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Introduction: The study of arousal is crucial as it helps to understand the role of
increased physiological and psychological activation in emotions, motivation,
cognitive performance, stress responses, sleep-wake cycles, and clinical
application. Recent studies have shown that arousal is commonly associated
with physiological changes including heart rate variability (HRV) as indicated by
RR intervals. In some applications, the analysis requires analyzing short segments
of RR time series, shorter than the usual 5 min HRV. The objective of this study is to
check the performance of ultra-short-term HRV indices to track changes in
arousal.

Method: In this study, to follow arousal changes, 31 healthy subjects were
examined in both non-arousal (relaxed) and aroused states. Two states of
5 minutes each are used to measure the relaxed and arousal states. After data
collection, RR time series segments were obtained randomly for each subject in
arousal and relaxed states in the 30s, 60s, 120s, and 240s time windows. Next,
17 ultra-short-term HRV indices were computed for each time window for RR
intervals in relaxed and aroused states.

Results and Discussion: Due to the findings, novel indices such as ACI and fnQ
may aid in the recognition of arousal from relaxed status. The odds of ACI being
higher for the same subject during a randomly selected arousal interval than
during a randomly selected relax interval are 78%, 79%, 84%, and 89% for the 30s,
60s, 120s, and 240s time windows respectively. Similarly, the odds of fnQ being
higher during arousal than during a relaxed state are 79%, 81%, 84%, and 85% for
the 30s, 60s, 120s, and 240s time windows respectively. Therefore, ACI and fnQ
provided the best performances in intra-individual arousal detection by using
ultra-short-term HRV analysis among all of the obtained indices. Nevertheless,
when pooling the indices for all the subjects, the inter-subject variability causes a
moderate classification performance for all indices. In this case, the best
performing index is fnQ with an area under the receiver operator curve (AUC)
of 75%, 77%, 79%, and 80% for the 30s, 60s, 120s, and 240s time windows
respectively.
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1 Introduction

In experimental psychology and behavioral neuroscience,
arousal has taken on several forms as a generic condition of
central nervous system activity (Robbins, 1997). The level of
activation is regulated by the ascending reticular activating
system (ARAS) in the brain that simulates cortical activation
represented by high-frequency gamma and low-frequency
rhythmic theta activity, and descending networks, which trigger
sensory-motor activation, represented by high electromyographic
activity that is transmitted to the spinal cord. The arousal
components which use a variety of neurotransmitters are located
within the brainstem reticular formation, thalamus, posterior
hypothalamus, and basal forebrain. The widespread projecting
glutamate-using neurons of the non-specific thalamocortical
projection system and the ventral extra-thalamic relay systems
found in the basal forebrain and posterior hypothalamus are
simulated by neurons of the reticular formation, which primarily
uses glutamate as a neurotransmitter, to promote cortical activation
(Jones, 2003). Formerly, electroencephalography (EEG) was used to
capture arousal since it defines as frequency shifts in the electrical
activity of the human brain. However, recent studies have shown
that arousal is rather frequently related to physiological changes
such as heart rate, pulse transit time, blood pressure, and respiratory
rate. The desire for employing these physiological markers for
arousal diagnosis has grown because they are more convenient to
quantify than EEG signals (Goldie et al., 2010). For instance, Basner
et al. (Basner et al., 2007) report that the heart rate immediately rises
at the beginning of arousal and gradually returns to normal values
(rebound effect) depending on how long arousal lasts. Consequently,
they created an algorithm that computes beat-by-beat likelihood
ratios to identify arousal, showing the probability that a certain
heartbeat will coincide with the onset of the arousal state. Heart rate
variability (HRV), defined as the change in the time intervals
between adjacent heartbeats, is considered a measure of
neurocardiac function that reflects heart-brain interactions and
dynamic non-linear autonomic nervous system (ANS) processes.
Consequently, studies of the fundamental connections between
psychological processes and physiological functions, evaluations
of cognitive development, and basic investigations of the central
regulation of autonomic controls are growingly using measures of
HRV (Berntson et al., 1997). The afferent nerves have a significant
impact on the rhythm of the heart and are essential for physiological
regulation. The heart’s intrinsic nervous system activity, which
includes afferent signals from the mechanosensory and
chemosensory neurons, integrates efferent sympathetic and
parasympathetic activity (Shaffer et all., 2014). The balance
between the sympathetic and parasympathetic nervous systems,
which are two essential branches of the ANS, affects how steadily
the interval between heartbeats varies. ANS implies a bridge between
HRV and arousal activation. For instance, the parasympathetic
nervous system predominates in a relaxed state, increasing HRV,
whereas the sympathetic nervous system predominates in an arousal
state, decreasing HRV (Acharya et al., 2006). According to the
diagnostic value of HRV, various techniques have been developed to
quantify this beat-to-beat variability to provide parameters of
cardiac autonomic regulation. There are three primary categories
for the analysis of HRV: time domain, frequency domain, and non-

