

to train an SVM-based model to classify discs as degenerated

or normal, obtaining accuracies of up to 92% (37).

There are other methods of intervertebral disc classification

besides the binary classification of healthy or degenerated. One

classification that is clinically used was proposed by Pfirrmann

et al. and describes five degeneration degrees based on MRI

signal characteristics (38). Castro-Mateos et al. used MRI

images of lumbar spine to train and test neural network

utility on classification of disc degeneration based on

Pfirrmann classification. They reported a mean specificity and

sensitivity of 93% and 83% (39).
Postoperative complication prediction

Developing high-accuracy preoperative prognostication

models would enhance patient counseling and shared
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decision-making through more accurate forecasting of

potential adverse events. This could be particularly true in

acute settings, such as high-energy trauma, where there is

limited time for considering available options. In the past

decade many articles have been published investigating

models made for predicting various aspects of outcomes of

spine surgeries.

McGirt et al. used regression to predict outcomes after

lumbar surgery. They used several predictor variables, such as

age, BMI, detailed symptoms, and presence of spinal disorders

to predict clinical outcomes, including 12-month Oswestry

Disability Index (ODI), 30-day readmission rates,

rehabilitation needs, and return to work, achieving accuracies

between 72% and 84% (40).

Kim et al. trained and validated deep learning models to

identify risk factors for postoperative complications of

posterior lumbar spine fusion using CNN and LR. They used

information from 22,629 patients from the American College

of Surgeons National Surgical Quality Improvement Program,

including demographic and clinical variables to predict

cardiac and wound complications, venous thromboembolism,

and mortality. Both CNN and LR showed higher AUC in

predicting all four outcome variables when compared to

American Society of Anesthesiology classification (41). In a

different study, the same group confirmed similar results in a

cohort (n = 4,073) of patients undergoing elective adult spinal

deformity procedures (42).

Scheer et al. used a data set of 657 patients that underwent

spine deformity surgery with and without intra- or perioperative

complications. Authors trained an ensemble of decision trees to

use baseline demographic, radiographic, and surgical factors to

predict the possibility of major complications with an overall

accuracy of 87.6%. They reported age, leg pain, OSI, ASA

grade, presence of osteoporosis, and pelvic tilt among the

highest predictor variables (43).

One strategy to incorporate predictive analytics into regular

clinical practice is to use a decision support tool, which

leverages the predictive capacity of the models to help clinical

decisions by providing personalized suggestions. As detailed

by Coupe et al. in the development of the Nijmegen Decision

Tool for Chronic Low Back Pain, such a model should be

based on substantial amounts of high-quality data, be

externally validated, and have a system for continuous

monitoring and updates. In practice, the application should

incorporate patient-specific information in decision making,

show appropriate treatment alternatives with potential benefits

and drawbacks, and be delivered on a user-friendly software

platform (44). These specifications emphasize the significance

of overcoming regulatory and technological hurdles in data

collection and storage in order to train population-

representative decision algorithms capable of reaching high

levels of accuracy in all patients (45, 46).
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Orthopaedic oncology

AI has been investigated in orthopaedic oncology for a

variety of applications, including both primary bone or soft

tissue tumors and metastatic diseases. While the field is still

in its early stages, with few clinical applications, encouraging

results have been published in the literature.
Automated image-based diagnosis

An area of interest for application of AI-based technologies

in orthopaedic oncology has been imaging-based diagnosis of

tumors. While indolent benign tumors and aggressive cancers

are usually evident on plain radiographs, many bone lesions

fall into an intermediate category where their histological

nature may not be immediately evident on imaging (47). It is

the interpretation of these studies that could benefit strongly

from AI/ML. The review of intermediate-grade cartilaginous

tumors is of particular interest (48).

Even though computer-assisted diagnosis of bone tumors

dates back to the 1960s, using non-ML methods, in recent

years deep learning based algorithms have been used to

classify primary bone tumors as benign or malignant on

radiographic images with similar performance compared to

clinicians (49). In a multi-institutional study, He et al. used

1,356 radiographs from histologically confirmed primary bone

tumors to train a deep learning model (efficientNet-B0 CNN)

for differentiating benign, intermediate, and malignant

tumors. On external validation using data that was not used

for training of the CNN, their model achieved an accuracy of

73.4% compared to average accuracy of 71.3% between two

subspecialty trained radiologists (50). In a study with similar

design, Eweje et al. used 1,060 T1- and T2-weighted

preoperative MRI images to train the same neural network for

differentiating benign vs. malignant primary bone tumors.

