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The monitoring condition of the cable laying conveyor, such as rotational speed,
driving current, and side pressure, reflects the real-time operation status of the cable
laying process. Accurate prediction of multiple monitoring states of cable conveyors
can assess the status of cable laying in advance and avoid failure. The existing cable
laying construction mainly relies on the threshold value to determine the safety
status. It rarely predicts the state and does not consider the connection between the
various monitoring states, so it is difficult to make accurate predictions. For this
reason, this paper proposes an attention-driven Convolutional Neural Network-
Long Short Term Memory (A-CNN-LSTM) algorithm for multi-state prediction and
fault warning of cable conveyor, which explores the relationship between the states
of the cable conveyor and makes a more accurate prediction. CNN is used to mine
the connection between the states of the cable conveyor and the attention
mechanism is used to intelligently allocate weights. LSTM is used to explore the
law of the states of the conveyor over time, and use the attention mechanism to
intelligently allocateweights in the time step, which ultimately realizes the prediction.
The method is applied to a 110 kV cable laying experiment and compared with the
prediction results of the widely used TCN algorithm, and the CNN-RNN algorithm
without attention mechanism, which shows that the proposed attention-driven
prediction algorithm has higher accuracy, better reflects the connection between
multiple monitoring states of the cable conveyor, and performs more accurate
prediction.
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1 Introduction

Power cables realize transmission and distribution of large-capacity electric energy by
underground compact operation in the power system, which has developed rapidly in
recent years due to its reliability, aesthetics, and excellent electrical performance, and has
gradually become the mainstream transmission form of urban power supply (Ghorbani
et al., 2014; Diban et al., 2022; Montanari et al., 2018; Zhu et al., 2019; Wang et al., 2018). In
Wuxi, Jiangsu Province, China, for example, by the end of 2021, 110 kV high-voltage cables
reached 5,870 km and maintained an annual growth rate of more than 15%, the
development of power cable engineering is related to the development of urban power
transmission network, is a key component of the future power grid infrastructure. The
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current stage of the high-voltage cable construction process is in
urgent need of intelligent digital transformation, in order tomeet the
requirements of the State Grid Corporation to build a “world-class
power grid” in the future.

Cable laying is one of the most important construction links in the
construction of electric power projects, and the quality of power cable
laying and laying utility directly affect the quality of electric power
project construction (Choi et al., 2018). Ensuring the reliability of cable
laying technology and quality of the whole power project stability, safety
and reliability is of great significance. Power cable laying methods
mainly include direct burial, cable trench laying, pipe laying, bridge
laying, and so on. Direct burial cable laying depth is generallymore than
0.7 m. Because of its low investment costs and other outstanding
advantages, it has become one of the widely used laying methods. Cable
trench laying needs to set up metal brackets. When the cable is too
much, the metal brackets on both sides of the cable are needed. Cable
pipe laying is used when the cable needs to pass through the asbestos
cement pipe, plastic pipe, and concrete pipe, and then according to the
corresponding order of laying to the well to make the cable is not
harmed. In case of improper management of the laying process in the
above cable laying process, the cable body and the laying equipment
may be damaged, affecting the reliability of subsequent cable operation.

At present, the research on cable laying control and early
warning is relatively weak. The control strategy is only the open-
loopmode of positive-negative-start-stop. The control basis relies on
the judgment of the workers, the operation precision is low, and the
synergy between the conveyors is poor. In terms of the completeness
of control, the system lacks effective control of key variables such as
lateral pressure and traction, and it relies on the threshold judgment
or the manual emergency stop when the laying fault occurs.
Therefore, the construction reliability and emergency response
capability need to be further strengthened and the emergency
response capability needs to be further strengthened.

A cable-laying conveyor is an important device to promote cable
transportation, generally using a motor-driven crawler to move
cables. Cable conveyor motor speed, current, side pressure, and
other states can be monitored to reflect the condition of cable laying
and transportation process, to evaluate the laying fault, and to
perform early warning. Cable laying states have a certain
correlation with each other, such as motor speed can reflect the
cable conveying speed, motor voltage and current can reflect the
output of the motor, the side pressure of the conveyor in contact
with the cable can reflect the bearing force of the cable outer sheath.
Therefore, it is feasible to use sensors tomonitor the above states and
further synthesize and analyze the effective information contained in
multiple monitoring states to predict the trend and then provide
early warning of cable laying faults that have not occurred.

