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The hearing loss of almost half a billion people is commonly treated with hearing
aids. However, current hearing aids often do not work well in real-world noisy
environments.We present a deep learning based denoising system that runs in real
time on iPhone 7 and Samsung Galaxy S10 (25 ms algorithmic latency). The
denoised audio is streamed to the hearing aid, resulting in a total delay of
around 65–75 ms, depending on the phone. In tests with hearing aid users
having moderate to severe hearing loss, our denoising system improves audio
across three tests: 1) listening for subjective audio ratings, 2) listening for objective
speech intelligibility, and 3) live conversations in a noisy environment for subjective
ratings. Subjective ratings increase by more than 40%, for both the listening test
and the live conversation compared to a fitted hearing aid as a baseline. Speech
reception thresholds, measuring speech understanding in noise, improve by
1.6 dB SRT. Ours is the first denoising system that is implemented on a mobile
device, streamed directly to users’ hearing aids using only a single channel as audio
input while improving user satisfaction on all tested aspects, including speech
intelligibility. This includes overall preference of the denoised and streamed signal
over the hearing aid, thereby accepting the higher latency for the significant
improvement in speech understanding.
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1 Introduction

Approximately 5% of the world population currently suffers from hearing loss, with
associated side-effects ranging from social isolation, dementia, depression, cortical thinning
and increased mortality (Fisher et al., 2014; Cunningham and Tucci, 2017; Ha et al., 2020).
Hearing aids and cochlear implants have been shown to mitigate many of these negative
effects. Nevertheless, a persistent complaint of hearing aid users is that current devices do not
work well in noisy environments (Hartley et al., 2010; Hougaard and Ruf, 2011). One
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solution is to improve the speech intelligibility and subjective quality
of the sound that is output to the user by employing denoising
systems on the device. This has proven difficult to do effectively
given the limited processing power available on these devices, and
previous filterbank-based denoising systems on hearing aids have
not been shown to offer improvements in speech intelligibility in
noisy environments without depending on spatial knowledge of the
scene (Boymans and Dreschler, 2000; Alcántara et al., 2003; Mueller
et al., 2006; Zakis et al., 2009; Brons et al., 2014; Völker et al., 2015;
Chong and Jenstad, 2018).

The rise of deep learning and especially its increased use in
audio, e.g., for speech recognition and speech synthesis, offers a new
approach to denoising audio. Deep-learning-based systems achieve
state of the art denoising performance (Cao et al., 2022; Tzinis et al.,
2022), with some systems offering large improvements in
intelligibility, while only using a single channel of audio
(i.e., without the need for spatial information) (Goehring et al.,
2016; Zhao et al., 2018; Healy et al., 2021; Diehl et al., 2022a). The
next step is to downscale these systems, which typically have large
computational requirements and can only be used offline, so that
they can be used in real-time on mobile and portable systems, such
as smartphones and hearing aids. Since deep learning systems scale
well with number of parameters and therefore in computing power
(Tay et al., 2022), this reduction in size typically causes a reduction
in the systems’ output quality. Ultimately, hearing aids should be
able to provide the computational resources to house powerful
denoising systems themselves but currently, mobile phones’
advanced processors give them an edge in how computationally
expensive, and therefore how good, their denoising systems can be.

However, until now, even with the more powerful mobile
phones, no improvements in speech intelligibility on such
platforms have been published and it has been unclear when the
computational power of the hardware will be sufficient for the deep
learning system to contribute meaningfully to speech
understanding. Specifically, so far no studies using denoising
based on single-channel deep learning models on compact
mobile systems (phones or hearing aids) have shown any speech
intelligibility improvements, although a few studies have shown
improvement in offline computational metrics (Panahi et al., 2016;
Hansen et al., 2019; Baby et al., 2021). The largest improvements in
speech intelligibility that have been shown on mobile systems are
around 0.5 dB SRT (Asger Heidemann et al., 2021) but require
multi-channel input.

