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Introduction

Medical advances in treatment strategies against age-related global killers such as
cardiovascular disease, cancer, and stroke have been responsible for the significant gains in
the average global life expectancy observed since the second half of the 20th century (Hunter
and Reddy, 2013). Still, medical research has been less successful at prolonging healthy life.
Globally, one in three adults live with multiple chronic conditions (Hajat and Stein, 2018). In
the US, 80% of the population older than 65 live with at least one chronic condition, and 50%
live with two (Hunter and Reddy, 2013). As the aging population is growing rapidly, the
incidence of age-related, costly, chronic conditions such as heart disease, cancer, diabetes, and
Alzheimer’s is reaching epidemic proportions. In the US alone, healthcare spending is already
composing far more of the national gross domestic product than any other sector including
defense, education, energy, and transportation (US Government Spending, 2017). With annual
total costs of age-related diseases expected to skyrocket, all nations are in pressing need to
reduce the economic burden of population aging. Prolonging lifespan without prolonging
health span is financially unsustainable for all nations.

Computational medicine emerged in the past decade as an interdisciplinary field dedicated
to integrating advanced computational modeling, data-driven technologies, and
supercomputing to derive new knowledge about the biological mechanisms of disease and
deeper understanding of factors driving inter-patient variability (Bukowski et al., 2021). Such
knowledge enables development of precision strategies to diagnose and treat disease, sustain
wellbeing, and optimize utilization of healthcare resources (Winslow et al., 2012).
Computational medicine has the potential to drive transformative advances in healthcare,
extend health span, and reign in healthcare costs by i) enabling a more holistic understanding of
the broad spectrum of all factors, processes, and their interplay impacting wellbeing at the
individual and the population level, and by ii) translating such understanding into dynamically
adaptive, personalized medical decisions to drive effective and sustainable health management
practices. There are already several efforts demonstrating the potential of computational
medicine across various diseases and conditions (e.g., (Louis et al., 2014; Mulder et al.,
2018; Athanasiou et al., 2019; Bukowski et al., 2021; Yu and Kibbe, 2021; Hiram Guzzi
et al., 2022; Toma et al., 2022).

To achieve its full potential, computational medicine should be able to build a digital twin of
the human by mapping the human genome (i.e., genomic profile), phenome (i.e., physiologic
status), and exposome (i.e., physical and social environment) in real-time and across the human
lifetime. Understanding the human genome-phenome-exposome interplay is an ambitious
endeavor which demands a multi-disciplinary team of biologists, physicists, chemists,
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engineers, mathematicians, computer scientists, and data scientists.
Sitting at the intersection of these scientific domains, computational
medicine faces grand challenges in three key areas.

Multiscale, multi-modal disease modeling

Multiscale computational modeling of complex biological systems
has been an active field of research, leading to notable advances in both
mechanistic and agent-based disease models. The overarching goal is
quantitative representation of interconnected biological processes that
cannot be easily delineated experimentally. Such model should be able
to capture the spatiotemporal interdependencies across all
scales—from genomic, transcriptomic, proteomic, and metabolomic
scales to tissue and organ level, and ultimately to the individual and
population levels (Bhattacharya et al., 2019; Tiwary, 2020). Recently,
the interleaving of traditional computational modeling and simulation
with artificial intelligence approaches has emerged as a strong theme
to complex systems modeling (Alber et al., 2019; Tolk et al., 2022),
with several applications in drug design, structural biology, and
neuroscience to name a few (e.g., (Stephan et al., 2015; Huys et al.,
2016; Romero et al., 2019; Liu et al., 2021; Paul et al., 2021;
Ramanathan et al., 2021).

Since system complexity increases when bridging different scales,
there are technical challenges as the number of system parameters
rapidly increases. Furthermore, the integration of computational
representations across different organ systems remains an
outstanding challenge (Beard et al., 2012). Developing efficient
computational tools that can manage multi-modal, multi-scale data
as well as demonstrate effective utilization of high-performance
computing resources are critical for us to overcome current barriers.

