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Stress has been recognized as a pivotal indicator which can lead to severe mental
disorders. Persistent exposure to stress will increase the risk for various physical
andmental health problems. Early and reliable detection of stress-related status is
critical for promotingwellbeing and developing effective interventions. This study
attempted multi-type and multi-level stress detection by fusing features
extracted from multiple physiological signals including
electroencephalography (EEG) and peripheral physiological signals. Eleven
healthy individuals participated in validated stress-inducing protocols designed
to induce social and mental stress and discriminant multi-level and multi-type
stress. A range of machine learning methods were applied and evaluated on
physiological signals of various durations. An average accuracy of 98.1% and
97.8% was achieved in identifying stress type and stress level respectively, using
4-s neurophysiological signals. These findings have promising implications for
enhancing the precision and practicality of real-time stress monitoring
applications.
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1 Introduction

Stress, characterized by anxiety and psychological disruption, triggers the “fight-or-
flight” response as a primal survival mechanism, impacting mental and physical wellbeing
(Gedam and Paul, 2021). It can significantly impact both mental and physical wellbeing,
leading to changes in behavior and physiology. Its effects vary based on individual
perspectives and circumstances and if stress persists for a long time, then it will lead to
serious diseases. During stressful episodes, the body activates its protective resources,
triggering increased heart rate, muscle tension, blood pressure, and heightened senses [2].
All these physiological responses stem from the autonomic nervous system (ANS) and get
integrated into the cerebral cortex to be regulated. The brain not only processes inputs from
the external environment but also controls adjustments of the body engendered by
behavioral states. As reviewed further, these stress-related processes are mediated by
and feedback to the brain, impacting its abilities to regulate peripheral physiology,
engage in adaptive social and health behaviors, experience and control emotions, and
support cognitive functioning. Robust evidence suggests that chronic stress plays a
significant role in the onset of severe and impairing psychiatric conditions (Davis et al.,
2017), including major depressive disorder, bipolar disorder, and posttraumatic stress
disorder, substance use disorder. Studies suggested that addressing stress-related
vulnerabilities is crucial for effective treatment (McHugh et al., 2020). Perceived stress
levels are also associated with sustained depression, amplifying mood symptoms in
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individuals with substance use disorders. Additionally, chronic
stress in people with disabilities or impairments notably increases
the risk of developing substance use disorders (Mills, 2023).

Addressing stress-related vulnerabilities is crucial for effective
treatment (McHugh et al., 2020), with perceived stress levels
associated with sustained depression and amplified mood
symptoms in individuals with substance use disorders. Chronic
stress notably heightens the risk of developing substance use
disorders in people with disabilities or impairments. The onset of
substance use disorder is strongly linked to stress, with the rise in
healthcare costs and job losses during the pandemic resulting in
drug-related expenditure exceeding $1 trillion in the United States in
2022, as reported by the National Institute on Drug Abuse (NIDA)
(Taylor, 2022).

Traditional stress measurement heavily depends on
psychological observation and self-assessment, introducing
reliability challenges due to patients’ tendencies to exaggerate or
downplay symptoms (Gedam and Paul, 2021). Consequently, there
arises a potential necessity to develop a system capable of
automatically and accurately capturing users’ stress using
dependable physiological signals. The realization of stress
detection in diverse circumstances could facilitate real-time
monitoring, enabling immediate intervention and adaptability.

Physiological signals are crucial for identifying stress responses,
especially when using electrocardiogram (ECG) signals (Jambhale
et al., 2022). The stress-related information extracted from
Electrocardiogram (ECG) signals, especially heart rate variability
(HRV), is prevalent in stress detection (Teixeira Ribeiro and Silva
Cunha, 2018). Stress detection is enhanced when integrating ECG
with other electrophysiological signals (Jambhale et al., 2022), such
as EEG, electrodermal (EDA) to address broader biological and
emotional aspects of stress. It reached up to 95.0% accuracy when
combined ECG with EEG signals for binary detection (Hemakom
et al., 2023) and 79.54% accuracy in discriminating four-level stress
(Xia et al., 2018). While peripheral physiological signals offer
valuable insights, they may lack specificity regarding the
cognitive or emotional basis of physiological arousal, highlighting
the need for integrated approaches to ensure a comprehensive
understanding of stress detection. Thus, EEG stands out as a safe
and reliable method of stress detection. By implementing advanced
machine learning/deep learning methodologies, the detection of
stress and non-stress status can be significantly improved
(Malviya and Mal, 2022; Mane and Shinde, 2023). Although EEG
captures intricate neural activity patterns, individual physiological
variations may affect its precision (Neeta et al., 2017).

Since stress is commonly categorized as eustress (positive) and
distress (negative) (McEwen, 2017). Eustress with its potential to
motivate growth and resilience, may contribute to improved
performance. In contrast, distress often emerges from chronic
stress, leading to a range of health issues (Giannakakis et al.,
2022). Consequently, it becomes imperative to develop the
capability to detect and distinguish distress from eustress and
non-stress conditions for effective stress identification and
prevention of prolonged exposure to chronic stress.

The objectives of this study encompass several key areas. One
objective is to explore a multi-class stress discriminant system
capable of distinguishing between social stress, mental stress, and
non-stress conditions. Additionally, this study also aims to establish

a comprehensive multi-level stress classification framework that
spans individuals experiencing minimal stress to those under
extreme stress by focusing on stress detection within a short
period of time. Through these objectives, this study aims to:

1. Enhance the precision and practicality of stress detection using
multi-modal neurophysiological signals, including brain
signals (EEG) and peripheral physiological signals.

2. Contribute to the classification of different types of stress,
specifically social stress and mental stress.

3. Evaluate the efficacy of stress identification across different
time durations and determine the optimal ultra-short duration
for all physiological signals.

4. Explore appropriate machine learning methodologies for stress
detection in scenarios where stress types, levels, and time
durations vary.

By enhancing the precision and practicality of stress
identification and differentiation using ultra-short periods of
multi-modal physiological signals, this study aims to explore the
potential to be translated to real-time applications and thereby
facilitate targeted interventions for stress management.