Currently, forecasting methods for time series data can be mainly
categorized into statistical methods and artificial intelligence methods
(Mirowski and LeCun, 2012; Wang et al., 2011; Zhao et al., 2019; Yang
et al., 2023). Statistical methods predict future trends through the
statistical characteristics of time series (Sun et al., 2022; Arora et al.,
2023), which mainly include autoregression (AR), multiple linear
regression (MLR), auto-regressive moving averages (ARMA), etc.
Statistical methods require that the data to be processed have a
large scale, and the data itself needs to show a certain pattern to
make a recursive prediction of the monitoring volume. With the
development of artificial intelligence, scholars have gradually applied

artificial intelligence algorithms to equipment condition assessment and
prediction. Artificial intelligence prediction methods are mainly based
on training and learning through the linear or nonlinear relationship of
a large number of monitoring historical data and updating models
continuously reducing the gap between the training output and the
expected output (Yang et al., 2023). Conventional methods include
conventional neural networks (NN) (Ge et al., 2021), support vector
machine (SVM) (Li and Ma, 2022), and restricted Boltzmann machine
(RBM) (Hou and Han, 2010). However, conventional AI methods are
insensitive to the temporal correlation of sequence data and have very
limited applications. The emergence of deep learning models such as
convolutional neural networks (CNN), recurrent neural networks
(RNN), and their variants has solved the widespread problems of
gradient vanishing and gradient explosion and has been widely used in
the fields of feature extraction and time series prediction. However, the
above time series models only predict a single parameter at a time,
focusing on the correlation of monitoring states on the time scale but
ignoring the physical correlation between monitoring states in the
actual operation of the laying equipment. Therefore, they fail to predict
the mutation of multiple monitoring states through the change of
correlated monitoring states. Due to the fast-thriving development of
machine learning, algorithms such as center jumping boostingmachine
(CJBM) (Li et al., 2023), temporal convolutional networks (TCN)
(Hewage et al., 2020), and multilayer perceptron (Fan et al., 2024)
emerge endlessly.

To make full use of the correlation between the monitoring
states of the cable-laying conveyor and the dependence of the timing
information, and to solve the problem of state prediction and fault
warning in cable laying, this paper proposes an attention-driven
CNN-LSTM algorithm for predicting the states of the cable-laying
conveyor. CNN is used to excavate the connection between the states
of the conveyor, and the attention mechanism is used to allocate the
weights of each variable intelligently. LSTM is used to excavate the
states over time, and the attention mechanism also intelligently
allocates the time-step weights of each variable and ultimately
realizes the prediction of the states of the cable-laying conveyor
to provide a reference for fault early warning.

2 Algorithm background

2.1 CNN

CNNs are widely used in image and video recognition tasks, and
similar to traditional neural networks, CNNs are composed of
numerous neurons, each of which receives inputs and performs

FIGURE 1
Schematic of a typical convolutional neural network.
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scalar product as well as nonlinear activation function processing.
CNNs generally consist of a stack of convolutional, pooling, and
fully connected layers, as shown in Figure 1. As the name suggests,
the convolutional layer plays a crucial role in the way the CNN
operates. The convolutional layer parameters focus on learnable
convolutional kernels, which are usually small in spatial dimensions
and are convolved on each filter in the spatial dimensions of the
input as the data reaches the convolutional layer. The convolutional
layer is used to extract local features of the image or data, and
different convolutional kernels with different dimensions and
parameters are used as feature extractors of different sizes and
types. The pooling layer aims to gradually reduce the
dimensionality of the result after convolution, thus further
reducing the number of parameters and the computational
complexity of the model and avoiding overfitting. In most CNNs,
the pooling layer appears in the form of an extracted maximum. The
fully connected layer contains a layer of neurons that, similar to
traditional neural networks, are directly connected to neurons in
neighboring layers. The fully connected layer performs a linear or
nonlinear transformation for the extracted features, generally
through an activation function as the final output of the classifier.