They reported accuracy of 73%, identical to that of

radiologists (51). Development of such algorithms could aid

in image based diagnosis for intermediate cases, hence

reducing the need for invasive diagnostic procedures.
Clinical outcome prediction

Accurately predicting remaining life expectancy would

enhance medical decision-making in orthopaedic oncology,

such as helping determine if surgery should be performed

and, if so, which surgical treatment should be used (52). Han

et al. used deep learning to predict survival rates of patients

with synovial sarcoma. Using demographic and clinical data

including tumor size, location, initial metastasis, and

treatment modality from 242 patients across 3 institutions, a
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compared to Cox proportional hazard model with AUC of

0.81 compared to 0.63, respectively (53). In a study using the

Surveillance, Epidemiology, and End Results database, Ryu

et al. investigated the utility of a similar neural network in

survival analysis in patients with spinal and pelvic

chondrosarcoma. Using data from 1,088 patients authors

reported an AUC of 0.84 for predicting survival outcomes.

The study did not compare this performance with other non-

ML methods of survival analysis (54).

Prediction of local recurrence in primary bone tumors is

another area of focus for clinical outcome prediction using

AI. Previously, clinical and imaging features have been

demonstrated to have utility in predicting probability of local

recurrence of bone tumors. For example, factors such as

involvement of proximal tibia, younger age, irregular margins

or paint brush-border sign, and adjacent soft tissue invasion

have been correlated with increased rate of recurrence of giant

cell tumor of bone (GCTB) (55, 56). These tumors that are

usually managed with intralesional curettage have a

recurrence rate of 12%–65%. He et al. used inception v3 CNN

on MRI images of 56 patients with GCTB that were followed

for an average of 6 years. By combining imaging and patient

data (age, and tumor location) they reported an accuracy of

78.6% in correctly predicting recurrence. The clinical

application of these findings is not clearly established,

however, we believe these forecasts could be used to

determine duration and intensity of postoperative surveillance

to evaluate for recurrence.
Segmentation

One of the major applications of AI has been image

segmentation. The main benefit from these algorithms is time

saving capability, as tasks such as tumor burden analysis or

whole body segmentation that had to be done manually with

slice-by-slice segmentation now can be performed in fraction

of a second. In orthopaedic oncology, image segmentations

are utilized to provide a range of quantitative information for

clinical decision making, such as neoadjuvant chemoradiation

treatment planning and assessment of postoperative

therapeutic effectiveness. Most of the research in this area has

been focused on CT due to its high contrast and spatial

resolution for visualization of bony structures (57).

Zhang et al. used CT images to train a multiple supervised

residual network to segment osteosarcoma from 23 patients.

The network achieved a dice similarity coefficient, a metric

for comparing segmentations to reference, of 89.2% when

compared to ground truth segmentations provided by

radiologist (58). Lindgren et al. used AI-based automatic

segmentation of 18F-sodium fluoride positron emission

tomography (PET)/CT images to calculate tumor burden of
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bone metastasis from prostate cancer. By segmenting the

skeleton on CT and areas of high uptake on PET images,

authors reported a tumor burden index (Volumehotspot/

Volumeskeleton) that was significantly associated with overall

survival and correlated with bone scan index (59, 60).
Trauma

In the current scientific landscape, the applications of AI in

orthopaedic trauma are mostly focused on the automated

image-based diagnosis of fractures. The research of AI in

trauma clinical outcome prediction, although still in its early

stages, has also started to emerge.
Automated image-based diagnosis

The most abundant application of artificial intelligence in

trauma orthopaedics described in the literature is the use of

deep learning methods, most commonly CNNs, for the

detection of fractures. For example, in the highly cited 2017

article by Olczak et al. five deep learning networks were

adapted to detect fractures in 256,000 wrist, hand, and ankle

radiographs (61). All of these networks accurately identified

laterality, body part, exam view, and fracture; the best

performing network exhibited a final detection accuracy of

83% for fractures.

When training of deep learning networks from radiographic

images is focused on detecting specific types of fractures, higher

detection accuracies with significantly reduced sample sizes

have been achieved. For example, CNNs exhibited maximum

detection accuracies of 94.4%, 95.5%, and 96% for the

detection of femoral neck, intertrochanteric hip, and distal

radius fractures, respectively (62–64). Other authors have

further utilized deep learning methods not only for the

detection, but also functional classification of fracture

subtypes. These features were highlighted in proximal

humeral, calcaneal, and pelvic fractures (65–67).

It is also important to note that when mentioned, the

ground truths in these studies were assigned by orthopaedic

surgeons, ranging from fourth year postgraduate residents

(62) to subspecialists with over a decade of experience (60).