2 Methodology

2.1 Experimental protocol

In this experiment, eleven healthy subjects (three females,
average age 24.7 years, range 18–29 years) participated in this
study. Two protocols were conducted in this study, the Montreal
Imaging Stress Task (MIST) (Dedovic et al., 2005) and the Trier
Social Stress Test (TSST) (Kirschbaum et al., 1993), to stimulate
mental stress and social stress respectively. After each section, a self-
assessment questionnaire was filled out by the participant to evaluate
their stress level scoring from 0–4 representing not stressed at all to
extremely stressed. Between each protocol, 20 min of break
was provided.

The MIST protocol consists of five sections of arithmetic tasks,
including an Introduction section and four progressively challenging
test sections. Figure 1A illustrates the MIST paradigm. Each section
has a duration of 3 min. The Introduction section illustrates sample
math tasks, recording the time taken for each question. An average
time was computed from the Introduction section to establish a time
limit for the subsequent four test sections. In the test sections,
participants were presented with analogous math tasks but were
subject to time constraints and received stressful auditory and visual
feedback for incorrect/missing calculations. Key elements of the
MIST interface, as shown in Figure 1B, include a central display of
the math question, response options located below, a countdown
displayed above, and a progress bar at the top of the screen
indicating the accuracy percentage. The accuracy bar transitions
from green to red if accuracy falls below 60%. Each question is
assigned a time limit based on the participant’s performance in the
Introduction section. Upon providing a correct response,
participants receive a subtle auditory cue along with a visual
indicator, denoting “correct” before transitioning to the
subsequent question. Conversely, an incorrect response or a lack
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of response prompts an auditory alert coupled with the display of a
conspicuous pop-up window conveying “Incorrect” and “Time is
out,” respectively. No meditation or rest periods were provided
between sections, to allow for the observation of the expected
increase in stress levels.

TSST protocol incorporates two designated speaking sections
with interview questions and two sections of mental arithmetic
tasks, with a duration of 3 min for each section. In the speaking
sections, participants were presented with questions and required to
respond without any preparation time. Meanwhile, the participants
were expected to maintain eye contact with the instructor and
sustain their speech until the allocated time concluded. In the
arithmetic sections, the participants were requested to count

from a four-digit number to zero in increments of a two-digit
prime number. Participants were required to restart the counting
process upon making any mistakes. Subsequent to each section,
participants were afforded a 10-min rest period to recover. The
procedure is illustrated in Figure 1C.

2.2 Data collection

The experiment conduction and data collection were under an
approved protocol by the Internal Review Board (IRB) of the
University of Maryland Baltimore County. Before the stress
experiment, the subjects were sitting and relaxing at the

FIGURE 1
Experimental paradigm. (A) MIST Test procedure (B) MIST interface (C) TSST Test procedure.

FIGURE 2
Data collection in (A) and EEG electrode locations in (B).
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experimental table with 3 min of baseline recorded (Figure 2A).
During the experiment, electrophysiological signals and EEG signals
were measured and recorded with a g.tec Amplifier (g.HIamp, g.tec
medical engineering GmbH, Graz Austria) at a 512 Hz sampling
rate, low-pass filtered at 30 Hz. The pulse plethysmogram (Pleth),
SpO2 and heart rate (HR) were measured using a pulse oximeter
sensor (EnviteC) clipped on the index fingertip. The galvanic skin
response (GSR) or electro-dermal activity (EDA) records the
electrical conductivity using the 2 g.GSRsensors placed on the
middle and ring fingertips. The temperature was recorded by
g.TEMPsensor within a range of 20°C–45°C placed on the palm.
In order to allow the subjects to do the tasks with their dominant
hand, all electrophysiological sensors were placed on their non-
dominant hands. For EEG acquisition, a high-density EEG cap
based on 10/20 system position was used to collect neural signals
from 33 active EEG electrodes located at Fp1, Fpz, Fp2, AF7, AF3,
AF4, AF8, F7, F5, F3, Fz, F2, F4, F6, F8, FC5, FC3, FC4, FC6, C5, C3,
C4, C6, CP5, CP3, CPZ, CP4, CP6, P5, P3, P4, P6, Oz (Figure 2B).
During the EEG signal recording, the subjects will be instructed to
minimize head movement during the 3-min collection.

2.3 Data analysis

Each 3-min data section was initially segmented into shorter
lengths for analysis. To explore the potential for real-time stress
detection with minimal delay, we examined four signal durations:
60 s, 30 s, 10 s, and 4 s. To effectively preserve information while
using shorter segments, each duration was extracted from the
original recordings with a 50% overlap. The physiological
features were extracted from each segment and a detailed
description of these features is given below.

2.3.1 Peripheral physiological features
2.3.1.1 HR, SpO2 and temperature

Mean and standard deviation (std) were calculated within
each segment.

GSR/EDA is one of the body responses to stress and is widely
used for quantifying the autonomic nervous system (ANS) activity.
As a part of the response, the sweat from the body surface leads to
changes of skin conductivity, indicating the changes in the skin’s
electrical characteristics due to perspiration, reflecting stress
variations. When a person becomes more or less stressed, the
GSR increases or decreases respectively. The time series of GSR
comprises two fundamental components. One is the skin
conductance level (SCL) which relates to the slower-acting
components and background characteristics of the signal
reflecting general changes in autonomic arousal. The other is the
skin conductance response (SCR) which refers to the rapid short-
lasting changes in the GSR caused mainly due to neuronal activity
(Ghosh et al., 2015). First, the GSR signals were decomposed into
phasic components (SCR) and tonic components (SCL) using
nonnegative deconvolution by solving a convex optimization
approach problem using the MATLAB function cvxEDA (Greco
et al., 2016). The mean, std, maximum and minimum values were
calculated as features from these two components respectively. The
SCR higher than threshold 0.1 was considered as effective response,
and the corresponding number of responses, maximum and

minimum distance between two responses were extracted
as features.

PPG/Pleth displays the volumetric change of blood in the
vessels according to the respiratory cycle. A standard time
domain heart rate variability (HRV) and pulse rate variability
(PRV) can be reliably derived from ultra-short term (60 s) PPG
recording (Mejía-Mejía and Kyriacou, 2023). HRV, the temporal
fluctuation of consecutive heartbeats, is discerned through the pulse
wave signal generated by a PPG sensor. The pulse cycle intervals
(NN intervals) extracted from this signal present a compelling
alternative to ECG for HRV analysis, often referred to as (PRV)
analysis (Correia et al., 2020).

