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We here present a deep-learning approach for computing depth of anesthesia
(DoA) for pigs undergoing general anesthesia with propofol, integrated into a
novel general anesthesia specialized MatLab-based graphical user interface
(GAM-GUI) toolbox. This toolbox permits the collection of EEG signals from a
BIOPAC MP160 device in real-time. They are analyzed using classical signal
processing algorithms combined with pharmacokinetic and pharmacodynamic
(PK/PD) predictions of anesthetic concentrations and their effects onDoA and the
prediction of DoA using a novel deep learning-based algorithm. Integrating the
DoA estimation algorithm into a supporting toolbox allows for the clinical
validation of the prediction and its immediate application in veterinary
practice. This novel, artificial-intelligence-driven, user-defined, open-access
software tool offers a valuable resource for both researchers and clinicians in
conducting EEG analysis in real-time and offline settings in pigs and, potentially,
other animal species. Its open-source nature differentiates it from proprietary
platforms like Sedline and BIS, providing greater flexibility and accessibility.
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1 Introduction

The customization of general anesthetic dosages requires a precise assessment of their
effect. Electroencephalographic (EEG) activity has been extensively explored for this
purpose in human patients, giving rise to EEG-based metrics that serve as objective
indicators of depth of anesthesia (DoA). Noteworthy examples include the bispectral
index (BIS) Johansen (2006), Narcotrend Kreuer and Wilhelm (2006), and patient state
index (PSI) Drover and Ortega (2006), all of which could also be harnessed as feedback
parameters for closed-loop technology in automated drug delivery systems. It is
hypothesized that they combine well-identified EEG signal features such as burst
suppression ratio (BSR), spectral edge (or median) frequency (SEF or MSF), spectral
power ratio (SPR) of different frequency bands, and/or entropy (Purdon et al., 2015);
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(Connor, 2022); (Lee et al., 2019); (Hwang et al., 2023), distilling
them into a single value ranging from 0 (representative of deep
anesthetic state) to 100 (full wakefulness).

Despite also being often applied to veterinary species, they have
been based and validated only on human data; thus, their validity in
animals must first be assessed. The algorithms responsible for
computing those DoA indices developed so far are proprietary
and impervious to modification. Moreover, their applicability in
human settings is marred by several reported limitations: failure to
account for drug-specific alterations in EEG patterns caused by
different anesthetic agents (Purdon et al., 2015; Mahajan et al.,
2017), delayed return to baseline value when contrasted with the
recovery of consciousness, leading to the potential risk of recall or
awareness issues (Russell, 2006) and the failure to account for neural
inertia (Eleveld et al., 2021). The correlation between EEG-derived
metrics and the degree of cerebral depression might diverge during
the induction and recovery phases of anesthesia. The differences
between humans and pigs should be viewed as an example, as similar
variations are likely to be found among other species.

Conventional EEG indices might be inadequate for accurately
gauging DoA. The principal problem here is their closed nature,
which makes impossible to incorporate experience and suggestions
from the scientific community. The creation of an open index would
greatly improve the current situation, and its algorithm could be
easily adapted to the different protocol used and/or species involved.
Even if the index used is convenient, especially when a close-loop
infusion is performed, the real-time interpretation of the
unprocessed EEG and its density spectral array (DSA) would
provide more detailed information, assisting anesthetists even
further in their decisions (Purdon et al., 2015). Due to the
complementary nature of these assessment strategies, it is vital to
develop a tool capable of displaying them together, making it
possible to modify the algorithm on which the DoA index is based.

This study presents a general anesthesia specialized MatLab-
based graphical user interface (GAM-GUI) (Caillet et al., 2023), a
novel artificial-intelligence-driven, user-defined, open-access
software tool. It permits the combined interpretation of both
classic EEG features (e.g., BSR, SEF, SPR, entropy, and DSA) and
a new DoA index based on a deep learning (DL) algorithm both
offline and in real-time. This would provide a valuable resource for
both researchers and clinicians in conducting EEG analysis in pigs
and potentially other animal species. The real-time interface of the
GAM-GUI tool running on a user’s PC also allows connection with
the EEG device (BIOPAC, 2023) for real-time EEG data acquisition.
Moreover, GAM-GUI permits the use of pharmacokinetic/
pharmacodynamic (PK/PD) models to administer injectable
anesthetics via a target control infusion in a closed loop fashion.
The use of this new tool would help anesthesiologists perform
patient-based DoA evaluation through a comprehensive
assessment of the EEG signal.

The paper is organized as follows. In Section 2, we present the
general functionality of the GAM-GUI toolbox and reveal all the
details of the novel DL algorithms for DoA index estimation. The
results of the DoA estimation algorithm are presented in Section 3.
In Section 4, we present the related work composed of a discussion of
the real-time requirements for the system, existing machine learning
approaches for DoA index estimation, and EEG signal processing
tools. Conclusions are drawn in Section 5.