In this study, we present a deep learning based single channel
denoising system, which retrieves clean speech from a noisy mixed
signal. The entire system runs on older-generation commercially
available smartphones, which stream the resulting (cleaned) audio to
a hearing aid or cochlear implant. The system improves speech
intelligibility and overall audio quality without using spatial
information. We test the system with hearing aid users across
three different tests, including 1) rating the subjective denoising
quality (overall, noise, intelligibility, speech quality), 2) objective
speech intelligibility, and 3) comparing the phone-based denoising
to a hearing aid only in a live setup where the subjects have a
conversation with the experimenter. In all three tests, our denoising
system achieves significant improvements over the baseline (where
only the hearing aid, but no denoising system is used) in overall
impression and in speech intelligibility.

2 Materials and methods

2.1 Denoising system

The presented denoising system was implemented on an iPhone
7, utilizing only a single processor core, and on a Samsung Galaxy
S10. Our denoising system is identical on both phones; we chose two
different phone manufacturers to ensure that despite the differences
in the respective microphones and audio processing paths, both are
compatible with our denoising system.

From an input short time Fourier transform (Hann window
with 25 ms length, 6 ms hop size, and 22 kHz sampling rate) of
mixed speech and noise, the network is trained to predict the
complex ideal ratio mask (Wang and Chen, 2018). The input
samples are single-channel mixtures of speech (e.g., Librispeech,
Panayotov et al., 2015) and noise drawn from multiple publicly
available databases with ca. 10,000 h of audio (e.g., Gemmeke et al.,
2017; Afouras et al., 2018; Wang et al., 2021); target samples are the
speech samples without any noise added.

We use a closed-loop evolutionary search that optimizes the
network parameters and its structure via a custom speech quality
metric in combination with the measured execution time of the
network on an iPhone 7 (Figure 1). The speech metric (predicted
mean opinion score, pMOS in Figure 1) predicts mean opinion
scores (MOS) and the improvement in predicted MOS scores is used
for optimization. We target MOS scores rather than Signal to Noise
Ratio (SNR) or other conventional objective speech quality metrics
such Perceptual Evaluation of Speech Quality (PESQ) or Signal to
Distortion Ratio (SDR) because MOS has been shown to correlate
much more strongly with human speech quality ratings (Reddy
et al., 2021; Diehl et al., 2022b). The speech metric is publicly
available at https://metric.audatic.ai/(Diehl et al., 2022b). The
closed-loop evolutionary search allows the co-optimization of
denoising performance together with the limited resources on the
mobile device. We limit the maximum execution time to 25 ms,
while searching for the model with the best possible denoising
performance. This upper bound was chosen because preliminary
tests had shown processing delays above 25 ms were noticeable, but
acceptable to internal testers. Latency limitations have strong effects
on denoising performance, since higher latencies allow more
computation to be done and the possibility to provide more
temporal context for the neural networks. See section 2.3 for a
detailed breakdown of the total end-to-end latency.