Time domain features were computed including

• Beats Per Minute (BPM): An essential metric used to
measure pulse rate.

• Mean of PRV Time Elapsed Between Successive Normal PPG
Onset Intervals (meanNN) represents the average time
between two successive normal PPG onset intervals, also
considered as normal R-waves in HRV. Measured in
milliseconds, this metric contributes to understanding the
temporal dynamics of PRV.

• Standard Deviation of NN Intervals (SDNN) quantifies the
standard deviation of NN intervals. An SDNN value greater
than 50 ms suggests normal stress, providing valuable
information about the variability in consecutive heartbeats.

• Percentage of Successive Beat-to-Beat Intervals >50 ms
(pNN50) reflects the percentage of successive beat-to-beat
intervals that differ by more than 50 ms. A decrease in
pNN50 percentage suggests lower parasympathetic activity,
offering insights into the autonomic nervous system’s
modulation.

• Root Mean Square of Successive NN Interval Differences
(RMSNN) is an important metric for estimating high-
frequency variations in pulse rate, particularly pertinent for
short-term RR recordings. RMSNN contributes to
understanding the intricate dynamics of consecutive
heartbeats.

Frequency domain measures of short-term HRV estimated the
distribution of power into low-frequency band (LF, 0.04–0.15 Hz)
and high-frequency band (HF, 0.15–0.4 Hz) and total frequency
band (0–5 Hz). LF bands which are modulated by the sympathetic
and parasympathetic nervous systems. In this study, the computed
frequency domain features include HF power, LF power, LF/HF (LF
power to HF power ratio), LF power to total power ratio and HF
power to total power ratio.

Furthermore, Poincare parameters (Brennan et al., 2001)
provide a geometrical method for analyzing HRV and represent
the correlation between successive inter-beats intervals. SD1 and
SD2 are used to qualify Poincare plot geometry, where SD1 is the
standard deviation of short-term variability and SD2 is the standard
deviation of long-term variability, as illustrated below.

SD1 �
�
2

√
2

std xi − xi+1( )

SD2 �
�����������������������
2std xi( )2 − 1

2
std xi − xi+1( )2

√

Frontiers in Medical Engineering frontiersin.org04

Pei et al. 10.3389/fmede.2024.1434753

https://www.frontiersin.org/journals/medical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmede.2024.1434753


where std is the standard deviation of the HRV time series and x
represent the time interval (i) between successive beats. A sufficient
increase in SD2/SD1 in the presence of stimulus resulted in a
decrease in total PRV and indicates that the subject is stressed
(Awasthi et al., 2020).The detailed features are illustrated in Table 1.

2.3.2 Feature extraction in EEG
During the 3-min data collection, EEG signals contain a lot of

noise and artifacts. First, the polynomial trends were removed
from the raw EEG by subtracting the evaluated polynomial curve.
To eliminate the eye movement artifacts, an algorithm based on
discrete stationary wavelet transform (DSWT) combined with

independent component analysis (ICA) was designed to identify
and remove ocular artifacts from EEG signals. The artifact removal
based on the ICA-DWT technique (Gonzalez-Carabarin et al.,
2021) has been demonstrated as an effective technique in EEG data
cleaning. The EEG signals were first decomposed into
approximation and detail coefficients under 5-level
decomposition using DSWT. After the ICA was applied to
remove ocular artifacts from the approximation coefficients, the
cleaned EEG signals were reconstructed then using inversive
DSWT. This procedure is illustrated in Figure 3.

Since the physiological and EEG signals were pre-filtered to
0–30 Hz during the data collection, the EEG signals were divided

TABLE 1 Features extracted from peripheral physiological signals.

Peripheral physiological signals Features Abbr

Temperature (Temp) Mean of the temperature Temp_mean

Standard deviation of Temp_std

Spo2 Mean of spo2 Spo2_mean

Standard deviation of spo2 value Spo2_std

Heart Rate (HR) Mean of heart rate HR _mean

Standard deviation of heart rate HR _std

Photoplethysmography (PPG) Low-frequency band (LF, 0.04–0.15 Hz) power LFP

High-frequency band (HF, 0.15–0.4 Hz) power HFP

LF power to HF power ratio LFP/HFP

LF power to total power ratio LFP/TP

HF power to total power ratio HFP/TP

Beats Per Minute BMP

Mean of successive normal PPG onset intervals NN

Standard deviation of NN intervals SDNN

Root mean square of successive NN interval differences RMSSD

Percentage of successive beat-to-beat intervals >50 ms Pnn50

Standard deviation of short-term variability SD1

Standard deviation of long-term variability SD2

SD2 to SD1 ratio SD2/SD1

Galvanic skin response (GSR) Mean of SCL SCL_mean

Standard deviation of SCL SCL_std

Maximum SCL SCL_max

Minimum SCL SCL_min

Mean of SCR SCR_mean

Standard deviation of SCR SCR_std

Maximum SCR SCR_max

Minimum SCR SCR_min

Number of effective response higher than threshold (0.1) Num of ER

Maximum distance between two responses Interval ER_max

Minimum distance between two responses Interval ER_min
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into five rhythms including delta (δ, 1–4 Hz), theta (θ, 4–8 Hz),
alpha (α, 8–13 Hz), beta I (β1, 13–22 Hz), beta II (β2, 22–30 Hz), and
broad range (1–30 Hz). The spectral powers of EEG signals from
each rhythm were estimated within the whole time period. In
addition to the spectral powers from each frequency band, the
power ratios across the different rhythms were considered as
main features of each channel of EEG signals. The full lists of all
features are given in Table 2.

2.3.3 Stress discrimination
In order to investigate the detectability of stress levels and the

discernment of stress types based on physiological and EEG signals,
it was imperative to address the individual variability in
physiological responses to stressors. Thus, stress states were

discerned within each subject, accounting for the idiosyncratic
changes in physiological features during stress-inducing events.