2 Materials and methods

In this section, we will first introduce the essential algorithms for
EEG signal processing, enabling the extraction of the observational
information about DoA. We then briefly present our GAM-GUI
tool, revealing additional details of a PK/PD mathematical model of
propofol implemented in the dedicated panel of our tool to allow the
evaluation of propofol dynamics.

2.1 EEG signal processing algorithms

In the search for accurate DoA measures, several aspects of the
EEG signal are known to correlate with the patient’s state during
general anesthesia.

Density specral array (DSA) or spectrogram is a powerful signal
visualization tool, especially for DoA analysis where most of the
relevant features are computed in the frequency domain (Kim et al.,
2020). DSA allows the visualization of a representation of the re-
partition of spectral power (SP). This is displayed as a heat map
where the high power is shown in a warmer color (red) and low
power in colder colors (blue). While using DSA in EEG-base
anesthetic state monitoring is not standard practice, numerous
studies have reported the relationship between EEG oscillations
and DoA. An example of the DSA derived from the EEG signal
collected from a pig undergoing anesthesia with propofol with
indications of anesthesia processes mapped to it is used as
background for depicting other EEG features (Figure 1).

Burst suppression ratio (BSR) is a measure of the amount of
time that a patient’s brain is in a state of burst suppression, which is
characterized by alternating periods of high-amplitude bursts and
isoelectric (low amplitude) activity. The proportion of time spent in
suppression increases with anesthetic dose. The BSR provides values
between 0%—no suppression—and 100%—full suppression. The
state of suppression is defined as having an EEG amplitude of less
than a certain threshold value. In our case when using BIOPAC
MP160 and Sedline EEG acquisition devices that provide signals of
similar amplitude, thresholds in range of 7 − 10 μV were evaluated.

To compute BSR, the EEG signal is divided into epochs of fixed
length, such as 10s. Furthermore, the average percentage of windows
(e.g., 100ms) being in full suppression across the whole epoch is
calculated. The formula for computing the BSR for each epoch can
be written thus as in Equation 1:

BSR � Nof windows in suppression
total N of windows

× 100% (1)

In order to produce a BSR signal, such computations are performed
with a certain step, such as 1s. An example of a BSR signal is
presented in Figure 1.

Spectral edge frequency (SEF) allows the computing of a
frequency below which a defined percentage of the signal’s power
is located. The computation of spectral edge frequency 90% (SEF90)
or 95% (SEF95) has often been used to guide DoA estimation. In our
GUI, we allow a user to parametrize the SEF percentage, therefore
also allowing the computation of the spectral median edge
frequency—for example, 50%. In general, as anesthesia deepens,
the SEF also decreases, which is not the case on Figure 1. This is
probably due to the anatomical and morphological peculiarities of
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pigs, causing the signal of deep anesthesia state to be contaminated
with the ECG signal, raising the values of SEF90. This indicates that
the DoA index developed for humans will not work the
same on pigs.

Peak frequency (PF) is the location of the signal peak
frequency—the frequency value at the maximal power of the
spectrum. Since a frequency shift of oscillatory power peaks may
not be captured by SEF90 or SEF95, the location of the signal PFmay
bring additional information. Since the largest part of the EEG signal
power is located in a very low-frequency band, below 1 − 4Hz, the
resolution of time-frequency domain transformation along the
frequency axis must be high—at least greater than 1/4Hz—to be
able to capture the variability of the PF.

Spectral power ratio (SPR) is a feature that allows comparison
of the spectral power of different frequency bands within the EEG
signal. Classically, the EEG signal is divided into the following set of
frequency bands: delta – δ (1–4 Hz), theta – θ (4–8 Hz), alpha – α

(8–12 Hz), beta – β(12–30 Hz), and gamma – γ (30–100 Hz) (Saby
and Marshall, 2012). Since there can be multiple combinations of
ratios, including ratios of band sums (Bustomi et al., 2017), these
features populate the EEG feature set the most. In the literature,
three particular combinations of SPR are considered to be correlated
with DoA:

DAR � δ

α
, ABR � α

β
, and DTABR � δ + θ

α + β

Entropy provides an estimation of the complexity of EEG
signals. It has been observed that during the deeper phases of
anesthesia, entropy will be lower than in the awake or waking
phase. In human anesthesia, it is known that different parts of
the brain may provide distinct EEG signatures, thus carrying
different information in response to general anesthesia (Yeom
et al., 2017). Therefore, in recent years special attention has also
been given to phase lag entropy (Shin et al., 2020; Jun et al., 2019;
Kim et al., 2021), a measurement of temporal pattern diversity in the
phase relationship between two EEG signals from prefrontal and
frontal montages. We do not differentiate here between signals
collected from different scalp locations, and therefore we have
evaluated the entropy of each collected EEG signal separately.
We computed entropy over temporal domain EEG signals, even
though some have investigated spectral entropy’s (SE) correlation

with BIS (Ra et al., 2021). Our main reason for choosing the entropy
of the temporal domain over the SE is our goal of implementing
DoA estimation in real-time where one entropy value would be
expected every 1s. This is clearly possible when entropy is computed,
for example, over 200 samples of EEG signal (200 Hz sampling rate).
While in the case of SE, the time-frequency conversion of the EEG
signal first occurs, this in turn will reduce the number of SP values
per second and only after SE can be calculated, which risks providing
values only every several seconds.

