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Hemoglobin (Hb) is the most abundant protein in blood, with concentration of
about 12–15 g/dl. The highly concentrated Hb solution (35 g/dl) is
compartmentalized in red blood cells (RBCs). Once Hb is released from
RBCs by hemolysis during blood circulation, it induces renal and
cardiovascular toxicities. To date, hemoglobin-based oxygen carriers of
various types have been developed as blood substitutes to mitigate the Hb
toxicities. One method is Hb encapsulation in phospholipid vesicles
(liposomes). Although the Hb toxicity can be shielded, it is equally important
to ensure the biocompatibility of the liposomal membrane. We have
developed Hb-vesicles (HbV). A new encapsulation method using a rotation-
revolution mixer which enabled efficient production of HbV with a high yield
has considerably facilitated R&D of HbV. Along with our academic
consortium, we have studied the preclinical safety and efficacy of HbV
extensively as a transfusion alternative, and finally conducted a phase I
clinical trial. Moreover, carbonyl-HbV and met-HbV are developed
respectively for an anti-inflammatory and anti-oxidative agent and an
antidote for poisons. This review paper specifically presents past trials of
liposome encapsulated Hb, biocompatible lipid bilayer membranes, and
efficient HbV preparation methods, in addition to potential clinical
applications of HbV based on results of our in vivo studies.
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Introduction

Blood donation and transfusion are routinely practiced for sustaining human health

and welfare. Their history informs us of the important endeavors of researchers and

clinicians at establishing present modes of safer blood transfusion, and we have to

continue our endeavors to challenge the remaining difficulties. Screening of the

donated blood for hepatitis viruses B, C and E, HIV, west Nile virus etc. by nucleic

acid amplification testing (NAT) has mostly eliminated transfusion-related infections.
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Nevertheless, emergent infectious viruses threaten humanity

continuously. Concentrates of donated red blood cells (RBCs)

can be stored in a refrigerator for 6 weeks in the US and EU,

but for only 3 weeks in Japan. Rare blood-type RBCs are

frozen with a cryoprotectant for long-term storage, but the

cryoprotectant must be removed before infusion. Such limited

storage conditions impose burdens on logistics, especially for

remote islands and rural areas and stockpiling for emergency

needs. Crossmatching and blood-type testing immediately

before urgent transfusion are particularly time-consuming for

life-saving practices. Even in economically developed

countries, clinicians experience urgent situations in which

blood transfusion is not available to treat patients. These

difficulties have spurred us to develop artificial red cells that

can eventually be substituted for RBC transfusion where

blood transfusion is not available (1). Worldwide deaths from

hemorrhage are estimated as 1.9 million per year, with 1.5

million resulting from physical trauma (2).

Hemoglobin (Mw. 64,500) is the most abundant protein in

blood. About two million Hb molecules are compartmentalized

in a single red blood cell (RBC). The intracellular Hb

concentration, which is as high as 35 g/dl, makes the Hb

concentration of blood as high as 12–15 g/dl. Because blood

type antigens are present on the outer surface of RBCs, an

early idea was to use purified Hb as an oxygen-carrying fluid

that is free of any blood type. Nevertheless, that effort was

unsuccessful because of various toxic effects. In spite of its

abundance in blood, Hb becomes toxic when it is released

from RBCs. Dissociation of tetramer Hb subunits into two

dimers occurs, which proceeds to induce renal toxicity.

Entrapment of a gaseous messenger molecule, NO, induces

vasoconstriction, hypertension, neurological disturbances, and

malfunction of esophageal motor functions (3–6). An aqueous

solution of chemically modified Hb-based oxygen carriers

(HBOCs) exhibits a colloid osmotic pressure that sometimes

exceeds the physiological value (20–25 mmHg) in spite of its

low Hb content, thereby having a potential to cause volume

overload (7). Some first generation chemically modified

HBOCs presented side effects in clinical trials: higher risks of

myocardial infarction and death (8, 9). These side effects of

molecular Hb imply the importance of the cellular structure

and larger particle size of HBOCs (10).
Encapsulation of hemoglobin into
liposomes to mimic red blood cells

Concept of hemoglobin encapsulation in
liposomes

Pioneering Hb microencapsulation work was first

performed by Chang in 1957 (11) using a polymer

membrane. Japanese groups followed his attempt to test Hb
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encapsulation with gelatin, gum Arabic, silicone, etc. (12).