Preceding the application of classifiers, a meticulous data
preprocessing step was executed. This involved the removal of
trials containing inf or NaN values from the dataset.
Subsequently, an 80%–20% split was performed for each class,
designating 80% of the trials as the training set and the
remaining 20% as the testing data. To assess the efficacy of the
employed classifiers, a robust 10-fold cross-validation methodology
was employed, ensuring the selection of distinct batches of training
and testing data in each fold.

In the field of stress studies, a variety of classifiers have been
explored for the assessment of mental stress levels. This study
specifically opted for the inclusion of well-established and widely

FIGURE 3
Diagrammatic representations of artifact removal from raw EEG signals. EEG signals were decomposed into approximation and detail coefficients
using 5-level DSWT. After ocular artifacts were removed from the approximation coefficients via ICA, the signals were reconstructed with inverse DSWT.

TABLE 2 Features extracted from EEG signals.

Delta relative power δ/θ power ratio Beta relative power β1/β2 power ratio

δ/α power ratio β1/β power ratio

δ/β1 power ratio β1/Total power ratio

δ/β2 power ratio β2/β power ratio

δ/β power ratio β2/Total power ratio

δ/Total power ratio β/Total power ratio

Theta relative power θ/α power ratio Absolute power δ power

θ/β1 power ratio θ power

θ/β2 power ratio α power

θ/β power ratio β1 power

θ/Total power ratio β2 power

Alpha relative power α/β1 power ratio β power

α/β2 power ratio Total power

α/β power ratio

α/Total power ratio
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recognized classifiers, including Support Vector Machines
(SVM), K-Nearest Neighbors (KNN), Naïve Bayes (NB),
Linear Discriminant Analysis (LDA), and Decision Tree (DT).
These classifiers were strategically chosen to facilitate multi-level
stress detection and the nuanced identification of various
stress types.

3 Results

In exploring the efficacy of stress detection utilizing both
physiological and EEG signals for discerning stress levels and
types, individual analyses of physiological and EEG signals were
conducted to assess whether the combined approach enhances the
discriminatory performance in stress detection.

Table 3 presents a comprehensive comparison of classification
accuracy across various approaches for discriminating non-
stress, social stress, and mental stress using different
classifiers. In stress detection exclusively utilizing peripheral
physiological signals, the Decision Tree (DT) emerged as the
predominant classifier, surpassing all others and achieving
remarkable average accuracy across all studied time lengths.
Remarkably, the classification performance indicated that a
shorter period of time leads to superior stress detection,
presenting an inverse relationship between signal analysis
duration and the effectiveness of stress detection using
peripheral physiological signals. Conversely, concerning the
utilization of EEG signals for stress detection, it showed better
stress discrimination in general when compared with peripheral
physiological signals. The performance using EEG consistently
diminishes as the time period involved in the analysis decreases.
Among all classification methods, LDA proved to be the most
effective classifier for identifying stress types using EEG signals,
particularly when the time periods involved in the analysis
exceeded 10 s, demonstrating an average of 99.8%, 99.7% and
98.5% accuracy among all subjects for 60-s, 30-s and 10-s period
of EEG respectively. A significant drop in performance occurred

when only 4 s of EEG signals were analyzed, whereas it achieved
an accuracy of 96.5% with KNN and DT. This implies that more
extended durations enhance the discriminatory capability for
various types of stress within EEG signals. Conversely, when
the time periods involved in data analysis are shorter, the DT
classifier excelled in effectively discriminating stress levels among
all classifiers.

Table 4 shows the performance of multi-level stress detection
using different classifiers. Similar to stress type detection, when
stress detection solely utilizes peripheral physiological signals, the
DT classifier emerged as the most effective among all classifiers
considered, achieving an impressive average accuracy of 96.9%
across the diverse subjects involved in the study. Contrastingly,
when focusing on stress detection through EEG signals, the DT
classifier did not demonstrate the same robust performance. Instead,
the accuracy achieved by LDA was notable for both 60-s and 30-s
signal periods; however, a significant drop from 99% to 77%
occurred when the signal analysis duration was reduced from
60 s to 4 s for stress detection. This divergence indicated the
sensitivity of EEG signal-based stress detection when relying on
EEG signals, especially on the development of the potential of real-
time stress detection.

In general, the combined detection utilizing both peripheral
physiological and EEG features showed apparent improvement
compared to relying on individual physiological or EEG features
alone. Furthermore, it enhanced the efficiency and accuracy of
multi-level stress detection, even within a short analysis period.
LDA consistently outperformed all classifiers when using 60-s,
30-s, and 10-s signal durations, while the DT classifier excelled
in effectively discriminating stress when the analysis time
dropped to 4 s. This dynamic interplay highlights the
adaptability and potential of combined features for more
robust stress detection methodologies. It is perspective that the
integration of physiological and EEG signals offers a
comprehensive and promising approach for stress detection
across various time scales, with extended periods enhancing
classification accuracy.

TABLE 3 Accuracy of multi-class stress detection.

Acc (%) Time duration (s) LDA SVM KNN NB DT

Peripheral Physio
+EEG

60 99.8 95.9 95.1 92.8 95.6

30 99.6 98.4 97.5 93.1 97.5

10 99.0 98.8 95.7 92.4 98.8

4 91.3 96.2 91.7 88.7 98.1

Peripheral Physio. signals 60 83.2 83.6 75.4 83.9 93.9

30 93.3 89.0 72.3 82.1 96.0

10 92.1 92.4 66.0 80.5 97.9

4 91.2 92.2 59.1 80.4 98.3

EEG 60 99.8 93.5 97.5 99.3 92.2

30 99.7 99.3 99.4 98.8 97.0

10 98.5 98.3 98.0 98.1 97.9

4 79.5 91.9 96.5 92.6 96.5
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4 Discussion

4.1 EEG rhythms in stress assessment

The investigation of brain activity in individuals experiencing
stress has been the focus of recent research. In a separate study, EEG
was utilized to classify positive, neutral, and negative emotions
(Rothkrantz et al., 2008). Previous literature consistently
demonstrated the correlation between EEG rhythms and stress
(Lee and Jung-Tae, 2010). Coherence analysis of EEG signals
reveals increased coherence under stress, suggesting enhanced
inter-regional communication in the brain to cope with the
cognitive demands of stressors (Katmah et al., 2021).