Thus, we implemented the Shannon method to calculate
entropy in the time domain. First, we computed a histogram of
the amplitudes of the EEG signal for a moving window. Then, we
used the formula below on all bins of the histogram containing at
least one value.

H X( ) � −∑n
i�1

p xi( )log2p xi( )

The probability of xi is the number of values in the bin i divided
by the total number of values in the histogram. The result of this
equation expresses the complexity in the number of bits needed to
describe the signal. To obtain a normalized value, the result is
divided by the maximum number of bits possible, which is
calculated by taking the log2 of the number of bins in the
histogram—that is, log2(binNb).

2.2 General anesthesia Matlab-based
graphical user interface

The novel general anesthesia Matlab-based graphical user
interface (GAM-GUI) tool provides an analysis of EEG signals to
support the signal features described above. Generally, we can split
the analysis into offline and real-time. During offline analysis, EEG
signals collected previously during the experiment can be analyzed
channel by channel as well as multiple EEG channels in parallel. The
view of the offline analysis tab is presented in Figure 2. There, GAM-
GUI allows selection of any EEG signal from a database and makes a
first quick analysis of EEG signal quality based on the DSA
previously displayed right after the signal load. In addition, it is
possible to set the essential parameters for signal processing
algorithms and display the results in a superposed manner (as

FIGURE 1
BSR (red) and SEF90 (blue) features of EEG signal of a pig undergoing propofol anesthesia. A vertical bar “Start propofol” indicates the beginning of
propofol delivery following one of the protocols described in Section 2.3.1. The pig was intubated during the whole period between the “Intubation” and
“Extubation” vertical bars.
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demonstrated in Figure 2), where each result can be turned off and
on by clicking the dedicated buttons.

However, the real-time version of GAM-GUI allows the same
signal processing performed within defined time constraints that we
set to be 1s. The reasoning for this choice is presented below (Section
4.1). Working in real-time means that all data processing steps from
data acquisition to DoA estimation and visualization must occur
within 1s. Real-time signal processing required some adaptation of
algorithms, especially concerning signal normalization, since the
whole signal is not available at the moment of processing and it is
not possible to know the maximumMAX values right away. MAX
values would be specific to the data acquired with each specific
device. Therefore, we pre-computedMAX values for each extracted
feature for the whole set of available EEG signals; hence, the real-
time version is currently adapted for use only with the BIOPAC
MP160 device. Adaptation of the real-time GAM-GUI for another
device would require a dataset collected by that device.

Additional details of GAM-GUI functionality, including a
description of the communication algorithm and some user
guiding suggestions, can be found in our technical report (Caillet
et al., 2023). The demo version of the offline data analysis tool can be
found at https://gitlab.hevs.ch/alena.simalats/gam-gui. Fully
functional software providing real-time data acquisition,
processing, and DoA index evaluation adapted for use with a
BIOPAC MP160 EEG acquisition device can be found at https://
gitlab.hevs.ch/alena.simalats/RT-DoAi-Vet.

2.2.1 Panel for evaluation of PK/PD
propofol dynamics

The GAM-GUI tool offers multiple computational panels,
among which we have the panel for evaluating the dynamics of

the anesthetic used—propofol. This permits a description of the
relationship between the delivered dose of the drug, the resulting
concentration in the body (i.e., PK model), and the effect of the drug
on the body (i.e., PD model for a chosen timeline).

In brief, the PK model of propofol for humans (Eleveld et al.,
2018) and for pigs (Egan et al., 2003b) is usually described by a
three-compartment model extended with a fourth virtual
compartment representing the effect site of the brain. The
system of compartments can be seen as four communicating
vessels, the drug exchange rate being regulated by k12, k21, k13,
k31, k14, and k41 parameters, which are first-order transfer rate
constants from compartment i to compartment j, where the first,
central compartment represents the plasma. The drug is
delivered to the central compartment at a rate of U
(controlled and changing over time) and is cleared from it at
the elimination rate k10. Equations 2–4, describe the evolution of
drug amounts in the three compartments, while the
concentration in the fourth effect compartment is described by
Equation 5:

dA1

dt
� A2k21 + A3k31 − A1 k10 + k12 + k13( ) + U t( ) (2)

dA2

dt
� A1k12 − A2k21 (3)

dA3

dt
� A1k13 − A3k31 (4)

dC4

dt
� C1 − C4( )ke0 (5)

where Ai represents the amount of drug in compartments and Ci

represents the drug concentration, related as Ci � Ai/Vi, where Vi is
the volume of the compartment. The four-compartment model is

FIGURE 2
Tab 1: offline analysis of a single-channel EEG signal.
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quite general and can be adapted to a model with fewer
compartments by setting the exchange rate of the excluded
compartment to 0.