Nevertheless, regulating the particle size to be appropriate for

blood flow in the capillaries and obtaining sufficient

biocompatibility were extremely difficult. Bangham and Horne

reported in 1964 that phospholipids assemble to form vesicles

in water (13), suggesting that the vesicles (liposomes) can

encapsulate water-soluble functional materials in their inner

phase (14). The lipid membrane of liposomes somewhat

resembles a biomembrane. It should be more biocompatible

than a synthetic polymer membrane. Djordjevici and Miller in

1977 first reported a liposome-encapsulated Hb (LEH) as an

artificial oxygen carrier (15). Following their trial, many

laboratories tested Hb encapsulation using liposomes with

various lipid compositions and preparation methods (Table 1)

(16–44). The addition of cholesterol to phospholipid is a

standard method of stabilizing the packing of the lipid

membrane and of reducing its curvature to produce larger

liposomes. Inclusion of a negatively charged lipid is also a

standard recipe to provide negative charges on the liposomal

surface, which is effective to reduce the lamellarity of

liposomes and to increase the volume of inner aqueous phase,

thereby leading to higher Hb encapsulation efficiency (33, 45).

Exceptionally, the trials of entry Nos. 3, 5, 16, 21, and 22 did

not use negatively charged lipids (18, 20, 42, 43). It is

noteworthy that not only liposomes but also polymersomes

and other submicrometer capsules made of synthetic

biodegradable polymers are tested extensively for Hb

encapsulation (46–48). Detailed results of their safety and

efficacy studies are awaited.
Optimal lipid compositions for stability
and safety of liposome encapsulated
hemoglobin

Liposome is categorized as a molecular assembly of lipids

formed through hydrophobic interaction among lipids. It is

generally regarded as an unstable and fragile capsule,

especially when using unsaturated phospholipids such as egg

yolk lecithin. To stabilize LEH for long-term storage,

polymerizable phospholipids that included diacetylene or

diene groups in the phospholipid molecules (entry Nos. 5 &

11) were once tested (5, 28–30). After Hb encapsulation, the

lipid was polymerized by UV irradiation or gamma-ray

irradiation. In the case of diene-containing phospholipid, the

obtained gamma-ray irradiated LEH was so stable that it was

able to be frozen and thawed or freeze-dried and rehydrated

without structural damage (49). However, one difficulty was

clarified from animal experiments: the polymerized liposome

could not be metabolized in the reticuloendothelial system. It

remained in the liver and spleen for a long time (30). Other

trials include surface coverage with polymer chains, such as

carboxymethyl chitin (entry No. 3) and actin (entry No. 18)
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TABLE 1 Trials of liposome encapsulated Hb with various lipid compositions and preparation methods.

No. Lipid composition for Hb
encapsulation

Points of preparation method References
(Institution)

1970s–1980s

1 L-α-phosphatidylcholine/cholesterol/palmitic
acid

Sonication (15) (Univ. of Illinois)

2 EYL/cholesterol/bovine brain PS
DSPC, DPPC, or DMPC/cholesterol/
dicetylphosphate or DMPG

Extrusion (16, 17) (Naval Res. Lab.)

3 EYL/carboxymethyl chitin Reverse phase evaporation (18) (Sci. Univ. Tokyo)

4 EYL/cholesterol/DPPA/α-tocopherol Reverse phase evaporation, Extrusion (19) (Univ. California,
San Francisco)

5 Diacetylene phospholipid/cholesterol
UV polymerization

HbCO, Sonication (20) (State Univ. N.Y.)

6 HSPC/cholesterol/dicetylphosphate or DMPG
(Trehalose is added as a lyoprotectant.)

Microfluidizer (21, 22) (Naval Res. Lab.)

7 EYL/cholesterol/PS/PA/α-tocopherol Detergent dialysis (23) (Univ. Tübingen)

1990s

8 DSPC/cholesterol/DMPG/α-tocopherol
(Trehalose is added as a lyoprotectant.)

Bovine Hb, Thin film hydration and emulsification (24) (Naval Res. Lab.)

9 HSPC/cholesterol/myristic acid/α-tocopherol/
DPPE-PEG

Microfluidizer (25, 26) (Terumo Corp.)

10 HSPC/DMPG/α-tocopherol/carboxymethyl
chitin

Reverse phase evaporation (27) (McGill Univ.)

11 DODPC/cholesterol/octadecadienoic acid
gamma-ray polymerization

HbCO, Extrusion (28–30) (NOF Corp.)