2.2 LSTM

LSTM is one of the most widely used variants of recurrent neural
networks (RNN). The advantage of RNN is that the output of the front
part of the network can be used as an input to affect the neurons in the
back part of the network again so that the information of earlier time

series can be preserved and acted upon in the subsequent time series
(Hochreiter and Schmidhuber, 1997), which makes it more suitable for
the prediction of time sequence data. However, the disadvantage of RNN
is that it is difficult to preserve long time history information, LSTM
improves the problem of dissipation of the effect of long-time data that
exists in RNN by adding a gating mechanism and also avoids the
problem of gradient vanishing and gradient explosion in RNN
during training.

LSTM learns long-term dependencies from historical data
through a recurrent structure and an introduced gating
mechanism. To illustrate how LSTM works, suppose n
historical data are used to predict the next m data, then each
n historical data can be regarded as an input vector and the next
m data are the actual output vectors, thus constituting a training
pair, e.g., the input vectors X1 =(x1, . . ., xn) and Y1 =(xn+1, . . .,
xn+m). The basic LSTM cell structure is shown in Figure 2, where
the training data are progressively fed into the LSTM cell to
compute the hidden state vectors ht and the cell state vectors Ct.
The flow of data within and between cells is controlled by three
gates: the forget gate, the input gate, and the output gate (green
rectangles with dashed lines in Figure 2).

The forget gate decides which information to discard. The input
vector xt is connected to the hidden state vector ht-1 at the last time
step, and the forget gate output is computed by Equation 1.

f t � σ Wf · ht−1, xt[ ] + bf( ) (1)

whereWf and bf are the weight matrix and bias of the forget gate,
which contains the trainable variables. σ is a Sigmoid function
that outputs a number between zero and one, describing each
component that can be passed through the LSTM cell. The next
step is to determine what new information should be stored in the
LSTM cell state vector for the input gate. This process involves
combining the information from the current input with the
information contained in the previous hidden state vector
h(t). the sigmoid layer decides which values will be updated,
and the tanh layer creates a new candidate value that can be
added to the LSTM cell state vector (Li et al., 2023) as shown in
Equation 2.

it � σ W i · ht−1, xt[ ] + bi( )
~Ct � tanh WC · ht−1, xt[ ] + bC( )
Ct � f t *Ct−1 + it * ~Ct

⎧⎪⎨⎪⎩ (2)

where Wi, WC, bi, and bC are weight matrices and biases of the
same dimension with trainable variables. The “*” symbol
indicates a dot product, which does not change the
dimension of the unit state vector. Finally, the output gate
will determine the output of the LSTM cell based on the
current LSTM cell state and input information (Li et al.,
2023) as shown in Equation 3.

ot � σ Wo · ht−1, xt[ ] + bo( )
ht � ot * tanh Ct( ){ (3)

where Wo and bo are the weight matrix and bias of the output gate
containing the trainable variables. When all the input vectors are fed to
the LSTM unit, the last hidden state vector will go through a fully
connected layer to obtain the final predicted output data as shown in
Equation 4.

FIGURE 2
Schematic of long short-term neural network.
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Ŷ � Wy · hn + by (4)

where Wy and by are the weight matrix and bias respectively. The
error between the predicted output and the actual output is
represented by the loss function and is used to update the weight
and bias matrices so that the output of the LSTMmodel is as close as
possible to the actual output.

2.3 Attenuation mechanism

Attention mechanisms have been widely used in various areas
of deep learning in recent years, whether in image processing,
speech recognition, or natural language processing for a variety of
different types of tasks. The attention mechanism in deep
learning is essentially similar to the human selective visual
attention mechanism, and the core goal is also to select the
information that is more critical to the current task goal from
a large amount of information.

The general process of the attention mechanism is to
assign weights, the attention mechanism is often used in the
structure of the self-encoder, the encoder according to the input
vector xt through the fully connected layer and softmax layer to
calculate the attention weight αt, which indicates that the
different input features of the different degree of importance
of the output. The attention weights combine input vectors, to
generate a new input vector st imported into the subsequent
neural network model, as shown in Figure 3. If different time-
step input vectors of the RNN model are processed with the
attention mechanism and then imported into it, the degree of
influence of different time steps on the output prediction can be
reflected. The attention mechanism can be expressed by
Equation 5.

αt � softmax Dense xt( )( )
st � merge αt, xt( ){ (5)

where α is the attention weight, s is the result after the application of
attention, and the merge operation uses the weights to multiply with
the input variables.