The PD part of the model for pigs was described as a double
sigmoid function in Mirra et al. (2022a):

Eff � (Emax1 ·
Dγ

1

EDγ1
501 +Dγ

1

) + (Emax2 ·
Dγ

2

EDγ2
502 +Dγ

2

),
Here, Emax1 and Emax2 represent fixed and random effect, ED501 and
ED502 median effective doses, and γ1 and γ2 corresponding parameters.
Each of these parameters has a median value, corresponding to an
average population model, and a confidence interval, defining its
variability. Eff, in turn, is the estimated effect of delivered dose, or
the model predicted DoA index, having values ranging from 0 to 100.
This way, Eff computed using median PD model parameters
represents a theoretical or analytical average predicted value of DoA.

The PKPD panel depicted in Figure 3 allows insertion of the
parameters of the PK and PD models and display of the change of
drug concentration in the central and affected compartments, as well
as the PD effect of the drug concentration, following the injection
rates that can also be set in this panel. As the default PK parameters,
we set the values of the propofol population PKmodel developed for
pigs (Egan et al., 2003b). The PD part of the model is implemented as
a double sigmoid function as described in Mirra et al. (2022a) and
detailed above. However, to implement a model of another drug, the
exchange rate parameters must be updated. Figure 3 depicts the
plasma concentration and PD effect level computed by the PKPD
model following the actual injection rate of the experiment during
which the EEG signal was recorded.

2.3 DoA index estimation

The core element of the real-time GAM-GUI is the deep-
learning-based DoA index computation. To describe the DL
algorithm and discuss its performance, we first present the data
set that was used for model training and validation in Section 2.3.1.
The implementation of a supervised method for DoA estimation
requires defining a reference ground-truth signal indicating the
genuine DoA values. Therefore, in Section 2.3.2 we describe how
the ideal DoA reference signal was created. Furthermore, we provide
the results of the analysis of EEG features’ relevance to the DoA
estimation in Section 2.3.3, while the DL algorithm is presented
in Section 2.4.

2.3.1 Dataset of EEG signals
The EEG signals were collected in Mirra et al. (2022b) andMirra

et al. (2024) and re-analyzed retrospectively for the present
investigation. Details of data collection and anesthetic protocols
can be found at these references. The dataset used for training and
validation was composed of EEG signals collected during
31 experimental events on pigs undergoing general anesthesia.
The EEG signals were collected by eight channels of a BIOPAC
MP160 EEG acquisition device (BIOPAC, 2023) and 4 four of a
Sedline device (MASIMO, 2023) monitoring pigs anesthetized with
propofol. During each experiment, 12 EEG electrodes were placed
on each pig’s head, each collecting a separate EEG signal from
different areas of the brain, providing time-series with ~3 · 106
samples (with a 200Hz sampling rate, ~3 h for each experiment)
representing values in [mV] corresponding to the measured electric
activity on the surface of the scalp. If the electrode impedance was

FIGURE 3
Tab 1: PKPD panel depicting the plasma concentration and PD effect level following the actual injection rate of the experiment on a pig under
propofol anesthesia.
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too high or the signal judged inaccurate, the data were excluded. A
total of 31 independent datasets were analyzed, three of which were
excluded completely and others only partially because of obvious
corruption of EEG signals. The Sedline device also computed and
recorded the PSI value for each pig. Raw EEG and PSI signal clinical
assessment variables were also recorded.

In human anesthesia, it is known that different parts of the brain
may provide distinct EEG signatures, thus carrying different
information in response to general anesthesia (Yeom et al.,
2017). The PSI index, for example, accounts for changes in
symmetry and synchronization between brain regions and the
inhibition of frontal cortex regions (Drover and Ortega, 2006).
For the present investigation, the signals recorded at different
cortex regions from the same individual were integrated, as well
as bilateral recordings. Each EEG signal was considered unique and
as potentially contributing supplementary information to the
system. Therefore, the analysis is global at this stage and not
specific for one electrode placement. Our final dataset thus
contains a total of 358 EEG time series each associated with one
reference DoA index.

2.3.2 Ground-truth DoA trend curve
In order to use supervised methods like the long short-term

memory (LSTM) model presented in Section 2.4, it is necessary to
define a reference ground-truth DoA signal. This may create a
paradox to base the reference signal on EEG-derived features
while exact EEG features’ correlation to DoA is not known.
Therefore, we combined three existing metrics for DoA
estimation. First, a personalized PKPD model was developed for
each subject of the study. Variability in both PK and PD parameters
is known to be large for humans (Eleveld et al., 2018) and is expected
to also be large for animals. Therefore, initial PKPD parameters were
aligned to previously published PK (Egan et al., 2003a) and PD
models (Mirra et al., 2022a). Furthermore, those parameters were
personalized based on an individual output variable for DoA
oriented by the individual PSI values and clinical observations.
Finally, for each subject, an individualized DoA effect curve
based on the history of propofol delivery, PSI, and clinical
observations was used as ground-truth DoA.