The basic network architecture is inspired by the U-Net
(Ronneberger et al., 2015), with parameters such as layer type
(convolutional, Long-Short Term Memory (LSTM), Gated
Recurrent Units (GRU), Convolutional Recurrent Network
(CRNN) etc.), possible skip connection locations, temporal and
spectral down- and up-sampling, number of layers, as well as
their size left unspecified to be then optimized by the
evolutionary search. Note that the Conv-TasNet (Luo and
Mesgarani, 2019) is a model that operates directly on the
waveform using dilated temporal convolutions to perform
speaker separation, where the number of target speakers is
known in advance. For speech enhancement, where the number
and identity of speakers are not known in advance, U-Net style
networks (such as the one we use in this study) that operate directly
on the waveform or on the STFT are more commonly used and have
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been shown to perform well on several benchmarks (Defossez et al.,
2020; Zhao et al., 2021; Diehl et al., 2022a; Liu et al., 2023). The
resulting best performing network architecture is then retrained
using Population Based Training (PBT) (Jaderberg et al., 2017),
which jointly optimizes the network weights and hyperparameters
such as the learning rate. To further reduce the computational
footprint of the network and to prevent thermal throttling during
continuous execution on the phone, we apply structured magnitude
pruning. More specifically, we iteratively prune a small fraction of
low-magnitude output channels in each layer, starting in the final
layers of the network and progressing to the input layers. The
pruning focused on reducing output channels of convolutional
layers in contrast to encouraging low-magnitude weights and
high sparsity. Thus, we slightly decreased the number of weights
(~3%) but targeted mainly a reduction in multiply-accumulate
operations, which correlate stronger with execution time. We
then fine-tune the network weights through additional training
between each pruning operation in order to recover lost
performance. This iterative pruning procedure (Li et al., 2017) is
repeated several times. The final model is again fine-tuned using
PBT.With this procedure we achieve a reduction inMAC (multiply-
accumulate) operations of 22% from the original model chosen
through the neural architecture search with 37.9ms–29.5 ms while
only suffering a minor degradation in speech quality performance.
Aside from pruning we also experimented with matrix and tensor
decomposition techniques (Lebedev et al., 2015; Kim et al., 2016;
Kuchaiev and Ginsburg, 2018) which resulted in a similar reduction
in the number of model parameters. However, the resulting
factorized architectures, where large layers are replaced with a
series of smaller layers, did not lead to reduced execution time
on the phone hardware.

The amount of filtering performed by the denoising system can
be set by the user from 0% to 100% in increments of 1% (101 steps).
This value is referred to as the “mixing ratio”. The mixing ratio
linearly interpolates between the original input signal and the
denoised audio generated by the denoising system. Therefore, a
mixing value of 0% passes the unchanged input signal to the
streamer, while a mixing value of 100% only passes the denoised
audio without mixing any of the original noisy input signal back into
the output. Mixing allows the subject to reintroduce environmental
clues, reduce effects of isolation and increase environmental
awareness and can improve perceived sound quality compared to
using the fully denoised signal. No additional postprocessing is
applied on the audio.

2.2 Subjects and inclusion criteria

The experimental protocols employed were approved by the
ethics committee (“Kommission für Forschungsfolgenabschätzung
und Ethik”) of the University of Oldenburg, Oldenburg, Germany
and concur with the Helsinki Declaration. All subjects gave their
informed consent, were selected from the Hörzentrum Oldenburg
subject database, and were paid an expense reimbursement of 12€
per hour. Their participation was voluntary.

In total, 26 German speaking hearing impaired subjects
(19 male, 7 female) aged between 46 and 85 (median 75) and an
average hearing loss of 65 dBHL at 1 kHz (Figure 2) participated. All
participants had been using hearing aids for at least 3 years prior to
their participation in the study. Additionally, three pilot-subjects
were included before the actual study to ensure feasibility of the tests
and procedures. Inclusion criteria for all participants were: 1) to be

FIGURE 1
Training pipeline of the denoising system, based on a mean opinion score (MOS)-estimator-guided neural architecture search. The denoising
network predicts denoised outputs, given mixed speech and noise input STFTs. Network parameters, such as number of layers or type of filters, are
optimized by an evolutionary neural architecture search. This search minimizes the remaining errors for human acoustic perception by using a MOS
estimator, which is a deep neural network trained on a dataset generated from over 1,000,000 human rated audio files.
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at least 18 years old, 2) to have moderate to severe sensorineural
hearing loss (in the range of hearing profiles between N4 and N6
(Bisgaard et al., 2010)) to be experienced hearing aid users (>3 years
experience). Exclusion criteria were 1) suspected dementia,
indicated by DemTect (Kalbe et al., 2004) values of 8 and below,
since this will likely influence performance on the tasks.