Additionally, stimulation triggers influence EEG responses, as
evidenced by heightened activity in specific brain regions under
stress (Vanhollebeke et al., 2023). Our study analyzed brain activity
by calculating different power ratios from EEG data, contributing to
understanding the brain’s electrical activity patterns in response to
stress, as shown in Figure 4. Key findings include an increase in delta
and theta wave power in the frontal lobe during periods of stress, in
which a prominent alpha suppression occurred during stress.
Furthermore, a notable increase in beta power in the temporal
and parietal lobes under stress suggests enhanced activity in
response to stressful stimuli. These observations are particularly
significant as they contribute valuable insights to the understanding
of the brain’s electrical activity patterns in response to stress.

TABLE 4 Accuracy of multi-level stress detection.

Acc (%) Time duration (s) LDA SVM KNN NB DT

Peripheral Physio
+EEG

60 99.0 94.0 93.5 94.7 89.2

30 99.6 98.3 94.6 95.2 96.1

10 98.4 98.9 94.1 94.4 98.1

4 87.3 94.2 89.1 83.9 97.8

Peripheral Physio. signals 60 69.1 71.9 66.4 71.4 76.5

30 78.0 73.2 65.5 73.5 85.3

10 78.1 75.3 57.4 71.6 94.0

4 79.0 73.8 52.1 70.6 96.9

EEG 60 99.3 95.4 96.6 98.0 87.0

30 99.7 99.3 99.2 98.2 96.5

10 98.4 98.3 98.4 97.0 96.8

4 77.0 90.1 95.8 88.5 95.2

FIGURE 4
Tomography of relative power activation from different EEG rhythms from subject 2, 60 s timeframe. The relative power was estimated from the
absolute power to total power ratio.
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Research has shown that stress affects various EEG rhythms
differently. Delta rhythms were identified as being correlated with
the inclusion of difficult situations (Ladakis and Chouvarda, 2021),
and the majority of the delta detected corresponded to the stressful
condition (Choi et al., 2015) indicating the brain is healing from
stress (Attar, 2022). Research has shown that the frontal theta power
is closely linked to task difficulty, where the theta rhythm decreases
as the task becomes more challenging (Lopez-Duran et al., 2012).
Bairagi and Kulkarni (2019) concluded that the theta band
(frequency ranges from 4 Hz to 7 Hz) associated with the frontal
lobe is helpful in determining stress levels. Increased power
(observed from Figure 4) in delta and theta waves indicates stress
and challenging situations, and the activation spreads around the
frontal cortex, especially the dorsolateral prefrontal cortex.

Additionally, literature revealed the relationship between stress
and alpha rhythm of EEG from the frontal lobe (Goodman et al.,
2013). A notable increase of alpha power follows with stimulus
application (Katmah et al., 2021). It is commonly observed that the
alpha rhythm tends to increase during periods of relaxation, while it
decreases under stressful conditions, which is often observed in the
prefrontal cortex (Roy et al., 2022). This observation is apparently
shown in Figure 4 that both frontal and parietal lobes decreased
during mental and social stress, and the suppression of the alpha
powers is more obvious during the mental stress condition. The
coherence analysis has shown that there is an increase in coherence
during times of stress (Katmah et al., 2021). This increased
coherence is interpreted as a mechanism that enhances
communication between different regions of the brain for
processing stressors. It is interesting that the alpha suppression
during social stress is not as obvious as observed from that of mental
stress, which may be due to the less sensitivity of frontal power
affected by only psychosocial stress on the sensor level
(Vanhollebeke et al., 2023).

Furthermore, beta power increases in the temporal lobe,
indicating a positive correlation with stress (Choi et al., 2015).
This study also indicates a positive correlation between stress and
EEG beta rhythms, emphasizing higher beta power during stressful
periods (Katmah et al., 2021; Attar, 2022), which could be
particularly observed in 22–30 Hz rhythms in Figure 4 (beta II).
Increased activations around bilateral superior and middle temporal
cortices were observed from beta I (13–22 Hz) rhythms. Conversely,
beta II (22–30 Hz) rhythm of EEG power reflects and prominent
difference between stress and non-stress. This aligns with the
observations from the previous study (Jena, 2015), showing
average EEG activity during stress sits between 22 Hz and 25 Hz.
From Figure 4, the beta rhythm activation from the left hemisphere
was greater than the right hemisphere during both mental and social
situations. Nevertheless, compared to beta II, beta I activation yields
under social stressors. The asymmetric changes in the brain activity
revealed the previously demonstrated phenomenon that stress-
related EEG activation primarily occurs in the brain’s left
anterior region (Gedam and Paul, 2021; Giannakakis et al.,
2022), which impacts stress level detection and evaluation. While
gamma rhythms exhibit decreased activity in both relaxed and
stressful situations (Katmah et al., 2021) which was not
considered in this study.

Figure 5 provides an initial understanding of the spatial
distribution of essential features extracted from EEG across the

brain. The unique spatial distributions identified from stress types
versus stress levels could help emphasize the importance of
considering optimal features and approaches in future research
endeavors. The determination of the significance of features from
each EEG channel plays a crucial role in understanding stress types
and levels. This is achieved through the estimation of mutual
information between these features and the corresponding stress
types/levels. Mutual information is used to assess the dependence
between EEG features, and it helps identify the most representative
features from EEG signals based on entropy concepts. By
quantifying the statistical dependency between features, the
topographical concatenation and similarity of joint probability
distribution functions of these features can be estimated,
providing insights into the connectivity and interdependence of
brain regions during stress (as shown in Figure 5).

An interesting observation when considering an extended
period of signals for stress evaluation is the concentrated
presence of the contribution area around the prefrontal cortex.
This suggests that the prefrontal cortex plays a key role in
processing and responding to stress. However, when shorter
time durations are considered, the contribution area expands
to include the frontal lobe, parietal lobe, and temporal lobe. This
spatial distribution indicates that different regions of the brain
are involved in stress processing at different time scales.
Considering the findings presented in Tables 3, 4, it becomes
evident that with a longer duration of signals, EEG spectral
powers could provide a more condensed and reliable capability
for the contribution to a more stable evaluation of stress. This is
further supported by the concentrated and prominent feature
contributions observed within a 60-s timeframe, as opposed to
the more dispersed tomography observed within a 4-s timeframe
(as illustrated in Figure 5). Furthermore, it is evident that there is
an asymmetry distribution of features observed from the frontal
and temporal lobes in both stress type identification and stress
level assessment. In the case of multi-level stress discrimination,
the left hemisphere exhibits more significant features compared
to other regions.