linear approaches. The time domain methods employ either
statistical or geometric approaches. For the analysis of HRV, time
domain methods allow determining both instant heart rate and
intervals between subsequent normal QRS complexes (normal-to-
normal R-R interval, NN), as well as other variables derived from
NN intervals, such as mean NN interval, mean heart rate, the
difference between the longest and shortest NN interval, and the
difference between night and day heart rate. More clinically relevant
HRV parameters include the root mean square of successive RR
interval differences (RMSSD), the standard deviation of normal RR
intervals (SDNN), the standard deviation of the average normal RR
intervals (SDANN), and the percentage of normal RR intervals that
differ by 50 ms (pNN50). Except for pNN50, all HRV indices are
provided in units of time (ms) (Xhyheri et al., 2012). Using
frequency domain data, the amount of signal energy inside
component bands can be determined either absolutely or
relatively. The main frequency components in HRV analysis are,
high-frequency (HF) (0.15–0.4 Hz): a marker of the
parasympathetic tone, low-frequency (LF) (0.04–0.15 Hz): related
to sympathetic tone or autonomic balance, very-low-frequency
(VLF), (0.0033–0.04 Hz), LF/HF ratio: index of the interaction
between sympathetic and vagal activity (Heathers, 2014). Non-
linear approach the unpredictability of a time series, which
results from the complexity of the systems that regulate HRV.
SD1, SD2, SD1/SD2, approximate entropy (ApEn), sample
entropy (SampEn), detrended fluctuation analysis (DFA) α1, and
DFA α2 are considered the main non-linear indices. The HRV
indices that are used in this study are provided in Table 1. In recent
studies, since traditional HRV recording systems, involve expensive
equipment that also is not comfortable for daily usage, alternative
methods have been utilized such as wearable sensors. Wearable
technologies are characterized in the healthcare industry as non-
invasive and autonomous devices that collect, process, and aggregate
physiological data to enhance individual health status. Recent
achievements provide added value for healthcare concentrating
on prevention, diagnosis, treatment, and monitoring (Krey et al.,
2020). In the HRV study, ultra-short-term analysis refers to
recordings that are less than 5 min (Berntson et al., 1997). In
recent years, the demand for ultra-short HRV analysis is widely
increasing, especially in wearable sensors such as smartwatches and
cellphones, to monitor heart rate and health status (Athavale and
Krishnan, 2017; Nabih-Ali et al., 2017). Moreover, ultra-short HRV
analysis is widely demanded in medicine, performance, and daily
fitness (Shaffer et al., 2020). The main reason for the remarkable
attention to the use of this metric in recent studies is that the
conventional 5 min HRV recordings are not appropriate, due to the
real-time (from 10 s to 1 min) requirements of certain applications.
Hence, ultra-short recordings may allow continuous and real-time
monitoring of wellbeing status (such as mood, attention, stress, and
arousal levels (Pecchia et al., 2018)). Previous studies reported that
features that effectively remove slow trends in the RR time series
were more reliable and could be more accurately estimated from
very short segments (McNames and Aboy, 2006). Although, HRV
features sensitive to low-frequency components of HRV have poor
repeatability and cannot be estimated accurately from
electrocardiogram (ECG) segments shorter than 10 min
(Sandercock et al., 2005) since the spectral analysis must be
performed on stationary recordings lasting at least 10 times more
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TABLE 1 Ultra-short-term HRV indices were used in this study.

HRV index [unit] Description

Time-Domain Mean RR [ms] The average of RR intervals.

SDNN [ms] The standard deviation of RR intervals.

Min RR [ms] The minimum value of RR intervals.

Max RR [ms] The maximum value of RR intervals.

RMSDD [ms] Root mean square of successive RR interval differences.

PNN50 [%] Percentage of successive RR intervals that differ by more than 50 ms.

HRV triangular index The integral of the density of the RR interval histogram is divided by its height.

TINN [ms] The baseline width of the RR interval histogram.

Non-linear SD1 [ms] The standard deviation of the Poincaré plot (short-term variability).

SD2 [ms] The standard deviation of the Poincaré plot (long-term variability).

SD1/SD2 The ratio of SD1-to-SD2.

Approaches ApEn Approximate Entropy.

SampEn Sample Entropy.

DFA α1 Short-term fluctuation slope in detrended fluctuation analysis.

Novel techniques ACI Acceleration changes index: Quantifies the chances that an HR acceleration is followed in the next beat by a heart rate deceleration
or vice versa.

FnQ Quantifies the degree of multifractality of the RR time series.

Alpha (α) Quantifies the main fractal scaling exponent of the RR time series.

FIGURE 1
Block diagram of arousal detection by using ultra-short-term HRV analysis in this study. BP Filter, band-pass filter.
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than the slower significant oscillation period. Hence, some HRV
features lose significance if computed in an ultra-short-term
(Castaldo et al., 2019). In light of this, one of the main objectives
of this study is to explore the validity of novel HRV measures in
tracking physiological changes in the human body, specifically
arousal activation, through ultra-short-term assessment. By
applying some novel approaches along with conventional HRV
methods, the study aims to determine if these indices might
accurately monitor changes associated with arousal in a real-time
setting.

2 Materials and methods

The methodology for detecting arousal via ultra-short-term
HRV analysis is described in this section. Figure 1 shows a block
diagram of the processing steps helping to grasp the basic notion.
The experimental setup to induce arousal to generate the dataset,
data analysis, and statistical tests are extendedly described. All data
and codes are publicly accessible at https://osf.io/j98ey.

2.1 Data acquisition

In this attempt, 31 healthy subjects (18 male and 13 female) with
a mean of 31.80 years and standard deviation age of 10.80 years were
chosen to participate in the experiment. In research studies
conducted in laboratory settings, participants are typically
individuals associated with the university. These participants,
who are researchers, scientists, students, or academic staff,
volunteer to take part in the study. None had a history of
neurological disorders or cardiac disease or a family history of

early death in cardiovascular disease and all exhibited normal
ECG signals without any sign of arrhythmia. The subjects
included in the study were individuals who were either sedentary
or moderately physically active with a body mass index (BMI) of
25.04 ± 3.0 kg m-2 in men and 23.35 ± 3.1 kg m-2 in women. All
subjects in this investigation provided informed consent before
participating, and the study was carried out by the Declaration of
Helsinki and approved by the local Ethics Commission for Human
Experimentation (protocol code CEEAH-5745). The experiment
was started at the beginning of May 2022 and it was conducted
till the end of June 2022.