2.3 Experimental setup

We tested our system with three different procedures (see
Figure 3A)) subjective ratings of a variety of sound scenes, done
with offline processing on a PC, enabling a double-blind setting, B)
single-blind speech intelligibility tests, with live processing
(performed only on the Android phone), C) live conversations
with the experimenter, with live processing (performed on both
Android and Apple phones). The experiments were conducted over
a timespan of 3 days. Before measurements, all subjects were fitted
with hearing aids (Phonak Marvel 90, the top-of-the line hearing aid
of the largest hearing aid manufacturer) and customized earmolds
(Phonak SlimTip). The earmolds are sealing the ear canal similar to
a closed or power dome, which limits the amount of direct sound
coming in.

In the live tests B and C, the audio signals are recorded with the
smartphone microphone, then using the smart phones audio stack,
transferred to the CPU, where they are processed by the denoising
system. In test A, the signals were pre-processed on a PC using the
same denoising system as for tests B and C, since all sound samples
were known before the test and thereby they can be processed
identically. The resulting denoised signal is sent from the output
device (computer in the sound sample rating, and phone in speech
intelligibility and live conversation) to a “streamer”, the Phonak TV
Connector. Streamers are available as an accessory for modern
hearing aid systems produced by all large manufacturers and
relay a signal from a source to a hearing aid wirelessly. The
hearing aid applies no additional sound processing on relayed
signals. The streamer uses a proprietary transmission protocol,
with a latency of approximately 20 ms. In tests live-processing
settings, the total audio delay of the pipeline from signal

recording to arrival at the listeners ear via the hearing aid is
65–75 ms (ca. 10 ms on iPhone 7; 20 ms on Samsung Galaxy
S10), streamer (ca. 10 ms), wireless link (ca. 20 ms), processing
25 ms, which is noticeable for most listeners in form of a slight
echo. However, this should not impact lip reading, which typically
requires latencies of 100 ms or more to create an audio-visual
disconnect. Therefore, the advantage of the speech denoising
must outweigh the disadvantage of a noticeable latency to
achieve positive overall ratings.

2.4 Subjective ratings using MUSHRA

To assess the subjective improvement using our denoising
system in an offline setting, we use a version of Multi-Stimulus
test with Hidden Reference and Anchor (MUSHRA) (ITU-R
BS.1534-3 Recommendation) without repeating the reference
sound. Specifically, an unprocessed sound (“reference signal”) is
presented, along with two processed versions of the same signal with
different mixing ratios. The subject rates each sample, while being
able to switch back and forth between them without interrupting the
signal.

During the measurements, participants are seated in front of a
computer and asked to rate the samples. The output of the PC is
transferred via digital-analog conversion (RME Fireface UC)
directly to the streamer which relays it to the hearing aid
(Figure 3A). At the beginning, the presentation volume of the
MUSHRA test is set to a subjectively comfortable volume for the
subject, such that the subject is able to perceive both speech and
background noise clearly in all scenes without being affected by too
loud noise or too quiet speech components. Ratings are evaluated on
a scale from 0 to 100 (101 steps) in the following four categories: 1)
Speech Intelligibility, 2) Sound quality of the speech, 3) Background
noise, 4) Overall impression.

The sound samples used in this offline test were recorded with
an iPhone 7 and then processed by the same denoising system that is
implemented on the phones. This ensures a double-blind
comparison without adjusting the mixing ratio, neither by the
experimenter nor by the subjects. For each sound sample, the