4.2 Peripheral physiological signals in stress
assessment

In addition to examining brain cognition, peripheral signals also
play a crucial role in identifying stress. These signals provide an
initial response to stress before it is even consciously recognized.
Multiple peripheral physiological signals contribute to classifying
and identifying stress responses, including heart rate, respiration,
blood pressure, muscle tension, EMG, GSR, and oxygen level, etc. By
analyzing these signals, we can gain valuable insights into the
presence and intensity of stress.

There are five peripheral physiological signals were involved in
the study, including temperature, oxygen saturation, heart rate, PPG
and GSR. Among these signals, PPG and GSR are time series signals
that contain numerous temporal features crucial for identifying and
understanding stress. Under a stressful situation, a cascade of
hormonal changes and physiological responses lead to an
elevation in heart rate, as well as a decrease in body temperature
and blood oxygen saturation levels. However, the informative
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features which can be extracted are limited. While these three
parameters are influenced by stress, they still present significant
variability that can be affected by other factors such as physical

activities, environmental temperatures, etc. On the other hand,
when combined with PPG and GSR, which are time-series
signals involving dynamic changes, more reliable monitoring and

FIGURE 5
EEG feature importance distribution formulti-class stress detection in (A) andmulti-level stress detection in (B). The heatmap represents normalized
mutual information score, reflecting the significance of each EEG channel contributing to stress detection.

FIGURE 6
Feature importance of peripheral physiological features for multi-class and multi-level stress detection across different time durations.
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detection of stress can be achieved. This can provide a more
comprehensive understanding of an individual’s stress levels.

This study included the investigation of both different types and
levels of stress. One of the objectives was to explore how
physiological features contribute to the identification and
differentiation of stress across different time durations. Based on
the classification results presented in Tables 3, 4, it is evident that the
decision tree method achieves superior performance compared to
other methods when utilizing peripheral physiology features for
stress classification. To gain further insights into the contribution of
each feature to the classification process, feature importance was
assessed for the decision tree algorithm. This was done by measuring
the reduction in entropy values, which represents the change in the
information provided by each feature in identifying the target value.
The estimation of feature importance was rescaled to a range of 0–1,
as visualized in Figure 6. The mean and standard deviation extracted
from temperature, SpO2 and heat rate play a significant role in stress
discrimination both stress types and stress levels.

GSR, which represents the electrical properties of skin
conductivity, has been demonstrated a high correlation to
emotional cognition including stress. The Skin Conductance
Level (SCL) derived from GSR directly reflects the general
automatic arousal and it has been demonstrated as a reliable
indicator of stress (Sánchez-Reolid et al., 2020). This indicator
remains important in stress identification even when the
measurement duration is significantly reduced from 60 s to 4 s,
as illustrated in Figure 6. The significance of this indicator in stress
identification persists, maintaining its effectiveness within very short
periods. Notably, SCL emerges as the most influential feature for
discriminating stress across varying time lengths derived from GSR
and all SCL features demonstrate an increased contribution to stress
discrimination, with this effect particularly pronounced in multi-
level stress detection. Especially, the maximum value of SCL
demonstrates enhanced accuracy with decreasing time durations,
both in cases of stress type and stress level. This indicates its
potential for detecting stress changes within shorter time periods.
Conversely, the sensitivity of SCR appears to diminish with
decreasing timeframes, especially in terms of the average value of
SCR. The effective responses of SCR contribute minimally to stress
identification compared to other features. Fewer effective responses
were effectively recognized and captured within a short period time.
This may be attributed to the fact that SCR responses are particularly
pronounced during emotional arousal and are closely linked to
stimuli associated with stressors (Lutin et al., 2021). Literature shows
the phasic components of GSR have established strong direct
correlations with theta waves (<4 Hz) and high inverse
correlation with delta waves (4–8 Hz) (Posada-Quintero and
Chon, 2019).

Heart rate variability (HRV) is another crucial factor that could
indicate stress conditions, lots of studies have demonstrated its
efficacy in the detection of stress (Salahuddin et al., 2007a; Lu
et al., 2009; Correia et al., 2020). HRV is a reliable primary
metric for assessing ANS activity in stress identification, with its
fluctuations reflecting an individual’s capacity to adapt to changes in
the intervals between successive peaks. Decreases in short-term
HRV are indicative of acute stress, suggesting a negative impact
during stressful situations (He et al., 2019a). Pulse rate variability
(PRV), recorded from the PPG sensor, is an alternative method for

assessing ANS activity, which reflects changes in arterial blood
volume during each cardiac cycle. Previous studies have
demonstrated the correlations between PPG features and stress
(Maaoui et al., 2016). Some disagreements are also found in
previous studies which impose caution when comparing metrics
from different sensors (Correia et al., 2020) and short-term versus
chronic stress cases (Schubert et al., 2009).

In this study, time, frequency, and geometric domain features
were extracted and analyzed from PPG signals to evaluate both the
levels and types of induced stress. In general, the features extracted
from the time domain show greater importance compared to other
feature domains (Figure 6). Particularly, the feature measuring the
time between two successive normal PPG onset intervals (NN)
outstand among other features, and it shows a general upward
trend as the duration of the PPG signal decreases. In contrast, a
downward trend in contribution was observed for features extracted
from beats per minute (BPM) and the percentage of successive beat-
to-beat intervals (pNN50) over shorter time periods. This decline is
attributed to the challenges in capturing a complete cycle of the beat
pattern for accurate estimation. When considering multi-level
classification, a slightly higher importance of the geometrical
features (SD1, SD2, and SD2/SD1) can be observed. Furthermore,
an increased contribution can be observed from meanNN, SDNN,
and SD2/SD1 as the time duration decreases from 60 s to 4 s. This
indicates that these features become more influential in capturing
stress-related patterns within shorter timeframes. Moreover, it is
evident that certain features in the time domain are sensitive to the
time duration of stress processing. For instance, the average pulse
cycle interval (meanNN) becomes more precise with shorter
durations both in multi-class and multi-level cases. The
frequency domain features demonstrate stability across different
time periods, with no significant changes in their contribution
observed across various time durations. Conversely, accurate
BPM and pNN50 are best captured over longer timeframes, as
ultra-short time windows may lead to inaccurate counts due to
missed cycles, especially when the heartbeats remain consistent for a
prolonged period. In such cases, shorter time durations fail to
successfully capture stress-related features.