3 Attention-driven CNN-LSTM state
prediction algorithm for
cable conveyor

3.1 Multivariate prediction problems

Let there are n monitoring quantities that need to be predicted,
the value of each monitoring quantity at different moments forms a
one-dimensional column vector, and the subscripts are used to
indicate the value of each monitoring state at different moments,
e.g., x2

1 indicates the monitoring value of the second monitoring
state at the first sampling moment, and n monitoring states
containing m time steps can be represented by the matrix X as
Equation 6.

X � X1 X2/Xm[ ] �
x1
1 x

1
2 . . . x1

m

x2
1 x

2
2 . . . x2

m

..

. ..
. ..

. ..
.

xn
1 x

n
2 . . . xn

m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

If the data of multiple monitoring states from the first m time
steps are utilized to predict them+1 time step, the expected output is
the vector Y � (x1

m+1, x2
m+1 · · · xn

m+1). In this way, X and Y form a
training pair, and the training pair constitutes the training dataset
and the validation dataset.

3.2 Algorithm description

To fully explore the correlation between the monitoring states of
cable conveyors and the dependence of the data at different moments of
each monitoring state, and accurately predict the change of multiple
monitoring states, this paper proposes a prediction model for multiple
monitoring states of cable conveyor based on the attention-drivenCNN-
LSTM. The algorithm structure of the model proposed in this paper is
shown in Figure 4. To facilitate the understanding of the overall
structure of the algorithm, the proposed algorithm is introduced
with a set of training pairs as an example. The proposed multi-
monitoring state prediction algorithm for cable conveyors based on
attention-driven CNN-LSTM contains a CNN module, a monitoring
state attention module, an LSTM module, and a time-step
attention module.

Firstly, a two-dimensional matrix is constructed for n
monitoring states at m time steps, and n one-dimensional
convolution kernels are used to convolve the input matrix X. The
convolution is utilized to compute the links between the n
monitoring states of the cable conveyor, and the results of
different convolution kernel computations represent the degree of
influence of a certain monitoring state on other monitoring states.
The convolutional layer operation can be represented by Equation 7.

jlt � fc ∑n
i�1
xi
t * k

i
t + blt⎛⎝ ⎞⎠ (7)

where j is the post-convolution matrix, fc is the activation function, k
is the convolution kernel weight, and b is the convolution
kernel bias.

The post-convolution result is input into the feature attention
module along with the original input matrix X. The degree of

FIGURE 3
Schematic of attention mechanism.
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influence of each input monitoring state on the other monitoring
states at each moment is obtained by attention computation and
softmax layer activation whichmakes the sum of all the weights to be
one. Afterward, the attention weights are combined with the input
monitoring quantities by weight multiplication fusion operation to
obtain the monitoring quantity st that contains the connection
between each monitoring state as shown in Equation 8.

εt � Vα
Ttanh Wαjt + Uαxt( )

αit� softmax εit( ) � exp εit( )∑n
i�1
exp εit( )sit � merge(αit, xi

t)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (8)

where α is the attention weight, Vα, Wα, and Uα are the full
connection weight parameters, and s is the output after the
monitoring quantity attention calculation.

Themonitoring attention output st is fed into the LSTM network
by each time step, and the learning is trained to obtain the
connection between the time steps to make predictions about the
monitoring volume at the subsequent time steps. The computation
of the LSTM layer is similar to Equations 1–3, where the input xt is

replaced by the output st that has been computed by the monitoring
attention as shown in Equation 9.

f t � σ Wf · ht−1, st[ ] + bf( )
it � σ W i · ht−1, st[ ] + bi( )
~Ct � tanh WC · ht−1, st[ ] + bC( )
Ct � f t *Ct−1 + it * ~Ct

ot � σ Wo · ht−1, st[ ] + bo( )
ht � ot * tanh Ct( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(9)

Where ft, it, and ot are the outputs of the forgetting, input, and
output gates at time t. ht and Ct are the hidden state vector and the
cell state vector, and W and b are the trainable weight matrices of
each gating control as well as the bias.