FIGURE 2
Mean audiogram of the subjects. Bars show the standard deviation for each frequency. The Phonak Marvel 90 hearing aids were bilaterally fitted to
the measured audiogram of each subject.
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FIGURE 3
Testing setups for the 26 hearing-aid user subjects. (A)Computer-based subjective listening test (MUSHRA). Ratings of presented audio samples are
collected across the categories overall, noise, sound quality, and intelligibility. (B) Objective intelligibility is tested using the OLSA. 12 loudspeakers are
arranged in a circle with the target loudspeaker presented away from the phone microphone and all 11 other loudspeakers playing noise. (C) Live
conversations are also held with 12 surrounding loudspeakers, all of which are playing noise. The phone is placed in the middle of the table. In all
three setups the audio that was denoised with our system is transmitted to a TV connector which then transmits wirelessly to the hearing aid.
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unprocessed sample is presented together with the denoised sound
at two mixing ratios: 80% and individual preference. The individual
mixing ratio was chosen by the subjects during an automated
procedure (similar to a binary search) that determines the
preferred ratio for each subject with a step size of 5%. The
individual mixing ratio is kept constant throughout the
experiment. Six different acoustic scenes/sound samples with
different signal-to-noise ratios (SNR in the range of
approximately −6.6 to 5 dB) were tested: 1) Busy restaurant (low
SNR) with a single speaker; 2) Bistro (moderate SNR) with a single
speaker; 3) Bistro (moderate SNR) with multiple speakers in the
same conversation; 4) Lounge/bar with background music
(moderate to high SNR) with a single speaker; 5) Street scene
with a single speaker; 6) Street scene with multiple speakers in
the same conversation. This results in a total of 24 sound samples
(18 processed by the denoising system and 6 unprocessed). The six
scenes are presented in random order, for each of the four rating
categories, which have a fixed order (Speech Intelligibility, Sound
quality of the speech, Background noise, and then Overall
impression).

2.5 Measuring objective speech intelligibility
using the oldenburg sentence test (OLSA)

For objective measurement of speech intelligibility in noise, the
Oldenburg Sentence Test (OLSA) was used (Wagener et al., 1999;
Wagener et al., 1999). Participants repeat as many words as possible
from a 5-word sentence presented to them in the presence of
background noise. During the experiment, the noise level
remains constant whereas the speech level is adaptively adjusted
in a two-up/one-down procedure such that the subject is able to
understand approximately 70% of the words.

The final SNR of the speech compared to the noise is referred to
as the Speech Reception Threshold (SRT). To reduce training effects
during measurements, two lists of sentences (20 sentences each) are
presented before the actual test. One of the two training lists is
presented with a mixing ratio of 0%, the other with 80% with order
balanced across participants. The loudness of the streamer is
calibrated during the first list, such that the noise is clearly
perceptible, but the overall presentation is not perceived as
uncomfortably loud. Subsequent measurements are completed
with this setting. Here, the noise consisted of many-talker babble
noise, recorded in a crowded cafeteria, with an overall level of
65 dBA.

For the OLSA measurements, the system runs on a Samsung
Galaxy S10 smartphone (Android), which sends the processed
signals to the streamer, that forwards the signals to the hearing
aids of the subject, who sits in an adjacent room (Figure 3B). The
noise is played from 12 loudspeakers that are identically spaced
around the smartphone on which the denoising system is running.
The loudspeaker in front of the phone, i.e., opposite of the
smartphone’s microphone, plays the OLSA sentences. To activate
the streamer, a sentence is played that announces the beginning of
the listening test.

Tests are performed in four different mixing ratios: 0%, 50%,
80%, and individual preference. The individual mixing ratio for this
test is determined by playing OLSA sentences in noise and asking

the subject to determine their favorite setting. Themeasurements are
conducted in a balanced order (latin square design) of mixing ratios.
A break of at least 10 min is taken following the initial procedure.

2.6 Live conversation subjective ratings

The goal of the live conversation setup is to simulate a typical
situation at a busy cafeteria and compare the subjects’ satisfaction
using the hearing aid and using the denoising system (which
includes the latency caused by the wireless link). To this end,
noise is presented from 12 equally spaced loudspeakers, centered
around a table where the subject and the experimenter sit, facing
each other at a distance of about 1.25 ms (Figure 3C). The phone is
placed on the table at equal distance to subject and experimenter.
The 12 loudspeakers play a bistro scene at a total level of 68 dBA,
that is comprised of noises like babbling noise, water faucets, and
sounds of clearing plates. Due to hygiene concerns related to the
COVID pandemic, a shield was placed between the subject and
experimenter with a window at the bottom (similar to shields used at
cashiers). During the conversation, the experimenter tried to
maintain an equal duration of speaking himself and letting the
subject speak to also allow them to judge the sound of their own
voice.