2.2 Experimental setup

The experimental setup is designed to cause variations in arousal
by employing the following stages in a laboratory setting to measure
the impact of arousal in the human body. We asked the participants
to seat in front of the monitor screen and put the headphone on to
hear the sounds that are played during each phase of the experiment.
To activate the arousal state, the Stroop test task was used which was
implemented in MATLAB ® Software (Figure 2). In the Stroop test,
participants name the written word color of incongruent words
(word condition) or rectangles (color condition). The word
condition involves selecting the color which corresponds to the
word’s meaning, while the color condition focuses only on naming
the ink color of rectangles, providing insights into cognitive
processes and interference effects.

2.2.1 Seated resting
The study does not include this stage, which comprises

recording for 2 min to allow for physiological adaption. The

FIGURE 2
(A) The Stroop color-word interface is used for the first arousal state (A1) which participants name the written word color of incongruent words
(word condition). Here, the participant is instructed to select the color “green” that corresponds to the writtenword’smeaning. (B) The Stroop color-word
interface is used for the second arousal state (A2) which participants name the ink color of incongruent rectangles (color condition). In this case, the
participant is expected to choose the color “blue” which corresponds to the ink color of the rectangle, disregarding the actual color word written.
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subject is yet seated and the sensors are attached before recording
begins, which ushers in this level.

2.2.2 Non-arousal state (relaxing status (R1))
At this level, subjects were advised to breathe on their own but

try tomaintain a slow breathing rate while listening to nature sounds
for 5 min with their eyes closed. Paced breathing is frequently used
to increase respiratory sinus arrhythmia, which is linked to lower
heart rate and higher vagally mediated HRV measures (Vaschillo
et al., 2006). However, it has not been widely used because the task of
synchronizing breathing with an external stimulus can cause
unintentional arousal.

2.2.3 Arousal state (Stroop test task (A1))
At this level, the Stroop test of word condition has been

conducted. During the test, the subject is listening to traffic jam
noise. They are taught to quickly choose the color (either red, blue,
green, or yellow) that corresponds to a displayed word on a
computer screen while using a mouse with their dominant hand
(Figure 2A). The word that is printed is enclosed in a rectangle
whose color can either match the word (color-word match) or not
(color-word mismatch). During the 5 min that makes up this level,
the selection task is repeated. The likelihood of a color-word
mismatch grows as time since the start of this stage increases.

2.2.4 Non-arousal state (relaxing state (R2))
Subjects in this level, like those in state R1, were instructed to

breathe slowly with closed eyes while listening to nature sounds for
5 min time duration.

2.2.5 Arousal state (Stroop test task (A2))
At this level, the Stroop test of the color condition has been

conducted. As mentioned above, this stage and stage 3 are simply
different in that the subject should choose the color of the rectangle
rather than the color of the written word (Figure 2B). The activity is

performed for 5 min, and the probability of a color-word mismatch
increases as time goes on. At this level, the volunteers are required to
listen to death metal music while the test is performed (The reason
for using various acoustic simulators during A1 and A2 is to check if
the different simulators such as traffic jam noise or death metal can
activate the arousal differently or not).

2.3 Setup configuration

This investigation collects relevant bio-signals using a Biopac
MP36 acquisition unit the electrocardiogram (ECG),
photoplethysmography (PPG), electromyogram (EMG), and
respiration rate were all simultaneously sampled at 1 kHz. Here,
we concentrate on the ECG signal that is applied to detect the
arousal state. To capture the ECG signal, the standard lead II and
consequently, the right arm (RA), left leg (LL), and right leg (RL)
have all been attached with three electrodes (see Figure 3). By
lowering the P and T wave amplitudes and preventing slow drifts
related to baseline wander, the high-pass, cut-off frequency of 0.5 Hz
conducts a pre-enhancement of the QRS complex at a relatively high
value (compared to clinical ECG). On the contrary, interference, and
noise are minimized by the low value of the low-pass cut-off
frequency of 35 Hz. The interval fluctuation between successive
QRS complexes is considered to be accurately captured at a sampling
frequency of 1 kHz and gain of 1,000.

2.4 Diagnostic power analysis

The first step for an accurate ECG analysis, is signal filtering,
since the ECG signal has low frequency and amplitude.
Consequently, here the ECG has been filtered using a second-
order band-pass filter with a cut-off frequency between 15 and
30 Hz to enhance the QRS complex by using Kubios® software.
After ECG signal filtering, the RR time series are detected by
using Kubios. To initiate analysis, for each arousal state, two
segments of the RR time series with a fixed time window length
(T) were extracted. To extract them, first, the target state was
chosen at random (A1 or A2 for arousal and R1 or R2 for
relaxation) as well as the subject. Then, from all the RR time
intervals included in the 5 min of the chosen state, a starting
interval was randomly selected (at sample nstart of the RR time
series) considering all intervals from the beginning of the state to
5 min minus T. Once this interval is allocated, the segment is
extracted by considering the consecutive RR intervals from nstart
to the nend where nend is the maximum sample number that meets
RR(nend)-RR(nstart)<T. For each T and state (either arousal or
relaxed), this procedure is repeated 1,000 times to have a large
number of ultra-short-term RR time series realizations. We have
considered four different values for T: 30s, 60s, 120s, and 240s.
After RR time series segment extraction 17 ultra-short-term HRV
parameters either in the time domain, based on non-linear
dynamics approaches, or novel techniques were calculated in
the different randomly extracted time series (applied HRV
indices are summarized in Table 1). The reason for not using
the frequency domain as earlier described is that indices in the
power spectrum cannot be properly applied in the ultra-short-