2.3.3 Feature ranking
The next step in developing the best performing DL model for

DoA estimation was to select the best predictors. In Caillet et al.
(2024), we had evaluated the prediction capability of EEG features
for DoA estimation, with three algorithms having core
computations of variance such as Spearman correlation (CORRs),
principle component analysis (PCA), and ReliefF algorithms. The
choice of algorithm was driven by the idea of linking upcoming
results with the old practice of DoA estimation using BIS and PSI,
where formulae for DoA estimation are the arithmetic combination
of features having a higher correlation with DoA. We also proposed
two strategies for pruning the large features set ranked by these three
algorithms.

Figure 4 presents the final features ranking, the details of which
are presented in Caillet et al. (2024), as well as two strategies for
selecting the best features for DoA estimation. The features are
sorted in descending rank order from top to bottom. The
mnemonics of each feature name on the figure follow the general

rule such as first naming the feature type (e.g. SP, SPR, and entropy)
and then the frequency band over which it was computed. The PF
feature was computed only over the full frequency band.

Among the SPR features, we selected the ratio of SP density of
the above-mentioned frequency bands vs. full SP density such that
SPR 0.5–4 Hz would mean the ration of SP 0.5–4 Hz and
0.5–100 Hz. We also included the classical SPRs often mentioned
in the literature, such as α/β (SPR ABR), δ/α (SPR DAR), and
(δ + θ)/(α + β) (SPR DTABR). As features of the temporal domain,
we included BSR computed for the full spectrum and entropy values
for each of the above-mentioned frequency bands.

In Figure 4, the columns “All features” show that SP features
with higher frequencies within the 1 Hz range (e.g., SP 29–30 Hz or
SP 31–32 Hz) are ranked higher than SP features covering larger
frequency ranges (e.g., SP 25–35 Hz or SP 15–35 Hz). However,
there is a change of ranking for lower frequencies. For instance, SP
12–25 Hz is ranked higher than SP 14–15 Hz, SP 13–14 Hz, and so
forth. To reduce information redundancy, different strategies can be
followed as follows.

2.3.3.1 Strategy 1
For frequencies above 15 Hz, SP features can be chosen with a 1 Hz

range and SP and SPR features with larger ranges excluded. Conversely,
for lower frequencies, it may be preferable to retain SP and SPR features
with larger ranges and exclude those with a 1 Hz range. An exception
among lower-frequency SP features might be made for SP 0–1 Hz, SP
1–2 Hz, SP 2–3 Hz, and SP 3–4 Hz, since three of these are ranked
higher than SP and SPR 0.5–4 Hz. The results of feature pruning
following this strategy are presented in Strategy 1, Figure 4.

2.3.3.2 Strategy 2
In Caillet et al. (2024), we made the crucial observation that data

resolution may significantly impact prediction stability, especially when
dealing with very small numbers such as the SP of high ranges (e.g., SP
29–30 Hz or SP 31–32 Hz). Therefore, when selecting SP features, they
might be prioritized over spectral bands larger than 1 Hz, especially for
frequencies above 14 Hz. SP features over narrow frequency bands can
be included only for frequencies between 0 and 4 Hz, as they exhibit
maximum spectral power. As illustrated in Strategy 2, Figure 4, we first
pruned the SP features for frequencies above 12 Hz. It is notable that SP
15–35 Hz encompasses the information of both SP 25–35 Hz and SP
12–25 Hz features. Additionally, SP and SPR features over the same
frequency band are likely to convey similar information, as SPR can be
considered a normalized SP signal. Following this rationale, we further
selected the best 26 and 10 features.

2.3.3.3 Strategy 3
However, it is also clear that the choice of the best set of features

also depends on the ML/DL methods that are to be used for further
DoA estimation. Therefore, since we used the long short-term
memory algorithm (Section 2.4), we also performed ablation
study of features in order to rank each specifically for this algorithm.

2.4 LSTM for DoA index curve predication

When choosing the model, we aimed to provide
anesthesiologists with a DoA index represented by a curve
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similar to BIS or PSI—that is, data with temporal quality, where each
subsequent value depends on those previous. This naturally led to
our choice of a recurrent neural network (RNN) and its particular
class of LSTM models designed to learn long-term dependencies in
sequential data and “retain” information from prior time steps.
Different layers with a corresponding number of neurons of our
deep learning model are presented in Figure 5.

The first layer contains carefully selected EEG features (Section
2.3.3) given to the Autoencoder layer. Autoencoders, such as the
stacked denoising autoencoder (SDAE), have shown significant
promise in tasks requiring dimensional and noise reduction, and
meaningful and lower dimension feature space extraction.
Therefore, we opted to enhance the LSTM model with an SDAE
layer. Finally, lower-dimensional feature space is given to the LSTM

FIGURE 4
Features pruning following the two presented strategies. To help the reader, we have used similar colors to group SP features based on their
frequency. SP features representing frequency ranges greater than 1 Hz are additionally highlighted in bold. Some other unique features are regrouped
with similar color codes, such as BSR, SEF90, and SEF95.
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layer followed by regression and output layers providing a single
output. Adaptive moment estimation (ADAM) was chosen as the
optimization algorithm for the LSTM model due to its higher time
efficiency and ability to adjust the learning rate (LR) for each weight
in the neural network. The initial LR value was set to 0.0001, which
in our case strikes a balance between fast convergence and
maintaining model accuracy. A mini-batch size of five was
chosen. Using smaller mini-batches allowed us to speed up
training and reduce memory consumption, making the model
learning process both efficient and more manageable. We divided
our dataset of 358 EEG recordings into a training and validation set,
with 298 and 60 recordings respectively.