The live conversation starts off with normal usage of the hearing
aid without streaming (contrary to MUSHRA and OLSA). After
5–10 min of conversation, the streamer and denoising system are
activated with the mixing ratio set to 0% (no processing) so the
subject can calibrate the loudness such that it matches the hearing
aid. This adjustment is done for both smartphones and maintained
for all subsequent measurements. The experimenter and the subject
conduct a dialogue for at least 5 min and then rate each of the
following four categories: overall preference, own voice,
experimenter’s voice, and noise reduction. The subject selects
ratings on a scale from 1 to 100 using an app on a tablet
(Figure 3C, bottom). Finally, the subjects’ task is to compare the
subjective quality of the hearing aid vs. denoising on the iPhone 7 vs.
denoising on the Samsung Galaxy S10. Both denoising
implementations on both phones work identically and are set to
amixing ratio of 80% but use the respective audio processing stack of
the phones (i.e., the operating system dependent pre- and post-
processing of the audio, since there is no direct access to the raw
audio without going through the operating systems audio
framework). The hearing aids used the speech in noise program
(default setting).

3 Results

We first tested the subjective impact of our denoising system
(Figure 4). The ratings from the MUSHRA test show a strong
improvement for the overall and noise categories when using our
denoising system, with 42.3 points and 54.7 points of mean
improvement respectively, on a 1 to 100 scale, using individual
mixing ratios. Subjects are presented the 1 to 100 scale in words to
express how much they like a sample (German: “Gefällt mir”) with
5 anchors: 100–very good (“sehr gut”), 75 - good (“gut”), 50 - neutral
(“weder noch”), 25 - dislike (“nicht”), 0 - strongly dislike (“gar
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nicht”). There is also an improvement of 21.5 points in perceived
sound quality with our denoising system (for the individual mixing
ratio setting). The perceived intelligibility also improved by
37.6 points using the individual mixing ratio. The individual
mixing ratio of the MUSHRA (mean 81.15% processed, median
100%, range from 0% to 100%, STD of 27.6%) is kept the same over
the four different rating categories. The improvement in overall
rating due to our denoising is independent of the users’ hearing loss
as measured by PTA Combined (r = −0.02 for individual mixing
ratio, r = −0.003 for 80% mixing ratio). Improvements in subjective
experience of our denoising sysyem over the reference are highly
significant, as measured by a paired Wilcoxon signed rank test (p <
0.0001 in all categories).

Another key aspect of hearing aids is their ability to provide the
user with an objectively measurable increase in speech
understanding. We test for this using the OLSA speech in noise
intelligibility test (Figure 5). For the OLSA, the mean individual
mixing ratio was 71.25% with a standard deviation between subjects
of 20.27%. The reduction of the mixing ratio compared to the
MUSHRA test is likely because the OLSA operates at lower SNRs
(up to -8 dB) compared to the MUSHRA, which we performed in

the range of −5 to 5 dB SNR. At such low SNRs, the denoising system
produces more artifacts than at higher SNRs. Without any
denoising, the average SRT for the 26 subjects is at −4.3 dB (std.
1.69 dB) SRT (Figure 5A). When using our denoising system, this
improved to −5.45 (std. 1.39 dB) SRT, −5.51 (std. 1.22 dB) SRT,
and −5.53 (std. 1.29 dB) SRT with mixing ratios of 50%, 80%, and
individual preference, respectively. The resulting increases in SRTs
are 1.14 (std 0.9 dB) SRT, 1.20 (std. 1.08 dB) SRT, and 1.22 (std.
0.83 dB) SRT (Figure 5B). These increases in SRT are highly
significant (p < 0.0001) according to a paired Wilcoxon signed
rank test. When visiting the hearing care professional who fits the
hearing aid, it is possible to choose the most beneficial setting for
each hearing aid user. Similarly, when choosing the best mixing ratio
for each subject (excluding a mixing ratio of 0%, since none of the
results were optimal without using our denoising), it improves to a
mean of −5.95 (std. 1.17 dB SRT), thereby enabling the subjects to
maintain their speech understanding at a 1.64 dB lower speech level
than without denoising (Figure 5B). Furthermore, choosing the best
mixing ratio, the system always increases the SRT without any
negative SRT changes among the 26 subjects. Additionally, we
observe a correlation between initial SRT and SRT improvement