FIGURE 3
The schematic placement of electrodes for ECG monitoring. RA
is right arm lead, LA is left arm lead, and LL is left leg lead. FI, FII, and FIII
correspond to lead I, lead II, and lead III, respectively.
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term analysis. In this study, to compute the HRV triangular
index, the number of successive values for the local measure was
considered 0 which means that this parameter is calculated
retrospectively. Moreover, the bin size of the histogram in the
HRV triangular index and TINN was taken 1/128. For ApEn and
SampEn, an embedding dimension of 2 and 3 beats was
employed, respectively. To calculate these two entropy indices,
the tolerance 0.2 multiplied by the standard deviation of the RR
time series was used. Further, to determine the ApEn index the
delay time for down-sampling is considered 1. Since the
fluctuations in this attempt are short-term, scales between
4 and 12 beats For DFA α1 were applied. In addition to the
conventional HRV parameters some novel indices have also been
employed because it was thought that they would be sensitive to
arousal fluctuations; ACI, fnQ, and alpha (α) which are all
presented by García-González et al. (García-González et al.,
2003; García-González et al., 2013) are outlined here.

2.4.1 Acceleration change index (ACI)
A new, quick, and simple-to-use index for HRV analysis that

captures the dynamics of the RR time series (García-González et al.,
2003). This index identified the direction of the variations in a time
series. The ACI measures how frequently a local maximum or
minimum follows a local minimum or vice versa.

2.4.2 Fractional differ-integration index (fnQ)
Fractional differ-integration has recently been used as a new

method in HRV studies. A novel effective index called the fnQ
measures how the time series adapt to a mono-fractal time series
model. It is derived from the fractional differ-integration operator.
This parameter focuses on how the standard deviation of the
fractionally differ-integrated RR time series changes with the
differ-integration operator’s order (García-González et al., 2013).
Significant fnQ alterations are brought on by aging, postural
changes, and timed breathing.

2.4.3 Alpha (α)
As the sequence that minimizes the standard deviation of the

fractionally differ-integrated RR time series, the alpha (α) index was
suggested. A high association between this index and the short-term
exponent derived by regularly used HRV measures including DFA,
LF/HF, and RMSDD was found based on the data obtained (García-
González et al., 2013). The challenge of determining which category
an observation (or series of observations) belongs to in statistics is
known as classification. Here to classify arousal and non-arousal
(relaxed) in an ultra-short-term HRV study, various statistical
analyses have been used which are described as follows.

2.4.3.1 ANOVA test
In the initial stage to recognize arousal by using HRV

analysis, HRV indicators were compared using the analysis of
variance (ANOVA) test (Relaxing (R) and Arousal (A) where
states relaxed 1 (R1) and relaxed 2 (R2) are pooled and state
arousal 1 (A1) and arousal 2 (A2) are pooled as well). The index
has proper sensitivity to determine arousal if the one-way
ANOVA test results show significant differences between
arousal states since the observed differences between indices
in the various arousal states are large enough to not be

obscured by the inter-subject variability. In addition to the
one-way ANOVA, a two-way analysis of variance can look at
data that are divided into categories based on two independent
variables (X1 = Arousal state, X2 = Subject). One of the main
disadvantages of the ANOVA test is that it compares samples
based on their means. It means that ANOVA examines the means
of various samples to determine the influence of one or more
factors on the outcome. Consequently, in this survey, more than
the ANOVA test we applied techniques that can compare the
certain value of each HRV index instead of their mean value
which can cause more reliable classification results. To achieve
this, the two following markers are calculated for each HRV
index.

2.4.3.2 K value
The K value for an HRV index is computed from the 1,000 pairs

of short-term RR time series randomly extracted for the different
subjects. If Indna(i) is the index computed during the non-arousal
(relaxed) state for realization i and Inda(i) is the value of the index
during the arousal state, the K value is:

K � 2 ×
1
2
− ∑N

i�1H Indna i( )> Inda i( )( )
N

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
(1)

where H(Indna(i)> Inda(i)) is the Heaviside function (Towers,
2009) that is equal to 1 ifH(Indna(i)> Inda(i)) and zero otherwise,
and N is the number of realizations (1,000 in our study). Hence, this
statistic quantifies how many times out of 1,000 epochs the value of
the estimated HRV index in one state is higher than in the other.
This parameter’s value varies from 50% (no change associated with
the arousal state) to 100% (perfect classification).

2.4.3.3 AUC (the area under the ROC curve) value
The area under the Receiver Operating Characteristic (ROC)

curve (AUC) is a regularly used metric to assess classification
algorithms ranking quality which is connected with the quantity
calculated in the Wilcoxon or Mann-Whitney statistical test. The
ROC was initially discussed in the context of radio waves in signal
detection theory (Hanley et al., 1982). The true positive rate (TPR) is
plotted as a function of the false positive rate (FPR) on the ROC
curve for a binary classification problem. Sweeping the classification
threshold from the most positive classification value to the most
negative yields the curve’s points. The ROC curve for a
categorization that is entirely random is a line that runs from (0,
0) to (1, 1). Any gain in classification accuracy over random
sampling yields a ROC curve that is at least partially above this
line. The area under the ROC curve is referred to as the AUC (Cortes
and Mohri, 2005) and it can be considered as an index based on
pairwise comparisons between classifications of the two classes. By
comparing HRV index values across subjects, AUC evaluated the
classificatory performance of HRV indicators. In this work, we
computed the AUC without the need to evaluate FPR or TPR for
the different classification thresholds by directly applying the
Wilcoxon-Mann-Whitney U-Statistic that counts how many
times an index in a certain state is higher than the pooled
indices in the other state for all subjects (Yan et al., 2003).
Regardless of which categorization threshold is selected, AUC
evaluates how accurately the indicator can classify between
arousal or relaxed states. Because each index in one state is
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TABLE 2 Statistical analysis result of ultra-short-term HRV indices for arousal and relaxed states.