3 Results

In order to find the best mode configuration, we ran multiple
model training, changing the number of LSTM and SDAE layers.
We considered the best performing models as having the minimal
root-mean-square error (RMSE) for the validation set.

To cover as much space of possible configurations as possible for
model training in terms of number of features and LSTM/SDAE
nodes, we first considered different numbers of features, such as the
5-, 10-, 20-, and 26-best features selected based on tree features
ranking algorithms, such as CORRs, PCA and ReliefF following the
strategies presented in Section 2.3.3. Strategy 2 for feature selection
gave generally better performance results than Strategy 1. Moreover,
thanks to regrouping the high frequency SP features of 1 Hz
bandwidth into SP features of larger frequency bands with
Strategy 2, DoA estimation is expected to be more resilient to
electrical noise in real clinical settings. Such a strategy also
reduces the computational load thanks to fewer high-order band-
path filters that otherwise would be required by Strategy 1.
Therefore, we here present the results of model configuration for
features selected based only on strategies 2 and 3. We also ran
experiments for all 65 features—without performing feature
selection—thus providing us with nine different configurations
based only on a number of selected features ranked with two
different methods.

The EEG features in our study form a set of predictors that are
the results of DoA and not its cause. It is known that variables that
directly cause the estimated value are generally much better
predictors. In our study, the history of the propofol delivery rate

(“delivery_rate”) is the only predictor that directly causes changes in
DoA. The feature causality graph is as follows:

Delivery rate 0 DoA 0 EEG features

However, in clinical veterinary settings, it can be a challenge to
know the delivery rate of an anesthetic drug in real-time. This
requires an infusion pump capable of performing autonomous drug
injection and providing the delivery rate values synchronously with
an EEG device. Using only the delivery rate in the absence of EEG for
DoA estimation would result in a DL model that merely repeats the
population PK/PD model. Therefore, EEG signals are important for
personalizing the DoA estimation. In this study, we evaluated two
approaches. In one, we aimed to build a DoA estimation model
based solely on EEG signals. In the other, we assessed how the
knowledge of the propofol delivery rate can improve DoA
estimation.

Since the drug delivery rate causes DoA, it clearly has higher
potential for DoA prediction. In order to analyze how knowledge of
the delivery rate can improve DL-based DoA prediction, we ran
experiments for nine selected configurations of feature settings with
and without delivery rate, thus providing features_set = 18 different
configurations. For each feature set decided, we selected the number
of LSTM layers of the model as a factor of n of number of features,
where n ∈ [1, 2, 4, 6, 8, 10, 15, 20]. This way we first trained features_
set*n � 144 different models.

We considered the most accurate models as those having the
smallest RMSE computed for the validation set. For each feature set
we thus selected the two best performing models, resulting in
36 models for DoA training only with LSTM neurons without
the SDAE layer. Finally, we augmented each of the 36 models
with three configurations of the SDAE layer, composed of a
number of SDAE neurons twice smaller, equal, and twice greater
than the number of features of each model out the 36 models,
resulting in 108 configurations of SDAE- LSTM models.

The results of two sets of the best ten models are presented
in Figure 6.

We present the RMSE values for both training and validation
sets since the big difference in these values may indicate that the
trained model is overfitted. We also include the RMSE values for
identical models based only on the LSTM layer “LSTM only”
augmented with the SDAE layer “LSTM + SDAE”. The
corresponding number of neurons in the LSTM and SDAE layers
are indicated in the columns “LSTM layer” and “SDAE layer”,
respectively. The mnemonics of the model names are as follows:
Selected5, Selected10, Selected26, etc., meaning the list of 5, 10 or
26 best features ranked in Simalatsar et al. (2024), while LSTM5,
LSTM10 etc., mean the best 5, 10, etc. features selected with the
ablation study of LSTM model. The presence of “delivery_rate” in
the model’s name indicates that this rate was included as a predictor.

It is clear that the inclusion of the delivery rate in the model
prediction greatly improves the model’s accuracy. Moreover, the
presence of the delivery rate as a feature of the number of EEG
features can be small as well as the number of LSTM and SDAE
layers. The best model for DoA predication based only on EEG
features requires a large number of features as well as LSTM layers.
Note also that inclusion of all features does not necessarily produce
the best results since the best two performing models are based on
Selected 26 and LSTM 20 feature sets. The model’s delivery rate and

FIGURE 5
Layers of DoA predicting deep learning model.
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additional SDAE layer do not much improve the model’s
performance. However, for the models without the delivery rate,
the additional SDAE layer helps improve the model’s accuracy.