FIGURE 4
MUSHRA results of hearing-impaired subjects comparing the reference signal to the deep learning processed signal with self-adjusted mixing ratio
(mean mixing ratio is 81.15%, n=26). Subjective ratings on the categories overall, noise, sound quality, and intelligibility. Bars indicate 75, 50, and
25 percentiles. Triangles represent the mean. p-values are according to paired Wilcoxon signed rank test.

FIGURE 5
Reducing speech reception thresholds (SRT) on the Oldenburg Sentence Test using our denoising system for hearing impaired (n=26) subjects at
70% speech intelligibility (SRT70). (A) Distribution of SRT70 for different mixing ratios (0%, 50%, 80%, ind.). p-values are based on the t-test between 0%
mixing ratio and the displayed mixing ratios. (B) Improvements over 0% mixing ratio for all other mixing ratios. (C) Relationship between SRT gains in the
best mixing ratio setting (besides 0%) and baseline SRTs without denoising (0% mixing), adjusted to avoid spurious correlations. p-values are
according to paired Wilcoxon signed rank test.
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with our denoising system of r=0.62 (Figure 5C). This indicates that
subjects with more severe hearing loss (as measured by the
unprocessed SRT), benefited more strongly from our denoising
system.

The denoising system or similar versions are intended to be used
in real-life scenarios and as such, tests in front of the computer or via
pre-recorded and standardized sentences do not fully reflect how
these systems perform in the real world. To bridge the gap between a
laboratory setting and a real-life scenario, we performed a live
conversation experiment where we asked the participants for
their subjective preference between a standard hearing aid and
our denoising systems on the two phones (Figure 6). The
implementations of our denoising system on the two phones did
not differ algorithmically and showed similar improvements of 38/
43 points better on average for the overall category than the hearing
aid on a 1–100 scale (Figure 6), for the iPhone 7 (“iOS”) and the
Samsung Galaxy S10 (“Android”), respectively (statistically
significant at p < 0.0001 according to paired Wilcoxon signed
rank test).

The overall impression of the system includes multiple factors.
We therefore also asked subjects for their ratings in three other
categories: own voice, experimenter voice, and noise (Figure 6).
While the experimenters voice and noise ratings are in line with the
overall ratings, the own voice ratings are significantly worse than the
hearing aid when using the phone-based denoising system. This is
likely because of the ca. 65 ms (iPhone) resp. Ca. 75 ms (Samsung)
delay caused by the wireless link and audio processing stack on the
phone. It is well known that own voice perception is strongly
impacted by latency, which is audible for most people in the
form of a slight echo but should not impair audio and visual lip-
synchronization, which typically occurs at 100 ms or more.
Participants preferred the iPhone setup (median rating of 36.5)
over the Samsung setup (median rating of 20.5) for the own voice
category, likely due to the 10 ms lower latency. The difference in
distribution is statistically significant at p < 0.05. Note that in the
“Overall” category the distributions of scores are not significantly
different between Samsung and iPhone (p-value of 0.418), implying
that the additional 10 ms difference in delay seem to have a relatively
minor effect on overall perception. When we asked subjects for the
reasons of their low own-voice ratings many reported an “echo” in
their voice. Given that the scene was chosen to be a challenging

acoustic environment with the experimenters intentionally
maintaining a normal conversational speech-level without raising
their voice, subjects still showed a strong overall preference for the
denoising model despite the delay and poor own-voice perception
because they could better understand the experimenter. We do not
expect this preference to be maintained in situations with little-to-no
background noise.