Ultra-short-
term HRV
index

Time
window
(T) (s)

Median [25th—75th
percentile] arousal

Median [25th—75th
percentile] relaxed

p-Value
(one-way
ANOVA)

p-Value (two-way
ANOVA)

X1=Arousal state

p-Value (two-
way ANOVA)
X2=Subject

Mean RR [ms] 30 730 [638–840] 760 [658–850] 1.48e−05 0 0

60 730 [638–840] 770 [658–860] 8.98e−07 0 0

120 750 [640–860] 780 [660–860] 3.16e−05 0 0

240 740 [630–840] 770 [640–850] 5.7e−05 0 0

SDNN [ms] 30 30 [28–40] 40 [28–50] 1.14e−19 0 0

60 30 [20–40] 40 [30–60] 2.30e−25 0 0

120 30 [20–40] 40 [20–50] 2.50e−22 0 0

240 30 [20–50] 40 [30–60] 1.48e−15 0 0

Min RR [ ms] 30 660 [590–760] 690 [608–750] 0.0348 0 0

60 660 [580–740] 680 [590–740] 0.0079 0 0

120 620 [570–720] 660 [590–720] 0.001 0 0

240 620 [560–710] 640 [580–710] 3.05e-04 0 0

Max RR [ms] 30 810 [690–920] 850 [750–960] 3.93e−10 0 0

60 840 [710–940] 880 [760–990] 5.21e−11 0 0

120 860 [730–950] 900 [790–1,000] 1.60e−11 0 0

240 850 [730–960] 890 [810–1,000] 1.22e−14 0 0

RMSDD [ms] 30 20 [10–40] 30 [10–40] 2.86e−07 0 0

60 20 [10–40] 30 [20–40] 1.75e−07 0 0

120 20 [10–40] 30 [20–40] 1.11e−08 0 0

240 20 [10–40] 30 [10–40] 2.38e−08 0 0

PNN50 [%] 30 4 [0–18] 7 [0–25] 1.70e−06 0 0

60 4 [0–19] 8 [0–25] 5.08e−08 0 0

120 5 [0–20] 7 [0–25] 1.72e−06 0 0

240 5 [0–19] 8 [0–25] 5.29e−09 0 0

HRV triangular
index

30 5.63 [4.25–7] 6.5 [4.88–8.25] 7.62e−20 9.28e−38 3.81e−282

60 6.9 [4.87–8.45] 7.9 [5.89–10.29] 1.46e−24 0 0

120 8.05 [5.66–9.97] 9.72 [6.79–11.82] 1.72e−23 0 0

240 9.59 [6.11–11.96] 10.79 [7.76–14.05] 4.2e−19 0 0

TINN [ms] 30 77.13 [54.69–101.56] 78.13 [54.69–117.19] 1.84e−04 4.44e−05 3.00e−62

60 125 [85.94–164.06] 156.25 [101.56–195.31] 2.81e−12 8.98e−19 5.87e−187

120 101.56 [70.31–132.81] 117.19 [78.13–156.25] 5.58e−24 0 0

240 140.63 [93.75–179.69] 171.88 [109.38–218.75] 2.68e−20 0 0

SD1 [ms] 30 17.49 [8.59–25.89] 21.43 [10.83–30.74] 3.36e−12 0 0

60 17.79 [9.57–25.82] 20.24 [10.53–29.54] 1.93e−07 0 0

120 17.41 [9.15–26.46] 20.02 [10.59–30.74] 8.82e−07 0 0

240 18.1 [9.62–26.46] 21.81 [10.49–30.26] 5.89e−10 0 0

SD2 [ms] 30 34.27 [22.83–48.89] 44.46 [27.99–65.32] 4.84e−26 0 0

(Continued on following page)
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compared with the pooled indices for the other state, this parameter
is affected by inter-subject variability. As a result, it is anticipated
that the value produced from this parameter will be lower than the K
value (keep in mind that similar to the K value, this indicator
fluctuates between 50% and 100%).

3 Results

In this study, the ECG signals of 31 healthy subjects in arousal
and relaxed states are examined by the research methodology
formerly stated. To detect the arousal state by using ultra-short-

TABLE 2 (Continued) Statistical analysis result of ultra-short-term HRV indices for arousal and relaxed states.

Ultra-short-
term HRV
index

Time
window
(T) (s)

Median [25th—75th
percentile] arousal

Median [25th—75th
percentile] relaxed

p-Value
(one-way
ANOVA)

p-Value (two-way
ANOVA)