Figure 7 presents the performance of the two most accurate
models without the delivery rate augmented by SDAE layer and
without it, such as 975 LSTM neurons and no SDAE layer (solid

FIGURE 6
Ten best models for selected sets of EEG features, including the propofol delivery rate, and ten best models based only on EEG features.

FIGURE 7
Comparison of DoA effect curve computedwith twomodels without delivery rate: 975 LSTM neurons no SDAE layer (solid green line) with 390 LSTM
neurons augmented with SDAE layer of 130 neurons (solid blue line).
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green line) with 390 LSTM neurons augmented with an SDAE layer
of 130 neurons (solid blue line). We selected two models that use an
identical set of features—ALL—to create comparable conditions for
model comparison with the goal of assessing the impact of the
presence or absence of the SDAE layer. We randomly selected three
experiments to compare the models’ performance. In Figure 7, two
of our models are compared to the PSI signal acquired during those
experiments with the Sedline monitor, as well as to a ground-truth
signal computed using a personalized PKPD model for each
experiment. Since the propofol delivery rate was increased in a
stepwise manner, we observe the ground-truth DoA decreasing in a
similar stepwise pattern. All models performed comparably when
the DoA was above 40%. However, below 40%, the PSI signal
became very unstable and unreliable, particularly in the second
and third experiments. Both our models remained stable, even
though they struggled to accurately reflect the deeper stages of
anesthesia. The accuracy of these two models, measured by
RMSE, is quite similar. However, the DoA curve estimated by
the model augmented with the SDAE layer is more stable, likely
due to the SDAE’s ability to reduce signal noise. This result supports
the inclusion of the SDAE layer, even though it does not directly
improve RMSE-based model accuracy.

On Figures 8, 9, we did a similar comparison of two other
models with the goal of assessing the impact of the presence or
absence of delivery rate as a feature. Figure 8 depicts the visual
comparison of DoA estimation with the best trained model number

1, including delivery rate, while Figure 9 depicts the visual
comparison of DoA estimation with model number 11—the best
model without delivery rate. It is apparent that the model with the
delivery rate performs much better than the model without. The
model without the delivery rate is most likely to be used in clinical
settings. Even though it performs worse than the model with the
delivery rate, it still performed much better than the PSI index.

Both models exhibited remarkable stability and accuracy during
the initial stages of the falling-asleep and awakening phases.
However, we observed a notable discrepancy during the deep
anesthesia phase, indicating a greater prediction error. Our
hypothesis is that this inaccuracy is due to contamination of the
EEG signal with the electrocardiogram (ECG). In a deep state of
anesthesia, EEG signal power decreases markedly, and therefore the
ECG signal is otherwise masked by the EEG. Multiple harmonics at
various frequencies (Figure 10) corrupted our prediction, since
features like SP represent an essential set of training features.

This discrepancy in performance across different phases has led
us to contemplate the potential benefits of a more specialized
approach. Specifically, we are considering training separate
models for each phase of the anesthesia process: one for the
period before deep phase of anesthesia, one for the duration of
the deep phase, and one for the recovery phase. This strategy could
allow each model to more effectively learn the unique characteristics
and patterns specific to its respective phase, thereby potentially
enhancing overall prediction accuracy.

FIGURE 8
Comparison of DoA effect curve estimated with our best model with the delivery rate (Model 1: selected top five features based on strategy 2 with a
delivery rate, with 75 LSTM layers and two SDAE layers), represented by the solid blue line, with the ground-truth DoA curve (solid red line) and Sedline PSI
index (unstable fine line).

Frontiers in Medical Engineering frontiersin.org10

Caillet et al. 10.3389/fmede.2024.1455116

https://www.frontiersin.org/journals/medical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmede.2024.1455116


4 Discussion

This study presents the results of interdisciplinary work that
brings together EEG signal processing in a Matlab environment and
a novel approach DoA prediction using a DLmodel.We here discuss
these three research domains. First, we present the basic reasoning
behind the choice of real-time constraints. We then present research
which applies machine learning algorithms for DoA estimation.
Finally, we discuss how our GUI is different from the other tools that
enable EEG signal processing.

4.1 Real-time requirements

The goal of real-time EEG monitoring and DoA estimation is to
provide immediate adequate evaluation of a patient state’s under
anesthesia. Such information can either be used by anesthesiologists
to adapt the delivery rate of anesthetic or can also be used to
implement an automated propofol delivery pump performing
regular readjustments of the delivery rate based on the DoA
index. At present, validated target control infusion (TCI) systems
for the automated delivery of intravenous (IV) propofol to assist

FIGURE 9
Comparison of DoA effect curve estimatedwith our best model without delivery rate (Model 11: selected top 26 features based on strategy 2without
delivery rate, with 520 LSTM layers and 52 SDAE layers), represented by solid blue line, with ground-truth DoA curve (solid red line) and Sedline PSI index
(unstable fine line).