12 EYL/cholesterol /dicetylphosphate/α-tocopherol Freeze–thaw method (31) (Univ. Pennsylvania)

13 DPPC/cholesterol/DPPG or palmitic acid HbCO, Extrusion (32, 33) (Waseda Univ.)

14 DPPC/cholesterol/DPPG/DSPE-PEG5000 HbCO, Extrusion (34) (Waseda Univ.)

15 EYL/cholesterol/α-tocopherol/eggPA Reverse phase evaporation (35) (Chung-Yuan Christian
Univ.)

16 DSPC/cholesterol/DSPE-PEG5000/α-tocopherol αα-crosslinked human Hb, Microfluidizer (36) (Univ. Texas San
Antonio)

2000s

17 DPPC/cholesterol/DHSG/DSPE-PEG5000 HbCO, Extrusion (37, 38) (Waseda Univ.)

18 DMPC/cholesterol/DMPG/DSPE-PEG2000/actin Extrusion (39) (Univ. Notre Dame)

19 HSPC/cholesterol/stearic acid/DSPE-PEG5000 Lipid paste rapid dispersion (40) (Terumo Corp.)

2010s–2020s

20 DPPC/cholesterol/HDAS/α-tocopherol/HDAS-
PEG2000

High pressure homogenization (41) (Univ. Notre Dame)

21 EYL/cholesterol/DPSE-PEG2000 Thin film hydration and sonication (42) (Zhejiang Univ.)

22 DSPC/cholesterol/DSPE-PEG5000 HbCO, cell disruptor (43) (Ohio State Univ.)

23 DPPC/cholesterol/DHSG/DSPE-PEG5000 HbCO, Rotation-revolution mixer for encapsulation, Decarbonylation and
deoxygenation for a long-term storage

(44) (Nara Med. Univ.)

Abbreviations: EYL, egg yolk lecithin; PS, phosphatidylserine; DSPC, 1,2-distearoyl-sn-glycero-3-phosphatidylcholine; DPPC, 1,2-dipalmitoyl-sn-glycero-3-

phosphatidylcholine; DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine; DMPG: 1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol; DPPA, 1,2-dipalmitoyl-

sn-glycero-3-phosphatidic acid; HSPC, hydrogenated soy phosphatidylcholine; DODPC, 1,2-dioctadecadienoyl-sn-glycero-3-phosphatidylcholine; DPPE, 1,2-

dipalmitoyl-sn-glycero-3-phosphatidylethanolamine; DSPE, 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine; DHSG, 1,5-O-dihexadecyl-N-succinyl-L-

glutamate; HDAS, hexadecyl-carbamoyl-methyl-hexadecanoate; HbCO, carbonylhemoglobin.

Sakai et al. 10.3389/fmedt.2022.1048951
(18, 39). Rudolph et al. (23) tested freeze-drying and

rehydration procedures of LEH in the presence of trehalose as

a cryoprotectant as well as a lyoprotectant (entry No. 7).

Since Yoshioka et al. reported PEGylation of LEH in 1989, it
Frontiers in Medical Technology 03
has become a standard method to stabilize the dispersion

state during storage and during blood circulation (Entry

No. 9) (50). In our research of so-called Hb-vesicles (HbV),

we confirmed that deoxygenated HbV can be stored for over
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two years at room temperature using a saturated phospholipid,

DPPC, to avoid lipid peroxidation and the combination of

PEGylation (44) (Figure 1). PEGylation of liposomes is

generally intended to prolong their circulation half-lives by

the stealth effect (51). An additional benefit of PEGylation is

to improve the dispersion state of liposomes during storage

and in blood plasma or in plasma expanders (52, 53).

The toxicities of Hb can be shielded by liposomal

encapsulation to mimic the physiological structure of

erythrocytes. However, another important point is whether

the liposomal lipid membrane is sufficiently biocompatible.

The surface property of liposome is an important factor to

assess safety. Reducing interactions with negatively charged

plasma proteins and vascular endothelial cells is important.