X1=Arousal state

p-Value (two-
way ANOVA)
X2=Subject

60 44.11 [29.99–57.63] 55.5 [35.49–72.38] 1.27e−32 0 0

120 40.28 [27.19–52.13] 49.76 [34.14–70.08] 1.60e−24 0 0

240 46.4 [31.61–61.97] 56.17 [35.26–72.92] 6.32e−17 0 0

SD1/SD2 30 2.2 [1.69–2.86] 2.46 [1.92–3.06] 2.85e−05 9.22e−09 4.56e−253

60 2.36 [1.87–3.11] 2.67 [2.1–3.27] 1.00e−04 0 0

120 2.53 [2.06–3.3] 2.82 [ 2.25–3.47] 0.0052 0 0

240 2.74 [2.18–3.63] 2.9 [2.38–3.53] 0.97 0.95 0

ApEn 30 0.31 [0.23–0.39] 0.29 [0.20–0.38] 0.0055 0.0002 0

60 0.56 [0.47–0.64] 0.54 [0.46–0.64] 0.04 0.0009 0

120 0.84 [0.77–0.9] 0.81 [0.74–0.88] 2.66e−12 0 0

240 1.09 [1.01–1.15] 1.05 [1–1.11] 1.5e−14 4.1e−27 6.2e−276

SampEn 30 1.67 [1.36–1.98] 1.49 [1.22–1.79] 0.017 0.013 0

60 1.64 [1.38–1.84] 1.47 [1.23–1.67] 2.14e−11 2.54e−14 1.02e−96

120 1.79 [1.34–2.40] 1.30 [0.87–1.79] 9e−21 3.53e−36 3.61e−241

240 1.42 [1.34–1.72] 1.44 [1.24–1.6] 5.2e−13 0 0

DFA α1 30 1.16 [0.87–1.43] 1.19 [0.91–1.44] 0.15 0.0699 0

60 1.15 [0.92–1.39] 1.2 [0.98–1.42] 0.0073 0.0003 0

120 1.19 [0.98–1.4] 1.2 [1.05–1.41] 0.0256 0.0007 0

240 1.19 [1.01–1.39] 1.2 [1.06–1.4] 0.13 0.006 0

ACI 30 0.44 [0.31–0.58] 0.29 [0.17–0.42] 4.13e−81 3.23e−122 1.30e−182

60 0.43 [0.32–0.54] 0.29 [0.17–0.40] 4.19e−94 4.33e−169 7.48e−275

120 0.43 [0.33–0.55] 0.29 [0.19–0.39] 8.34e−118 0 0

240 0.44 [0.35–0.56] 0.29 [0.2–0.4] 6.98e−135 0 0

FnQ 30 6.38 [10.29–2.47] 11.83 [15.12–8.48] 3.38e−101 5.05e−142 3.75e−152

60 6.6 [10.52–2.51] 11.63 [14.76–8.91] 1.35e−113 8.69e−191 4.09e−247

120 6.6 [9.97–2.02] 11.27 [13.99–8.91] 1.28e−125 0 0

240 6.12 [9.49–2.48] 11.46 [13.97–8.88] 6e−131 0 0

Alpha (α) 30 0.62 [0.40–0.88] 0.86 [0.54–1.17] 1.83e−27 2.40e−50 6.30e−264

60 0.67 [0.46–0.9] 0.89 [0.62–1.18] 1.28e−39 0 0

120 0.7 [0.49–0.9] 0.87 [0.63–1.16] 1.55e−34 0 0

240 0.72 [0.51–0.85] 0.89 [0.65–1.21] 1.24e−45 0 0

Mean, mean RR intervals; SDNN, standard deviation of RR intervals; Min RR, minimum of RR intervals; Max RR, maximum of RR intervals; RMSDD, root mean square of successive RR

intervals; PNN50, percentage of successive RR intervals that differ by more than 50 ms; TINN, triangular interpolation of RR intervals; SD1, standard deviation of short-term continuous RR

intervals; SD2, standard deviation of long-term continuous RR intervals; SD1/SD2, ratio of SD1-to-SD2; ApEn, approximate entropy; SampEn, sample entropy; DFA α1, short-term fluctuation

slope in detrended fluctuation analysis; ACI, acceleration changes index; FnQ, the degree of multifractality of the RR intervals (the absolute value of this index is considered); Alpha (α), the main

fractal scaling exponent of the RR intervals.
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term HRV analysis statistical analysis was applied for various HRV
indicators (Table 1). To establish that there is a remarkable
difference between arousal and non-arousal (relaxed) states,
several statistical analyses such as calculating the one- and two-
way ANOVA test (including p values), K value (%), AUC value (%),
and median [25th—75th percentile], have been provided for the less
than 1 min–4 min time windows. As determined by the outcomes,
one-way ANOVA using the state of arousal as the main factor (only
considering X1) indicated that the mean value of all the HRV indices

which are studied here show very significant differences
(p-value<0.001) when comparing the arousal state with the
relaxed state except for min RR, ApEn, SampEn, and DFA α1 for
equal or less than 1 min time windows. Additionally, the SD1/
SD2 ratio and DFA α1 perform poorly in detecting arousal states in
time windows lasting more than 1 min. In a two-way ANOVA test
by considering the X1 variable, SD1/SD2 ratio in 240s, SampEn in
30s, and DFA α1 in 30s and 240s time windows could not provide a
promising result (The p-value of these indices in the provided time

FIGURE 4
K value (%) results in the 30s, 60s, 120s, and 240s time windows for presented ultra-short-term HRV indices. Mean, mean RR intervals; SDNN,
standard deviation of RR intervals; Min RR, minimum of RR intervals; Max RR, maximum of RR intervals; RMSDD, root mean square of successive RR
intervals; PNN50, percentage of successive RR intervals that differ by more than 50 ms; TINN, triangular interpolation of RR intervals; SD1, standard
deviation of short-term continuous RR intervals; SD2, standard deviation of long-term continuous RR interval; SD1/SD2, ratio of SD1-to-SD2; ApEn,
approximate entropy; SampEn, sample entropy; DFA α1, short-term fluctuation slope in detrended fluctuation analysis; ACI, acceleration changes index;
FnQ, the degree of multifractality of the RR intervals; Alpha (α), the main fractal scaling exponent of the RR intervals.