4.3 Multimodal stress discrimination using
machine learning methods

This study introduces multiple machine learning approaches to
assess stress across different stress types and various stress levels, by
integrating multiple physiological signals. All these machine-
learning approaches demonstrated their efficacy in stress
detection using single or multimodal physiological signals in
previous studies (Gedam and Paul, 2021). The performance of
stress classification in this study varies depending on the
physiological signals and their corresponding time lengths utilized.

While the performance using EEG alone is significantly superior
to that of peripheral physiological signals, and extended periods
contribute to an enhanced classification accuracy in the
identification of stress. Previous studies have demonstrated the
capability and reliability of stress recognition from EEG with up
to 94.6% accuracy for 2-level of stress and around 83% accuracy
using SVM andNB for multiple levels of stress (Subhani et al., 2017).
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KNN has shown its superior capacity in multi-level stress detection
(Khosrowabadi, 2018; Plechawska-Wójcik et al., 2019), which also
achieved the best performance when using 4-s EEG signals. Three
levels of stress can be detected with an average of 75% performance
(Jun and Smitha, 2016). Optimized SVM accomplished accurate
binary stress detection using ultra-short duration of EEG signals (2,
4, 8, 10 s) (Sharma et al., 2022). Similar results can be observed from
Tables 3, 4, for both multi-class and multi-level stress
discrimination, The SVM achieved an accuracy of over 98%
when the time durations were 30 s and 10 s, which was only
slightly lower than the performance achieved using LDA. The
LDA has demonstrated its effectiveness in brain cognition
detection from EEG with a very low computational burden
(Arpaia et al., 2020), making it efficient in real-time multi-level
stress detection within a few seconds (Minguillon et al., 2018).

For stress detection using peripheral physiological signals alone,
SVM is widely used in emotion and stress recognition systems
(Rizwan et al., 2019). The performance of SVM is usually higher
than other classifier algorithms in distinguishing multi-levels of
stress (Rizwan et al., 2019; Sharma and Chopra, 2020). GSR signals
were effectively utilized to identify multi-level relaxation responses
through DT classification, achieving over 99% accuracy (Martinez
et al., 2019). Additionally, single PPG sensors were employed to
classify stress levels, attaining accuracies of 86% with SVM and 82%
with DT (Awasthi et al., 2020). In this study, the DT outperforms
other methods but is less suitable for EEG signals. The DT selects
variables at each decision node by calculating the entropy for each
variable and its potential splits, with the change in entropy across all
nodes representing the information gain provided by a feature for
the target variable. The entropy plays a crucial role in node splitting
and division among multiple classes. The classification performance
is affected by the independence of variables within each class. The
possible reason for the better performance of the DT on
physiological signals may be due to higher feature independence,
whereas EEG features derived from EEG signals tend to be more
dependent, hindering perfect splits using the DT method.

The combination of peripheral physiological signals and brain
activity demonstrated superior performance compared to the use of
individual signals alone in this study. The results indicate significant
improvements in stress detection when utilizing both modalities, as
illustrated in Tables 3, 4. Previous study also suggested that there is a
significant increase accuracy of stress detection has been evidenced
from multiple physiological signals when compared to individual
contributions (Shi et al., 2010; Wijsman et al., 2011; Kurniawan
et al., 2013; Zhang et al., 2017; Aigrain et al., 2018; Jambhale et al.,
2022). Machine learning models have been effectively utilized to
leverage the combined power of ECG and EEG signals for stress
detection which achieved 79% discrimination of four levels of stress
using SVM (Xia et al., 2018). SVM and KNN yielded the highest
average classification accuracy and the accuracy increased up to 20%
when combining ECG with EEG (Hemakom et al., 2023). Therefore,
to enhance the reliability of the stress detection strategy, the
integration of multi-modality physiological signals has garnered
significant attention in the field. This approach emphasizes
achievement and improvement and thereby demonstrates the
importance of obtaining a comprehensive evaluation of stress
using diverse physiological signals (Aigrain et al., 2018; Panicker
and Gayathri, 2019). The inclusion of additional signal types enables

effective feature selection from a broader range of choices, further
enhancing the accuracy and efficacy of stress detection outcomes
(Wijsman et al., 2011). More common cases are the combination of
peripheral physiological signals and EEG signals, which have
demonstrated high utility and reliability in stress assessment
(Salai et al., 2016; Rizwan et al., 2019; Gedam and Paul, 2021;
Katmah et al., 2021; Malviya and Mal, 2022). These observations
emphasize the significance of incorporating both types of signals in
stress detection systems. Fortunately, the improved performance
using peripheral physiological signals compensates for the decrease
in accuracy from EEG when the time length is reduced after
combining peripheral physiological and EEG signals. The overall
conclusion is that the integration of peripheral physiological and
EEG signals offers a comprehensive and promising approach to
stress detection, with extended periods enhancing classification
accuracy. These findings have implications for developing real-
time, efficient stress detection systems with minimum delay.

4.4 The short duration of stress
identification for future real-time
applications

In analyzing individual EEG or peripheral physiological signals
for stress classification, our study revealed a clear pattern in accuracy
relative to the duration of the signal recording. Longer durations
enhanced the ability to discriminate between various types and levels
of stress within EEG signals, while shorter durations performed
better using peripheral physiological signals. However, combining
EEG and peripheral physiological data proved highly effective for
stress classification, with longer durations enhancing accuracy
across various time scales.

To the current time, many attempts have been made to explore
the repeatability and reliability of ultra-short periods of
physiological signals for a clear guideline for a stable real-time
stress detection application. Researchers have achieved real-time
stress detection using multi-modal physiological signals (Bin et al.,
2015), using wearable sensors (Prashant Bhanushali et al., 2020),
portable systems (Minguillon et al., 2018) or smart devices
(Ciabattoni et al., 2017), This study attempted to investigate the
efficiency of stress detection from various time-duration biomedical
signals utilizing the correlation between physiological signals
and stress.