Perhaps not surprisingly, all results pointed to comparable, if

not better detection accuracies of these networks when

compared to expert performance. Lindsey et al. described how

a deep neural network successfully improved clinician

sensitivity and specificity while detecting fractures in the

emergency setting (68). With assistance from the deep neural

network, the average clinician’s sensitivity and specificity were

improved from 80.8% to 91.5% and from 87.5% to 93.9%,

respectively. In addition, the misinterpretation rate was

reduced by 47%.
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Although impressive, the results of these studies are not

without limitations. For example, the final accuracies of these

deep learning networks seemed to be significantly affected by

the quality of the input processing, such as image labeling

and cropping, which were done by humans in all of the above

studies (60–67); smaller cropped images in Urakawa et al.

(62) led to higher diagnostic accuracies of the deep learning

networks compared to whole hip radiographs in Olczak et al.

(60). Deep learning networks also were not able to perform

contextual diagnosis (based on clinical questions posed by

ordering clinicians) and prognostication, as they require

synthesis of clinical knowledge that cannot be acquired

through training sets alone. Furthermore, almost all of the

training sets used consisted of images obtained from a single

view – findings that only present on one view in multiview

radiographs may be missed this way. Regardless of these

limitations, it is clear that AI has the potential to transform

the landscape of trauma orthopaedics as a diagnostic tool,

especially as these limitations are addressed in the near future.
Clinical outcome prediction

Although the automated detection of fractures still

dominates the application of artificial intelligence in trauma

orthopaedics, prognostication of patient outcomes is an

emerging field of study. Similar to the works of Navarro et al.

(18) and Ramkumar et al. (19) in total knee and hip

arthroplasty, Karnuta et al. (68) used a naive Bayesian

machine-learning algorithm to predict hip fracture patients’

length of stay and cost based on patient characteristics

including age, ethnicity, gender, and comorbidities. This

information was then used in proposing a patient-specific,

tiered bundled payment model that balances risk sharing

between the payor and institution, which mediates the current

challenges in the bundled payment model for hip fracture

patients. Although the machine learning algorithm only

predicted the most likely payment strata for each patient and

not precise value, this study nicely demonstrated the inter-

subspecialty applicability of Bayesian machine learning

algorithm in predicting orthopaedic patient outcomes, a

feature that can even be expanded to other areas of medicine

in the near future.

Emerging use of AI in trauma prognostication is also

demonstrated by Stojadinovic et al.The authors used a

Bayesian classifier to predict the non-union treatment success

by extracorporeal shockwave therapy (69, 70). It nicely

identified two variables that had the highest predictive values

for treatment success (time to therapy and type of bone

involved). It is important to note, however, that the use of

extracorporeal shockwave therapy is currently restricted to

patients with fractures that are refractory to “first line”

treatments, such as surgical fixation and cast immobilization.
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These patients only comprise the minority of fracture patients,

and as far as we are aware, AI prognostication studies for

fracture patients that underwent surgical or immobilization

are still lacking.

In the near future, it would be interesting to track the

evolution of AI application in this field of orthopaedics,

specifically whether it would involve other imaging modalities

beyond radiograph, its expansion into other functional

applications and involvement of other treatment modalities.
Sports medicine

In sports medicine, the applications of AI are still mostly

confined to automated image-based diagnosis. MRI is the

imaging modality of choice, as soft tissues such as the most

likely structures involved in injury. Knee injury is the most

active area of research, with anterior cruciate ligament (ACL)

and meniscal tear detection being the most common application.
Automated image-based diagnosis

For the two most common soft tissue injuries of the knee,

the anterior cruciate ligament (ACL) and meniscal tear, MRI

is the modality of choice for diagnosis. However, diagnosing

these injuries on MRI can be challenging given the subtlety of

some findings, and the expertise of trained radiologists is

almost always required. Thus, the development of automated

methods in detecting ACL and meniscal tears is the most

active area of research in sports medicine AI.

Štajduhar et al. (2016) developed a semi-automated method

for the detection of ACL injury (71). Two machine learning

models, random forest and SVM, were used to analyze

manually selected rectangular regions of interests involving

the ACL area on knee MRIs. The result indicated that the

SVM model was best at detecting ACL injuries, with an AUC

of 0.894 for any ACL injury and 0.943 for complete ACL

rupture.In what seems to be the natural study progression in

knee soft tissue injury detection, Bien et al. developed MRNet,

a CNN that can detect meniscal and ACL injuries on knee

MRI (72). The MRNet exhibited AUC values of 0.937, 0.965,

and 0.847 for detecting any abnormalities, ACL tears, and

meniscal tears, respectively. The performance of MRNet for

detecting soft tissue knee injuries was comparable to that of

general unassisted radiologists, although the radiologists

achieved higher sensitivity in detecting ACL tears and higher

specificity in detecting meniscal tears.