FIGURE 5
AUC value (%) results in the 30s, 60s, 120s, and 240s time windows for presented ultra-short-term HRV indices. Mean, mean RR intervals; SDNN,
standard deviation of RR intervals; Min RR, minimum of RR intervals; Max RR, maximum of RR intervals; RMSDD, root mean square of successive RR
intervals; PNN50, percentage of successive RR intervals that differ by more than 50 ms; TINN, triangular interpolation of RR intervals; SD1, standard
deviation of short-term continuous RR intervals; SD2, standard deviation of long-term continuous RR interval; SD1/SD2, ratio of SD1-to-SD2; ApEn,
approximate entropy; SampEn, sample entropy; DFA α1, short-term fluctuation slope in detrended fluctuation analysis; ACI, acceleration changes index;
FnQ, the degree of multifractality of the RR intervals; Alpha (α), the main fractal scaling exponent of the RR intervals.
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windows were higher than 0.001). In a two-way ANOVA test by
considering the X2 variable, all indices show very significant
differences between the two groups (p-value<0.001). The reason
for this is that in two-way ANOVA, the inter-subject variability is
considered and corrected while examining the other factor (Arousal
state). The result of ANOVA tests is provided in Table 2. The K value
(%), AUC value (%), and median [25th—75th percentile] of arousal
and relaxed states are presented for HRV indices in the different
time windows in Figure 4, Figure 5, and Table 2 respectively.
According to the obtained outcomes, among all of the HRV
indices that were determined in this investigation, the ACI and
fnQ have provided the best performance. The percentage of the K
value for the ACI index varied between almost 76% for less than
1 min and 88% for the 4 min time windows. Also, by determining
the percentage of AUC value, the achieved rate ranged between
approximately 74% and 79% for the ACI index in the 30s–240s time
windows. The percentage of K value, in the fnQ index ranged from
78% for the 30s to roughly 87% for the 240s time window size.
Additionally, by using an AUC, the achieved value for the fnQ index
ranged between roughly 75% and 80% for the 30s–240s time
windows. Further than this result, the odds of ACI being higher
for the same individual during randomly chosen arousal intervals
compared to randomly chosen relaxation intervals is as follows,
78%, 79%, 84%, and 89% for the time windows of 30s, 60s, 120s, and
240s, respectively. Similarly, the odds of fnQ being higher during
arousal than during a relaxed state are 79%, 81%, 84%, and 85% for
the corresponding time windows. However, when combining the
indices for all subjects, the variability between individuals leads to a
moderate classification performance for all indices. In this scenario,
fnQ demonstrates the best performance, with an AUC value of 75%,
77%, 79%, and 80% for the 30s, 60s, 120s, and 240s time windows,
respectively.

4 Discussion

In recent years, arousal has been extensively studied in the fields
of psychology and neuroscience, as it provides insights into the
influence of increased physiological and physiological activation in
emotions, motivation, cognitive performance, stress responses,
sleep-wake cycles, and clinical implications. Hence, researchers
contend that distinct arousal systems would be indicated by the
physiological differences that appear among distinct neurochemical
and neuronal pathways (Frohlich et al., 2001). Moreover, the study
of arousal is important since when arousal is activated, we
experience heart palpitations, shortness of breath, and
perspiration. In addition, it can reduce concentration, impair the
ability to perform, and increase the probability of making errors.
Consequently, arousal monitoring in daily life by using wearable
devices is possibly helpful. The technological advances in wearable
systems have caused a paradigm shift as a result of the increased
interest in health and wellbeing. Because they provide subjects with
individualized health status and become an attractive option in the
healthcare industry. Moreover, users of wearables now have access
to comforts and expenses that are not currently available from
conventional healthcare products and services due to health
management devices. Nevertheless, it is unclear which traits are
used to assess the health of wearable products. Arousal was

previously recorded using EEG, which describes it as frequency
variations in the electrical activity of the human brain. Recent
research has however revealed that physiological variables such as
ECG (including using RR time series) are usually related to arousal.
These physiological markers are easier to measure than EEG signals,
which has increased interest in using them for arousal detection. For
instance, HRV can be used as a proper approach to track arousal
changes since when parasympathetic nerve control exceeds
sympathetic control, lower levels of arousal occur. The detection
of heartbeats initiates the HRV analysis. For the ultra-short HRV
study (recording less than 5 min) to be useful, wearable (or at the
very least ambulatory) sensors must be primarily used. Therefore,
using heartbeat monitors reliable enough for ambulatory situations
is the key challenge here. In addition, one of the critical issues of the
ultra-short-term analysis is that some HRV features are sensitive to
low-frequency components have poor repeatability, and cannot be
evaluated accurately from ECG measurements shorter than 10 min.
Therefore, several HRV parameters in the frequency domain cannot
be calculated in extremely brief time intervals. In this study, various
acoustic simulators during A1 and A2 were used to check if the
different simulators such as traffic jam noise or death metal can
activate the arousal differently or not. A two-way analysis of
ANOVA using factors A1 and A2 and the subject showed that
there are no differences between arousal activation when the
different acoustic simulator is used. Moreover, the result of this
attempt revealed that for most of the ultra-short-term HRV indices,
there was an increase in performance by increasing the time length
of RR intervals. However, the improvement was not spectacular. Our
study found that during arousal activation, several ultra-short-term
HRV indices showed a decrease, including mean RR, SDNN, min
RR, max RR, RMSDD, pNN50, HRV triangular index, TINN, SD1,
SD2, SD1/SD2, DFA α1, fnQ (since the value of fnQ is negative, the
absolute value of this index is considered), and alpha (α). This
reduction can be attributed to the activation of the sympathetic
nervous system (Shaffer and Ginsberg, 2017). Additionally, Schaaff
et al. (Schaaff and Adam, 2013) suggested that a higher level of
arousal might cause a decrease in ultra-short-termHRV indices such
as mean RR, SDNN, RMSDD, pNN50, SD1, SD2, and SD1/
SD2 which potentially indicates increased sympathetic ANS
activity and reduced parasympathetic modulation. Moreover, the
reduced min RR and max RR in arousal activation were reported by
Galland et al. (1998). In contrast, our study revealed that certain
HRV indicators, such as ApEn, SampEn, and ACI showed increased
values during arousal activation. Entropy indices indicate higher
irregularity, and complexity which cause a more chaotic and
adaptable heart rate pattern during arousal, potentially influenced
by sympathetic activation. Although Valenza et al. (2012) examined
the non-linear complexity in short time series during emotional
visual elicitation. They found that the mean ApEn decreased during
arousal which is not compatible with our finding. Further, Tanev
et al. (2014) observed that ApEn, and SampEn, are increased,
conversely, DFA α1 is decreased in arousal activation by various
simulators. Due to the findings, ACI and fnQ emerged as the most
effective HRV indices for detecting arousal in ultra-short-term HRV
analysis. Consequently, ACI and fnQ can be considered robust
indicators for identifying changes in HRV caused by arousal in
real-time systems. While both ACI and fnQ demonstrate strong
performance, there are some practical considerations to consider.
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Calculating fnQ is a complex process, which can cause
computational challenges or additional time requirements. On
the other hand, ACI requires a lower number of samples for
evaluation, making it a more attractive option to detect arousal
changes. The obtained observation here is compatible with several
previous studies in which the ultra-short HRV measurement can be
applied to arousal activity detection. As an example, two features
that can be used in real-time processing for arousal detection were
introduced by Goldie et al. (2010). These features are RRV3 values
(the variance of the past 3 RR intervals) measured in milliseconds
and RRV8-3 values (the variance of the past 8 RR intervals minus
RRV3 values). Furthermore, Schaaff and Adam (Schaaff and Adam,
2013) demonstrated the suitability of HRV indices such as pNN12,
pNN20, RMSSD, and SD1 for the evaluation of ultra-short windows
(the 30s). Due to the study of Ferdinando et al. (2016), the achieved
accuracy of arousal detection by using a short ECG signal was almost
60%. Also, Alexandratos et al. (2014) provided a mobile system with
real-time arousal detection based on electrocardiogram (ECG), and
electrodermal activity (EDA). According to their result, Small-scale
user tests show 84% 10-fold, 83% between-subject, and 68% new-
subject arousal detection accuracy. However, more studies in real-
time data processing approaches are required to use this application
in daily measurement instruments such as wearables.