Previous studies attempt to evaluate the performance of stress
detection using different lengths of time-series physiological signals.
The window length adopted in stress identification is usually in
minutes which is not possible for effective and efficient real-time
detection. Usually, at least 2 min of the HRV/PRV signals are
required for reliable and accurate feature extraction. It has been
demonstrated real-time stress detection from ECG signals using the
on-chip reservoir computer (Chandrasekaran et al., 2020). Three-
minute overlapping segments of ECG were employed for both
offline training and real-time simulation. Previous literature
revealed the efficiency and reliability of stress detection using
multiple physiological sensors and achieved over 98% accuracy
for over 100 s of interval. The longer time included the better the
performance (Ghaderi et al., 2015). It was found that PRV
recordings are more stable and convenient than ECG recordings
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and PRV indices can be reliably estimated from signals as short as
90 s (Mejía-Mejía and Kyriacou, 2023) and PRV indices can be
extracted from ultra-short PPG signals (60s) (Zubair and Yoon,
2020). Furthermore, it validated that it was possible to preserve
stress-related features for acute stress monitoring within 50 s
(Salahuddin et al., 2007b). With the utilization of physiological
signals, many previous studies have realized real-time stress
detection using different biosignals. A time duration of 10 s of
ECG signals enabled real-time cognitive stress detection using CNN
and achieved over 80% accuracy (He et al., 2019b). A short period
time of 5-s segment of PPG signals achieved 99% accuracy in
discriminating multi-level stress (Mukherjee et al., 2022). The
window length considered in this study included 5 s–20 s in a
5 s step and the detection results revealed an increased accuracy with
time duration decreased.

Notable findings have shown the achievement on investigation on
the impact of different time durations on stress detection using EEG.
Remarkably, even shorter durations of EEG signals have demonstrated
the capacity to achieve high levels of identification accuracy. EEG-based
stress detection showed its reliability, with an average accuracy
exceeding 89% in real-time scenarios, as evidenced in [60], achieving
the capability and effectiveness of EEG-based approaches in real-time
stress detection applications. Moreover, it suggested that the average
accuracy of binary classification significantly improves from 70% to
96% when the time window decreases from 10 s to 2 s as reported in
(Jun and Smitha, 2016). Similarly, Sharma et al. (2022) demonstrated a
decline in detection performance when the signal length is reduced
from10 s to an ultra-short duration of 2 s in binary stress detection from
EEG. The real-time applications worker’s stress monitoring enabled the
stress assessment updated every 2 s and reached more than 90%
accuracy. When time latency increases to 4 s, the stress
discriminating accuracy reaches 100% (Arpaia et al., 2020).

The results of this study provide promising outcomes in stress
identification, as well as discrimination of stress types and stress levels,
using multiple physiological signals within an ultra-short period. The
remarkable improvement in classification accuracy achieved with
reduced time windows demonstrates the feasibility of efficient and
accurate stress detection in shorter durations. These findings have
significant implications for the development of real-time stress
monitoring systems and provide a foundation for further research in
this field. However, it is important to note that when processing data
within ultra-short time durations (less than 2 s), the complete
periodicity of signals, particularly in the case of PPG signals and
phasic responses from GSR, may not be captured effectively.
Additionally, utilizing ultra-short time durations can lead to the
omission of certain feature extractions during PRV signal processing.
On average, there is an approximate data loss of 1.4% and 9.3% when
the time duration is reduced to 10 s and 4 s, respectively. The primary
cause of this data loss stems from the inability to capture the average
time between two successive pulse onsets (meanNN), resulting in a
sequence of missing values for related features such as SDNN, RMSSD,
pNN50, SD1, SD2, and SD2/SD1. In this scenario, instances with data
loss were removed entirely from the analysis. In the context of multi-
modality stress detection, which combines brain signals with peripheral
physiology signals, a crucial consideration is the decision regarding time
duration. Balancing the preservation of informative features and
minimizing time latency becomes essential for enabling potential
real-time applications. To achieve an effective compromise, it is

necessary to carefully select a time duration that captures sufficient
information from all physiological signals. This ensures that the stress
detection system maintains a high level of accuracy while minimizing
any potential delays in real-time applications.

5 Conclusion

This study explored the capability of stress discrimination for
multi-class and multi-level stress detection using various lengths of
physiological signals and the results demonstrated the adaptability
and potential of combined multimodal features for more robust stress
detection. This study also explored the efficacy of precise stress
detection with a short duration of signal, offering promising
prospects for real-time applications in wearable devices. In future
research. Different discrimination methods were discussed, and it
revealed the selection of the optimal approach alignedwith the specific
stress type and duration of the physiological signals employed for
stress detection. The Decision Tree outperformed other classifiers for
peripheral signals, especially for ultra-short durations (4 s), achieving
an average accuracy of 98.3%. For EEG signals, Linear Discriminant
Analysis proved most effective with longer signal durations (over
10 s), reaching 99.8% accuracy for 60-s EEG windows in
differentiating stress types. By integrating peripheral and EEG
signals, the performance estimated from ultra-short timeframes
improve to 98%. This emphasizes the balance between maximizing
feature extraction and minimizing latency for real-time applications.
Continued research is essential to further advance real-time stress
detection technologies. The current research is primarily conducted in
controlled laboratory environments, relying on physical tests and
questionnaires that may be subject to user-entered data biases and
inaccuracies. The measurement of physiological parameters in real-
time and real-world conditions presents challenges. Variabilities in
recorded signals caused by factors such as temperature, physical
activity, motion artifacts, and mood fluctuations need to be
considered. Additionally, more subjects will be included in this
research, and future studies will also take into account parameters
that influence stress responses, such as gender and age. Addressing
these considerations will enhance the accuracy and applicability of
real-time stress detection systems in practical settings. Continued
research efforts in this direction will contribute to the development of
comprehensive and reliable stress detection solutions that can
positively impact various domains, including healthcare, wellbeing,
and performance optimization.
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