Concordant to this result, other studies have also

demonstrated that CNNs are the best deep learning method

for fully-automated detection of ACL and meniscal injuries.

AUCs as high as 0.971 has been demonstrated for ACL injury

detection, while the best performing meniscal tear detection
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CNN has an AUC of 0.94 (73, 74). This particularly high

AUC for meniscal tear detection, however, was only achievable

when only normal menisci and those with grade 3 intensity

tears were included. More subtle grade 1 and grade 2 meniscal

tears were excluded from the study. Therefore, the result from

this study should be interpreted with caution, especially for the

CNN’s ability to detect more subtle meniscal injuries.

In conclusion, the CNNs currently described in the

literature exhibit their best performance for ACL tear

detection, followed by meniscal tear detection. The availability

of CNNs that can detect orthopaedic soft tissue injuries in

other body parts is still scarce. However, with the rapid

development of automated injury detection on MRI in the

past several years, particularly with advancement from more

recent CNN models, the same concept will likely extend more

widely to detect soft tissue injuries in other body parts, such

as the shoulder and ankle.
Conclusion

Given the heavy reliance on radiological imaging for making

orthopaedic diagnoses, it is unsurprising that much of the focus

of ML within orthopaedics has focused on automating the

interpretation of radiologic imaging. At this point it is well

established that ML algorithms can match, or in some cases,

exceed the accuracy of trained radiologists or orthopaedic

surgeons (6, 9, 10, 15, 33, 39, 49). Yet the question remains,

why has ML not been widely adopted in clinical practice for

this use? Simply demonstrating an algorithm’s accuracy may

not be sufficient to drive use of ML, rather, the focus should

be demonstrating improvement of real-world outcomes when

used in conjunction with clinicians, as demonstrated by

Lindsey et al. in improving fracture detection (67). Potentially

useful metrics could include reduction in time radiologists

spend interpreting images, lower misinterpretation rates,

improved patient outcomes, and reduced complication rates.

Other common use cases as profiled in this study focus on

integration of large data sets to help predict disease and/or

surgical outcomes, especially in a field like orthopaedics that

is moving increasingly towards patient-specific care. In

contrast to automating radiological diagnosis, analyzing large

datasets is not a process that can easily be done by humans.

Using ML algorithms offers a clear benefit in terms of

processing and interpreting complex, patient-specific data. For

these uses, demonstrating a high degree of accuracy and

having easy to understand outputs will be critical to get users

to buy-in. What remains to be seen is the clinical utility of

these predictions, and how clinicians and patients can use the

outputs of such algorithms to guide care, two critical metrics

to demonstrate in future studies.

Another issue that remains a barrier for the adoption of ML

is the “black box”, where ML algorithms are sufficiently
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complex where their results are not readily interpretable by their

human users. Some studies have specifically addressed this

concern by specifically showing the key data that lead to the

algorithm’s output, for example highlighting the key parts of a

radiograph that lead to the diagnosis (8). This is a step ML

developers can take to demystify the “black box” and build

trust and buy-in with the human user.

Acquisition of data remains another large barrier to future

use cases and widespread clinical use of ML. Large datasets

are often required for the training and validation phases of

creating a ML algorithm, which can be difficult to obtain in a

single institution study. While sharing data across institutions

can increase data availability, this brings its own logistical

challenges, including data security, legal/IRB requirements,

and data heterogeneity across different electronic health

record systems. These barriers to data acquisition and sharing

may also make validation of models more difficult. For

example, a recent review of studies using AI to evaluate

radiographic imaging found that only 6% of the 516 studies

demonstrated external validity(Kim et al. 2019). As

researchers attempt to translate models from the proof of

concept stage, validation and real-world clinical assessments

will be necessary to build user trust and gain adoption.

Based on the promising results and wide breadth of use

cases in the published literature, it is clear that AI and ML is

likely to have a large impact in the future of orthopaedics. As

the field of ML progresses, it is likely that improvements to

current technologies and development of new applications

within orthopaedics will only increase the utility and use of

ML in clinical practice. However, ML developers must

continue working through the hurdles discussed in this paper

to improve trust, familiarity, and ease of use for clinician

users and to navigate the ever changing regulatory landscape

for AI products. When identifying “best” areas for AI/ML

applications, developers should consider two primary features:
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(1) areas of strong interpretive uncertainty; (2) areas of

substantial time and resource consumption. Rationales

deriving from the former consideration will apply to clinicians

and patients; those deriving from the latter will appeal to

clinicians, medical centers, and payers. In addition, other

concerns such as medical ethics, data security, and patient

privacy will play a critical role in the continued development

and use of these technologies. As such, despite the future

promise of ML technologies, many steps remain before they

can be translated to widespread use in the clinical field of

orthopaedics.
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