As shown in Table 1, many laboratories use negatively

charged phospholipid components such as phosphatidic acid

(PA) (19), phosphatidyl serine (PS) (16, 17), phosphatidyl

glycerol (PG), and fatty acids (32–34). Later, it was clarified

that such negatively charged lipids induce complement
FIGURE 1

Outline of production scheme of HbV. HbCO solution was purified from n
concentrate obtained from Japanese Red Cross Kinki Block Blood Center. C
erythrocyte ghost was separated by ultrafiltration. After carbonylation, the
dialyzed, passed through anion-exchanging resins, and ultrafiltered to conc
at the molar ratio of 1.0. The powdered lipids comprised of 1,2-dipalm
dihexadecyl-N-succinyl-L-glutamate (DHSG), and 1,2-distearoyl-sn-glyc
DSPE-PEG) at a molar ratio of 5:4:0.9:0.03. The HbCO encapsulation and p
a rotation–revolution mixer (44). The unencapsulated Hb was removed by
converted to oxyhemoglobin by photoillumination and oxygen flow. The su
sealed with an oxygen adsorber in aluminum bags for long-term storage at
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activation or platelet activation (40, 54–58). In our case, we

use DHSG as a negatively charged synthetic lipid for HbV,

which does not induce complement activation or platelet

activation in preclinical animal experiments (37, 38, 44, 56–

58) (Figure 1). Numerous selections of lipid species and

compositions are present to make liposomes. Fortunately, the

present lipid compositions of HbV: DPPC/cholesterol/DHSG/

DSPE-PEG5000 show sufficient stability and biocompatibility.
Preparation methods of liposome
encapsulated hemoglobin

Because liposomal drugs for cancer and antifungal therapies

are approved and because liposomes are used experimentally as

a model of biomembrane, various preparation methods have

been reported (14). Traditional methods include (i)

sonication, (ii) reverse phase-evaporation method using an

organic solvent such as diethyl ether, ethanol, or tertial
ucleic acid amplification test (NAT)-inspected human red blood cells
ells were rinsed with saline and lysed by gentle osmotic shock. The
resulting HbCO was pasteurized at 60 °C for 12 h, nano-filtrated,

entrate to 40 g/dl. Pyridoxal 50-phosphate (PLP) was added to HbCO
itoyl-sn-glycero-3-phosphatidylcholine (DPPC), cholesterol, 1,5-O-
ero-3-phosphatidylethanolamine-N-poly(ethylene glycol) (PEG5000,
article size control were performed using the kneading method with
ultrafiltration; HbCO in the vesicles suspended in saline solution was
spension was deoxygenated completely, purged in plastic bags, and
2–8 °C.
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butanol, and (iii) solubilization with detergent following

dialysis. However, these methods would not be appropriate

for Hb encapsulation for in vivo use because of the possibility

of denaturation of Hb as a protein and incomplete removal of

an organic solvent or a detergent. Another method is (iv)

extrusion (32, 38). One parameter of LEH to express the

oxygen-carrying capacity is the weight ratio of Hb to total

lipid: Hb/Lipid. This parameter takes in increasingly larger

value with encapsulation of larger amounts of Hb in

liposomes with a smaller amount of lipids. Accordingly, the

concentration of Hb for encapsulation is expected to be as

high as 35–45 g/dl, which is similar to the corpuscular Hb

concentration in erythrocytes (35 g/dl). Such a concentrated

Hb solution becomes exponentially viscous (50 cP or more)

(44, 59). For encapsulation, it must be mixed with lipids (thin

lipid films prepared on the inner surface of flask, or freeze-

dried lipid powder) (38). The resulting highly viscous mixture

is extruded through membrane filters to regulate the particle

size. Here the difficulty is clogging of the filter because of the

large amount of Hb and lipids. To prevent filter clogging, the

amount of lipids had to be reduced to about 6 g/dl, resulting

in insufficient encapsulation efficiency to only about 20%. (v)

Microfluidizer was often used to reduce the liposome size by

a head-on collision of fast fluid flows (21). However, the

fluids require lower viscosity for the fast flow and the amount

of lipid to be added to Hb is limited, resulting in lower

encapsulation efficiency.

To overcome such difficulties in preparation, we developed

(vi) a new kneading method with a rotation-revolution mixer

(44). The Hb encapsulation efficiency was increased

dramatically to about 70%, which is nearly the closest packing

factor of 74%, because the kneading method enabled mixing of

a highly concentrated carbonylhemoglobin (HbCO) solution

(40 g/dl) and a considerably large amount of powdered lipids

in only 10–20 min. The high viscosity of the Hb-lipid mixture

paste (ca. 103–105 cP) favorably induces frictional heat by

kneading and increases the paste temperature (ca. 60 °C),

which facilitates lipid dispersion and liposome formation.