One outstanding and ever-increasing challenge with complex
multi-scale computational models and the latest artificial
intelligence models known as language models or transformers
(Vaswani et al., 2017; Wei et al., 2022) is the growing demand for
computational power (Liu et al., 2021). Model training, hyper-
parameter optimization, uncertainty quantification, and validation
become exponentially more demanding as efforts move from single
to multiple scales (Renardy et al., 2019). As energy-efficiency becomes
a bottleneck for large scale computational science, efficient algorithmic
development will be necessary for scalable computational medicine. It
has been proposed that a modular approach to multi-scale
computational medicine, with interoperable and reusable
computational tools, mimicking the first principles computational
chemistry and physics modeling approaches maybe appropriate as it
has been very successful in materials science (Ford Versypt, 2021).
Although biological systems differ from physical systems, there is
potential in investing in such effort to derive important building
blocks that bridge a few spatiotemporal scales. Still, standards for
reproducible research in computational medicine are lacking. Creating
and maintaining data and model repositories are critical for ensuring
reproducibility and reliability. As many of these endeavors become
computationally very intensive, the burden of reproducibility is
immense for the average researcher. We need to invest substantial
resources in compute-and-data infrastructures to scientific integrity,
reproducibility, and reliability of data and models.

The breadth of technical and algorithmic challenges exemplifies
the need for strong collaborations across disparate scientific domains,
across different and also competing approaches, as well as across

different stakeholders. For example, in 2016, the National Cancer
Institute (NCI) and the Department of Energy (DOE) in the US
partnered in a collaboration to accelerate advances in predictive
oncology. The collaboration brought together multidisciplinary
experts in the biological, computational, data, and physical sciences
to develop, demonstrate, and disseminate advanced computational
capabilities that help answer driving scientific questions across
molecular, cellular and population scales (Bhattacharya et al.,
2019). The community effort is growing by adding new scientific
challenges that build upon strong collaborations (Buchsbaum et al.,
2022).

Dynamic modeling of patient health
trajectories

The concept of the digital twin has gained a lot of traction within
computational medicine (Barbiero et al., 2021; Hassani et al., 2022).
The digital twin is a virtual representation of a patient as a multi-
modal system which incorporates patient data to inform personalized
medical decisions related to disease prediction, diagnosis, therapeutic
interventions, and prognosis. A digital twin can be created at different
levels of detail (e.g., organ, individual, population, healthcare system)
using various data sources as they become available. Merging non-
traditional data sources (e.g., environmental factors, socioeconomic
conditions, lifestyle choices) with multi-scale patient data, digital twins
offer in silico modeling of patient health trajectories by taking into
account the complex interplay of all factors and processes that affect
wellbeing. Such models can be regularly interrogated to explore
different scenarios (e.g., different treatments, lifestyle choices) to
predict future risks and outcomes and empower individuals to
make decisions at critical times and from the earliest stages in life.
Furthermore, such longitudinal models can be dynamically adaptive
and updated as new data becomes available. The potential to execute
“what-if” scenarios completely in silico can be very empowering for
patients, physicians, researchers, and healthcare systems as each tries
to optimize outcomes based on individual criteria and incentives.
References (Mulder et al., 2022; Okegbile et al., 2022) provides an
insightful discussion of the potential of digital twins in the future of
medicine while disease-specific examples are emerging (Allen et al.,
2021; Hernandez-Boussard et al., 2021).

The clinical implementation of the digital twin in computational
medicine is still in its very early stages facing similar challenges as
those outlined in the previous section, namely data quality, data
integration, reproducibility, reliability, as well as continuous quality
assurance due to its dynamic nature.

Responsible development and effective
utilization of computational models in
medicine

With computational medicine’s great promise comes an even
greater responsibility. We must recognize the pitfalls and possible
ill-intended uses of the computational models. Since these models rely
heavily on patient data, there are many legal and ethical considerations
related to data collection, sharing, and use. Access to large amounts of
patient data is fundamental to understand individual and population-
level health outcomes over time. However, liberating and providing
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access to patient data is both a technological and a policy challenge.
Furthermore, to create a richer picture, medical data must be
combined with other data points to provide context on a patient’s
living conditions that has substantial implications in predicting patient
health trajectories. Although we all recognize the scientific value of
human data, the debate over data ownership is ongoing in terms of
how best to balance the promise of transparent innovation with the
risks of unethical data handling, intentional or unintentional privacy
breaches, and adversarial data use by hostile or malicious actors
(Kostkova et al., 2016). To maintain a strong ethical framework for
computational medicine, we need to answer this fundamental
question: Who owns the intellectual property of data-driven
computational models in healthcare? The patient? The medical
center collecting the data by providing the healthcare services? Or
the model developer? Clearly, no single entity alone could deliver the
breakthrough technology.