4 Discussion

We tested a deep-learning based denoising system, implemented
on two different phone platforms, with 26 hearing aid users in three
different test setups. In theMUSHRA test, overall impression ratings
increased by 42 points (on a 0 to 100 scale); in the OLSA test the
speech reception threshold improved by 1.6 dB; and in the live
conversation, overall impression compared to a hearing aid
improved by 54.7 points (on a 0 to 100 scale). Using this
comprehensive test suite, we are the first to show improvements
across all tests (and especially speech intelligibility), using a single-
channel denoising system.

In the MUSHRA test, noise ratings improved the most, likely
driving the strong improvement in the overall rating category. The
OLSA test showed that our system provides higher intelligibility
improvement for individuals with worse baseline intelligibility.
Additionally, the variance of the intelligibility is reduced when
choosing a mixing ratio of at least 80%. This is mostly achieved
by improving the worst speech intelligibility results, while
moderately increasing the rest. The OLSA test also revealed that
it might be useful to adjust the mixing ratio in a real-world
environment depending on the estimated SNR. Lower mixing
ratios (e.g., the 73% average individual mixing ratio preferred by
the subjects in the OLSA test) might lead to better intelligibility in
extreme situations (−5 dB to −10 dB) and higher mixing ratios
(80%+ preferred by the users in the MUSHRA test) improve the
noise reduction and comfort. Finally, the live conversation
experiment shows that the system is preferred over existing top-
of-the line hearing aids in the given high-noise situations. This is
despite the noticeable latency, which was commented on by the
subjects. However, the improvements in understanding in noise
outweigh the disadvantage of the higher latency on average for the

FIGURE 6
Live conversation ratings for hearing impaired subjects (n=26) comparing our denoising system on an iPhone 7 (iOS), a Samsung Galaxy S10
(Android), and a fitted hearing aid. Responses for overall ratings are asked first, own voice, experimenter voice and noise are asked in that order afterwards.
p-values are according to paired Wilcoxon signed rank test.
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subjects. Note that in this study, custom ear-molds were used, which
are preferred for medium to severe hearing loss to be able to achieve
the required amplification of the sound. Those ear-molds also
reduce the loudness of the environment, which presumably leads
to a slightly higher acceptance of latency, since the first part of the
echo (the original sound) is less audible.

Nevertheless, latency remains an issue, which is most apparent
in own-voice ratings, where latency is more noticeable, since it
impacts the hearing aid wearers perception of own speech. Latency
could further be improved in two ways: One option would be to use
more recent generations of smartphones with dedicated AI
accelerators and faster communication protocols, such as aptX by
Qualcomm or Apple’s Made for iPhone audio processing stack.
These would allow for a significant reduction in both algorithmic
and communication latency. The fastest existing communication
protocols typically add around 20 ms latency to the system, in
addition to (at least) 10 ms latency caused by the audio
processing stack of the phone. Thus, a total latency of around
40 ms could be achieved using this approach. Reducing latency
beyond this would require a direct implementation of the system on
the hearing aid. We intentionally implemented our system on the
CPU of two older-generation phones to be as close as possible to
such an implementation and test how the denoising system
performs under severe limits of power consumption. A hearing
aid implementation could reduce latency down to the algorithmic
latency and have other benefits like potential integration with spatial
algorithms. However, due to the limited battery capacity of hearing
devices, such an implementation would likely require dedicated
optimization of energy efficiency. This could be achieved using
techniques proposed, e.g., in (Speckhard et al., 2023) or by activating
the DNN only in the most challenging situations.

In summary, the presented system already improves upon
current hearing aids in high-noise situations and benefits the
user across multiple dimensions that include objective
intelligibility and subjective preference. The biggest current
shortcoming of the proposed system is the latency caused by
using a wireless connection via the streaming device (TV
Connector). However, despite the noticeable levels of latency and
the obvious need for improvement, in highly noisy environments the
presented solution is still clearly preferred and leads to better speech
understanding compared to using the existing hearing aids.
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