During the kneading operation using a thermostable HbCO

solution, Hb denaturation was prevented. After HbCO in HbV

is converted to HbO2 by photolysis, HbO2 is converted to

deoxyHb for the long-term storage of HbV. The kneading

method is apparently the most suitable for the preparation of

HbV made of a viscous paste of the Hb and lipids. Actually, it

has enabled scaling up of HbV production and has facilitated

preclinical and clinical studies in our project (60).
Safety studies of hemoglobin vesicles

The volumes of blood donation are 200 or 400 ml in Japan.

It means that a hemorrhage of 400 ml blood loss does not affect

physiological performance to any considerable degree.
Frontiers in Medical Technology 05
Therefore, a situation in which a blood substitute is necessary

is estimated at a massive hemorrhage of 1,000 ml or more.

The Hb concentration of blood is 12–15 g/dl. Blood is a

concentrated RBC dispersion suspended in an aqueous

solution of plasma proteins and other various solutes. Blood

has physiologically adjusted viscosity, and crystalloid and

colloid osmotic pressures. A blood substitute should also

possess a compatible oxygen-carrying capacity and Hb

concentration. In the case of HbV, the Hb concentration is

adjusted to 10 g/dl, which is slightly higher than the

transfusion trigger: 6–7 g/dl. Not RBCs but plasma proteins

show colloid osmotic pressure of whole blood. The HbV is

suspended in a physiological saline solution and the

suspension does not possess colloid osmotic pressure.

Therefore, HbV infusion requires co-injection or addition of

plasma expanders such as human serum albumin,

hydroxyethyl starch, modified fluid gelatin, or dextran

depending on the situation, to adjust the colloid osmotic

pressure, as does RBC transfusion (53, 61). Unlike

conventional liposomal drugs used for cancer therapy, the

volume of HbV for injection should be large: 16 ml/kg or

more. Because of the necessity for massive infusion for HbV

with high Hb and lipid concentrations, its safety in preclinical

stages has been scrutinized in terms of blood compatibility,

immunological (62), hematological (57), and cardiovascular

effects, vital organ function, biodistribution (63, 64), excretion,

etc. No hemolysis of HbV occurs during blood circulation.

However, HbV is finally phagocytosed by macrophages,

especially in the spleen and liver (65), which causes the main

side effect of transient hepatosplenomegaly in rodent models,

although the HbV in macrophage phagosomes disappears

completely in two weeks; it is excreted through urine and feces

(64, 66). Hemosiderin deposition, which is often observed in

patients receiving repeated blood transfusion, was confirmed

after repeated infusion of HbV in rats (65). All the relevant

toxicological data have been reported and summarized

elsewhere (67). One important physicochemical characteristic

of HbV is that the HbV particles do not form any sediment

after conventional centrifugation and show interference effect

of “hemolysis” and “lipidemia” on blood clinical chemistry,

but they do in the presence of a high molecular weight

dextran. This feature enables easy separation of HbV from

blood plasma specimen and contributes to accurate analyses in

blood clinical chemistry to examine organ function (52).
Potential clinical applications of
hemoglobin vesicles

Hemoglobin vesicles as an oxygen carrier

The efficacy of storable and ready-to-use HbV as a

transfusion alternative has been tested by many animal
frontiersin.org
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TABLE 2 Potential clinical application of HbV, not only as an
O2-carrier, but also a CO carrier and an antidote, evidenced by
academic consortium.

State of
HbV

Application Test
Animal
Species

References

Deoxy-HbV*
(O2-HbV)

Isovolemic hemodilution
(repeated injection at
hemorrhage)

Wistar rats, SD
rats

(34, 53, 68,
69)

Syrian golden
hamsters

(70, 71)

Hemorrhagic shock Wistar rats,
Lewis rats

(72–74)

Jpn or NZ
white rabbits

(75–79)

Beagle dogs (80)
Uncontrolled hemorrhage Wistar rats (81)
Obstetric hemorrhage Jpn white

rabbits
(82, 83)

Perioperational transfusion
at pneumonectomy

C57BL/6 mice (84)
Wistar rats (85)
Beagle dogs (86)

Pre-eclampsia Wistar rats (87)
Priming of ECMO Wistar rats (88)
Brain ischemia Wistar rats (89)
Skin flap ischemia Syrian golden

hamsters
(90)

DDY mice (91)
Ischemia-reperfusion injury
of heart

Wistar rat
heart

(92)