Next is the topic of data trustworthiness. There is plenty of evidence
that low data quality and problematic data representativeness can
compromise model validity (Winslow et al., 2012) by creating or
exacerbate existing racial or societal biases in healthcare systems
(Nordling, 2019). During the development phase, scientists should
promote a rigorous statistical framework to monitor for potential
biases in the collected data. During deployment phase, model
developers should implement rigorous quality control, monitoring
model performance across subgroups to confirm robust performance
or identify performance gaps. We should work to communicate to
patients and healthcare providers openly and clearly what they should
expect from the technology so that they are informed consumers of the
technology.

Other than data quality, data-driven models benefit from access to
large volumes of representative medical data. With the explosive growth
of large-scale deep learning models (LeCun et al., 2015), the need for
data sharing is pressing. State of the art deep learning models have
billions of parameters. Although these models can push boundaries in
learning and generalizability (Sun et al., 2017; Wang et al., 2019), they
require massive amounts of training data due to their large parameter
space. Federated learning has emerged as a successful collaboration
mechanism to address the privacy constraint with sensitive data sharing.
Instead of sharing data, the collaborative entities share the model
parameters after local training and fine tuning (Li et al., 2020).
Several studies demonstrated that models trained using federated
learning are as accurate as those trained using centrally hosted data
sets and they are far more accurate than models trained with single
institution data. Nevertheless, federated learning is in its early stages of
technical development. There are still outstanding concerns with reverse
engineering of the trained “super-model”, and legal implications if the
model is broadly shared and used without proper authorizations in
clinical care (Rieke et al., 2020; Zawad et al., 2022).

Another grand challenge is that the clinical translation of
computational models is not straightforward. If the computational
models are used for hypotheses generation or for knowledge discovery,
they are easier to embrace as they are used as scientific instruments.
However, if computational models are used to perform or assist
clinical tasks, then acceptance expectations are much higher. Often
these models must be regulated, and they need to clearly demonstrate
efficacy (i.e., performance equivalent to medical experts) and safety.
Previous experience with AI for clinical decision support
demonstrated that AI is capable of performing narrowly defined,
repetitive tasks exceptionally well. Still though, if physicians over-

rely on such decision support technologies, they may lose critical skills
needed for performing more difficult tasks (Darcy et al., 2016).
Another challenge with clinical integration is ensuring that the
computational model is capable of assessing its confidence
(i.e., uncertainty quantification) and providing a justification
(i.e., explainability) for its prediction (Begoli et al., 2019; Benrimoh
et al., 2021). Since one of the key drivers of the ‘digital twin” is to
empower the patients as they try to manage their disease and gain
better understanding of the short-term and long-term implications of
the decisions they need to make, how to convey the model’s reasoning
and prediction confidence to the patient vs the healthcare provider is
an understudied topic.

Ultimately, humans and computational models will have to work well
together. But this synergy will not happen organically, as past health AI
experiences have demonstrated. It is important to train both healthcare
providers and patients in how to use computational models responsibly,
and how to remain vigilant avoiding mistakes of over-reliance when
supported by the models. Objective benchmarking of datasets and
models against community consensus metrics to detect, monitor, and
possibly correct dataset biases or inconsistent model performance must
become part of the practice of computational medicine.

Conclusion

The convergence of personalized digital health technologies,
computing power, and artificial intelligence have ushered a new era
in healthcare delivery. Computational medicine holds immense
promises for personalized disease management, from diagnosis, to
treatment, to prognosis. Furthermore, computational medicine has the
potential to offer much needed relief in healthcare costs by enabling
deeper understanding of the interplay between biological and
socioeconomic drivers to promote personalized proactive healthcare
approaches, delay onset of chronic diseases, and prolong wellness.
There are already numerous successful examples of computational
medicine from the bench to the bedside, however several challenges
remain to fully realize the potential of computational modeling and
personalized data in clinical practice. The complexities of multiscale
system modeling, integration and analysis of multimodal personalized
data, longitudinal modeling and dynamic system optimization to
maximize personal and population level outcomes, as well as
practical issues in terms of clinical integration and safe utilization
at scale are grand challenges. To support the realization of
computational precision medicine we need engagement and
collaboration of many scientific domains, given the truly
interdisciplinary nature of this endeavor.
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