FIGURE 10
Example of EEG signal contaminated with the ECG.
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general anesthesia are only available for use in human medicine
(Burton et al., 2020). This is achieved using open-loop systems based
on population PK models but neglecting inter- and intra-patient
variability to predict brain drug concentration—thus with an
implicitly high level of imprecision (Schnider et al., 2021; Eleveld
et al., 2018). While BIS-based propofol TCI has been reported in
animals (e.g. pigs and dogs), its validity and wider applicability in
veterinary medicine appear highly questionable because the BIS
index is potentially influenced by several unrelated external factors
which are unstable and contaminated by artefacts. Therefore, in view
of the potential implementation of such a TCI pump, a novel DoA
index must be developed which is stable, clear of artifacts, and
insensitive to external electric noise. These were the main qualities
that we targeted when implementing a novel DL based index
(Section 2.4). On the other hand, an automated TCI system must
regularly update the drug delivery rate based on feedback received
and analyzed as EEG signals. Current validated open-loop TCI
systems perform the delivery rate readjustment every second.
Therefore, we also chose the time-constrain as 1s.

4.2 Machine learning in DoA index
computation

ML/DL algorithms have already been applied to refine an EEG-
based forecast of DoA. Previous research has attempted to predict a
binary outcome between either awakeness or unconscious/
anesthetized status (Ramaswamy et al., 2019; Nagaraj et al., 2018;
Nicolaou et al., 2012; Mirsadeghi et al., 2015). In some of these
studies, the classification was extended to levels of sedation
corresponding to the Modified Observer and Assessment of
Alertness/Sedation Scale (MOAAS) (Ramaswamy et al., 2019;
Nagaraj et al., 2018). This scale is validated to discriminate
different DoAs in humans via response to stimulation at
increasing intensity, which is not possible in anesthetized states
nor in animals. While typical EEG features are provided to these
approaches as potential candidates for the final algorithm,
Ramaswamy et al. (2019) incorporated a larger number of DoA-
related features (up to 44 variables) to improve classification of a
patient’s DoA.

Other studies have considered the explicit time-dependent
nature of unconsciousness in a statistically principled fashion
with hidden Markov models (HMMs), which allow the
combining of ML/DL EEG features from individual epochs with
information on how the EEG temporally evolves between epochs
and thus improves ML classification of unconsciousness (Abel et al.,
2021). However, this solution provides a mix of binary and
probability information and does not deliver a continuous DoA
index to orient an anesthetist’s decision.

We assume that classification algorithms are used in the above
studies due to the absence of an ideal reference DoA index trend
curve, providing DoA values with high resolution for each
prediction step. We have developed an approach for computing
such a trend curve and therefore used a DL model to estimate DoA
similar to the BIS or PSI.

4.3 EEG signal processing tools

There are several Matlab based frameworks for EEG signal
processing. Among these, EEGLAB (Delorme and Makeig, 2004)
is the best known and most powerful toolbox oriented toward the
neurosciences, such as processing and analyzing high density
EEG (hdEEG) like an EEG system collecting 24 or even 256 EEG
signals in parallel placed on different areas of the head of an
individual. EEGLAB provides a range of tools and functions
tailored for the processing and analysis of hdEEG, which are
essential for analyzing event-related potential (ERP) data. It
includes tools for importing and pre-processing data, filtering,
artifact removal, feature extraction, and advanced analysis
techniques such as independent component analysis (ICA),
time-frequency analysis, and source localization. EEGLAB also
provides a range of visualizations, such as scalp maps,
topographic plots (topoplots), and scalp heatmaps of values of
individual components. There are also FreeSurfer Dale et al.
(1999) and FieldTrip Oostenveld et al. (2011) MATLAB
toolboxes, which specialize in processing chain for sleep
studies with hdEEG.

In contrast to EEGLAB, FreeSurfer, and FieldTrip, our GAM-
GUI toolbox is a specialized tool for anesthesia with a much lower
density of EEG signal, such that they are placed only on the frontal
and prefrontal areas of the head with great in-depth analysis of each
individual signal. GAM-GUI tool aggregates are all necessary
algorithms for EEG feature extraction essential for DoA
prediction; they are therefore much lighter in computation. This
thus allowed us to create a real-time version of the tool performing
data acquisition, analysis, and DoA estimation within the time
constraints of 1s, thus also enabling its use in clinical settings.

5 Conclusion

We tested our model in a real setting on pigs undergoing general
anesthesia. Our model proved to be more stable than PSI and more
satisfactory for veterinary staff. Remarkably, it performs very well
during both the induction and recovery phases of anesthesia,
capturing the particularities of both phases that usually pose a
problem to existing DoA indexes. Extension to other species and
other anesthetics would require a dataset containing EEG signals for
those species anesthetized with the medication of interest and a
reliable personalized reference DoA signal. However, this does not
mean that the same model without any modification can work
similarly on other species, since at present it is the PSI index that is
used most in veterinary practice.
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