Brain protection at apnea SD rats (93)
Tumor C57BL/6 mice (94)
15O-PET SD rats (95, 96)
Organ perfusion BALB/c mice

intestine
(97)

Sakai et al. 10.3389/fmedt.2022.1048951
models in our academic consortium, as presented in Table 2

(34, 53, 68–116). The ultimate purpose for R&D of HbV is to

use the HbV fluid as a transfusion alternative, especially in

urgent situations when RBC transfusion is not available. In

fact, HbV has demonstrated effectiveness as a resuscitative

fluid in animal models of hemorrhagic shock (72–80), peri-

operational or injured uncontrolled massive hemorrhage (81,

84–86), and obstetric hemorrhage (82, 83). Under such

circumstances, the level of blood exchange should exceed

50%. Co-injection of a plasma expander is necessary for such

extreme conditions to maintain colloid osmotic pressure and

the resulting blood volume. Hagisawa et al. clarified that

intraosseous infusion of HbV is possible because of its

smaller particle size than RBC. It easily enters osseous blood

vessels to whole body blood circulation (79). This feature is

particularly beneficial when peripheral blood vessels are

collapsed and inaccessible. Moreover, HbV can replace

packed RBCs as a priming solution for an extracorporeal

membrane oxygenator during cardiovascular surgery. As an

oxygen carrier, HbV can also be used for oxygen therapeutics

for local ischemic diseases, brain protection at apnea,

oxygenation of tumors for sensitization (94), and as an 15O

carrier for positron emission tomography (95, 96), a

perfusate for transplant organs (97–100), and an oxygen

carrying medium for cell culturing (101). As a target dye,

HbV is useful for dye laser irradiation therapy of port-wine

stains (102, 103).

Wistar rat hind
leg

(98)

Cross-bred pig
liver

(99, 100)

Cell culturing Rat hepatocyte (101)
Dye laser irradiation of
port-wine stains

Chicken wattle (102)
Jpn white
rabbits

(103)

CO-HbV Hemorrhagic shock Wistar rats (104, 105)
Pulmonary fibrosis Sea-ICR mice (106)
Colitis Sea-ICR mice (107)
Pancreatitis Balb/cN mice,

Sea-ICR mice
(108, 109)

Dye laser irradiation of
port-wine stains

Jpn white
rabbits

(110)

Cisplatin-induced acute
kidney injury

ICR mice (111)

Tracheal transplantation C57BL/6 mice (112)

met-HbV Cyanide poisoning antidote ddY mice (113, 114)
Azide poisoning antidote ddY mice (115)
Hydrogen sulfide poisoning
antidote

ddY mice (116)

Abbreviations: ECMO, extracorporeal membrane oxygenator; PET, positron

emission tomograph.

*For oxygen delivery by O2-HbV, the agent is stored as Deoxy-HbV before

infusion.
Hemoglobin vesicles as a carbon
monoxide carrier

Carbon monoxide has been tested as an anti-oxidative and

anti-inflammatory agent. Direct inhalation of diluted CO gas

has been reported, as have the intravenous infusion of CO-

bound RBCs and various CO-releasing nanocarriers and

molecules (117, 118). Studies have confirmed that CO-bound

HbV (CO-HbV) is effective for resuscitation from

hemorrhagic shock mitigating ischemia reperfusion injury

(104, 105). Moreover, Nagao and Taguchi et al. (106–109)

have clarified CO-HbV as a therapeutic agent for colitis,

pancreatitis, and cisplatin-induced acute kidney injury

(Table 2). After releasing CO, HbV becomes an O2 carrier

(Figure 2). For all experiments, the target molecule of CO

should be enzymatic heme proteins related to generation of

reactive oxygen species (ROS), such as NADPH oxidase, and

cytochrome C oxidase. CO should prevent the activities of

such ROS-generating enzymes. CO is well known as a

poisonous gas but here, poisoning of ROS is treated by

another poison: CO. It is noteworthy that histopathological

studies of rat brain have clarified that CO-HbV administration

did not lead to marked hippocampal damage (105). Up to
Frontiers in Medical Technology 06
32 ml/kg dosage of CO-HbV did not induce any behavioral

abnormalities and the effect of CO-HbV on the central

nervous system seems minimal (119).
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FIGURE 2

Glass vials containing deoxy-HbV, CO-HbV and met-HbV. The
colors differ depending on the state of encapsulated Hb. Deoxy-
HbV is for an O2-carrier, CO-HbV for a CO carrier, and metHbV
for an antidote of poisonous materials. They can all be stored for
years at room temperature.
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Hemoglobin vesicles as an antidote