5 Conclusion

The main aim of this study was to capture arousal activity by
using ultra-short-term HRV analysis. As a result of the statistical
analysis, all of the provided indices correctly recognized arousal
from non-arousal status except min RR, SD1/SD2 ratio, ApEn,
SampEn, and DFA α1. However, the best results among these
characteristics were related to the novel indices; ACI and fnQ,
which they can serve as reliable markers to find arousal changes
in the human body. Consequently, arousal detection can
effectively use ultra-short-term HRV studies. It is important to
acknowledge one of the main limitations of this study which is
the sample consists of participants associated with the university,
which may not be representative of the broader population. The
gender in our sample was not balanced (18 male and 13 female).
The classification of participants as sedentary or moderately
active may not capture the effects of physical activity for
individuals with different activity levels. The short duration of
the study limits understanding of long-term effects. The specific
location potentially limits the applicability of findings to other
populations. Therefore, more research is undoubtedly necessary
to determine age- and sex-dependent values as well as to
standardize acquisition protocols and analytical methods to
obtain reliable and accurate results, allowing these methods to
serve as an acceptable substitute for HRV parameters as the
availability of wearable devices increases. In a future study, we
aim to enhance the generalizability and validity of our findings to
a broader population. As a result of this study, the proposed
indices, ACI and fnQ have practical implications in different
fields. In sleep medicine, they can improve the detection and
monitoring of arousal states, aiding in the treatment of sleep
disorders including sleep apnea. Some HRV indices such as
SDNN, RMSDD, HF, LF/HF, and SampEn were found to be

significantly (p-value<0.001) different during obstructive sleep
apnea (Khandoker et al., 2011). Although, here one of the main
challenges was that the use of spectral analysis in the ultra-short-
term study might be limited due to the short duration of recorded
signal and the reduced accuracy and reliability of frequency
domain measurements, such as LF and HF bandwidths, which
can make interpretation challenging. Moreover, these measures
can be used to monitor stress levels. The results of (Salahuddin
et al., 2007) suggest that ultra-short-term analysis of HRV and RR
intervals within 10s, RMSDD and pNN50, LF/HF, normalized
LF, and normalized HF within 50s can be practically used for
monitoring mental stress in mobile settings. This indicates these
indices can accurately assess stress levels in real-world situations,
making them applicable for practical use in wearable devices.
Overall, ACI and fnQ have the potential to optimize
interventions, personalize treatments, and improve overall
performance and wellbeing status in real-life scenarios.
However, further studies are needed to validate the
reproducibility and reliability of these parameters in ultra-
short-term HRV analysis. Additionally, future research should
focus on exploring the HRV in real-time assessments by using
wearable devices in real-life monitoring and automatizing the
classification of arousal. These advancements would contribute
to a better understanding and wider applicability of these indices
in practical settings. In contrast with a clinical (repeatable)
environment, measures in an ambulatory setting (wearables)
present more noise and artifact problems. Moreover, the
measured signal usually does not use conventional ECG
electrodes but other surrogate signals such as two dry metallic
electrode ECGs (as in the Apple Watch) or PPG. Improved
algorithms to better detect and identify errors that may occur
during exercise and higher-intensity motion have been developed
for wearable devices to increase accuracy, reduce motion
artifacts, and better detect errors would be another aim of
upcoming work. Moreover, the study of different levels of
arousal are not considered in this study, thus it looks likely
that future attempt might focus on developing subject-dependent
classifiers that can distinguish between more than one level of
arousal. Finally, robust classifiers that may even be suitable for
usage in wearable technology can be built by combining the
outcomes with HRV-based arousal recognition.
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