HbO2 in HbV gradually autoxidizes and becomes metHb,

thereby losing its oxygen-carrying capacity. Stoichiometric

addition of sodium nitrate to HbO2 spontaneously converts it

to metHb. Suzuki and Taguchi et al. (113–116) clarified that

vesicles containing metHb (metHbV) are useful as an antidote

for poisons such as cyanide, azide, and hydrogen sulfide, all of

which bind strongly to metHb (Table 2, Figure 2). They

confirmed the efficacies of metHbV as antidotes using rodent

models. For example, the efficacy as antidotes for cyanide

poisoning is higher than conventional treatments with

hydroxocobalamin and nitrous acid compounds. Although such

an agent would not be required frequently in normal times, it

is expected to be indispensable for emergency medicine in

some accident-related or disaster-affected situations.
Phase 1 study of hemoglobin vesicles
as a transfusion alternative

Many laboratories have attempted Hb encapsulation using

liposomes, as shown in Table 1. Because of difficulty in

ascertaining and developing optimal lipid compositions and
Frontiers in Medical Technology 07
efficient production methods, most groups eventually

terminated their development. We have continued R&D of

HbV and have confirmed their safety and efficacy through

abundant preclinical studies. Our new kneading method to

encapsulate Hb has facilitated their large-scale production and

has supported our R&D projects overall. After full

consultation with the Pharmaceuticals and Medical Devices

Agency (PMDA), items of evaluations using rodents and dogs

under GLP guideline were set in 2016. Subsequently, GLP

non-clinical safety evaluations were conducted by private

contracting laboratories and were completed in 2019 (60).

From 2020, we started a small-scale GMP production of HbV

at the Nara Medical University Cell Processing Center. Our

academic consortium initiated a phase 1 (first-in-human)

study of HbV in 2020 (Registration number,

jRCT2011200004) (120) with the close assistance of clinical

research organizations of Asahikawa Medical University

Hospital Clinical Research Support Center and Hokkaido

University Hospital Clinical Research and Medical Innovation

Center.

The study examined three cohorts #1, #2, and #3 (n = 4),

respectively, of 10, 50, and 100 ml dosage. Subjective symptoms,

vital signs, electrocardiography, and hematological and

biochemical parameters were observed. No severe adverse event

was observed for any subject. No hypertension was observed.

Some infusion reactions such as fever, fatigue, and conjunctivitis

were observed in cohorts #1 and #2 (120), but they resolved

promptly without medication. Premedication (dexamethasone,

acetaminophen, and famotidine) was introduced for the safety

of subjects of cohort #3. No adverse event was observed in the

first two subjects. The third subject showed local rash with

wheal, which resolved soon without medication after cessation

of infusion. Because the coronavirus pandemic affected project

rescheduling and because the investigational agent expired,

cohort #3 was terminated. No problematic clinical sign was

observed from any hematological or biochemical analyte, vital

sign, electrocardiograph, etc. Blood specimens of cohort #3

provided concentration profiles of HbV in plasma and revealed

that HbV circulate in the bloodstream with half-life of

approximately 8 h. The circulation half-life of HbV is known

dose-dependent, and it will become longer at a practically

higher dosage. Based on the results, we are planning the next

clinical trial starting from a 100 ml dose. For that purpose,

additional GLP preclinical studies, including developmental

toxicity studies, are underway in the ongoing project.
Conclusion

Since the first report of the liposome encapsulated Hb, 45

years have passed. After numerous trials of various lipid

compositions and preparation methods, we have ascertained

the optimal lipid composition and GMP production method
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of HbV, and have completed its GLP preclinical toxicological

studies and the phase 1 clinical study. Based on the results,

we are planning the next clinical trial starting from a 100 ml

dose. As shown in Table 2, HbV is useful not only as a

transfusion alternative and as an O2 carrier, but also as a CO

carrier and an antidote for poisoning, which were not

expected at the beginning of R&D of HBOCs. Such vast

availability to various clinical situations is expected to

enhance the contributions of HbV to future human health

and welfare. Both CO-HbV and met-HbV are the derivatives

of O2-HbV but different agents. Their preclinical safety and

efficacy studies are the target of our research before starting

clinical studies. Other HBOCs are expected to have some

potential for use in the same manner.
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