To synthesize the impact of each monitoring state at different
time steps on the data at future prediction time steps, the hidden
state vector ht and the cell state vector Ct of the LSTM network are
intelligently deployed with time-step weights using the attention
mechanism. The degree of influence of each monitoring state at
different moments on the monitoring states at other moments is
obtained by attention calculation and softmax layer activation to
make the sum of all weights 1. After that, the attention weights are
combined with the input moment monitoring states through the

FIGURE 4
Schematic of cable conveyor condition prediction based on attention-driven CNN and LSTM.
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weight multiplication fusion operation to obtain the output that
contains the connection between different moments of each
monitoring state. Finally, through the full connectivity layer, the
prediction of multi-monitoring states of the conveyor. The time step
attention is calculated by Equation 10.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γt � Vβ
T tanh Wβ Ct−1, ht−1[ ] + Uβst( )

βit�softmax γit( ) � exp γit( )∑n
i�1
exp γit( )

rit � merge(βit,sit)
y�i � σ Wdrt + bd( )

(10)

where β is the attention weight, Vβ, Wβ, Uβ, Wd and bd are the full
connectivity parameters, r is the output after time-step attention
calculation, and y

�
is the final predicted output. The quadratic loss

function L is used to evaluate the gap between the predicted output
and the actual output, and then the back-propagation gradient
function is used to update and adjust the parameters of the
algorithm as shown in Equation 11.

L � ∑n
i�1

y
�
i − yi( )2 (11)

4 Example analysis

To verify the effectiveness of the algorithm proposed in this
paper, a total of six states of motor speed, current, and side pressure
are monitored on two adjacent cable conveyors during 110 kV cable
laying, (recorded as speed 1, current 1, pressure 1, speed 2, current 2,
pressure 2, respectively). They are set up to simulate the three fault
modes of cable jamming, cable delivery asynchrony, and excessive
pressure, and the data before and after the three faults are monitored
and collected for the training and testing of the model proposed in
this paper. The experimental site photos are shown in Figure 5.

A total of 200 sets of three fault simulation data are used to
construct the training and validation sets according to the data

structure described in the previous section, randomly disrupting the
order to avoid systematic errors caused by artificial division, so that
the model prediction has wide applicability.

4.1 Model hyperparameter study

The type of monitoring state for the algorithm is n = 6 and the
time steps are set to m = 5,10,20 and 40 to investigate the effect of
different time steps on the prediction accuracy. The proposed
algorithm for cable laying conveyor based on attention-driven
CNN-LSTM contains a CNN module, monitoring state attention
module, LSTM module, and time step attention module. For the
CNN module, six one-dimensional convolution kernels are used to
extract monitoring state features from the input matrix, and the size
of the convolution kernels is 6 × 1. The monitoring state attention
module performs attention weight calculation on the features
extracted after convolution and the original monitoring state and
then multiplies them by the original monitoring state. The LSTM
module uses a single-layer LSTM cell, and the number of hidden
cells is 64. The time-step attention module performs attention
weight calculation on the state of the LSTM cell and the hidden
state, and the time-step attention module performs attention weight
calculation on the LSTM cell state and the hidden state. Then they
are dot-multiply with the monitoring data processed by the
monitoring state attention module, and finally output six
predicted monitoring states through the fully connected layer.
The proposed model uses Adam’s algorithm to calculate the
backpropagation gradient and update the training parameters, the
number of training iterations is 100, and the learning rate uses
exponential decay to prevent oscillations, with an initial
learning rate of 0.01, a decay rate of 0.96, and a decay step size
of 100 steps.

In this paper, two indicators, relative mean square error (RMSE)
and mean absolute percentage error (MAPE), are selected to
evaluate the effect of model prediction as shown in Equations 12,
13. The smaller the value of both, the more accurate the
prediction result.

eRMSE �
������������
1
n
∑n
i�1

yi − ŷi( )2√
(12)

eMAE � 1
n
∑n
i�1

yi − ŷi

yi

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ (13)

The computational input model predicts the motor speed,
current, and side pressure data of the two conveyors, and the
prediction results of the input model with different time steps are
compared. Taking the motor speed as an example, the results are
shown in Table 1. It can be seen that the longer the input time step,
i.e., the more historical data provided by the prediction, the more
accurate the prediction results are.

FIGURE 5
Photos of the cable laying test.

TABLE 1 Errors of the proposed model with different time steps.

Time step 5 10 20 40

RMSE 28.387 28.226 28.014 27.815

MAPE (%) 1.049 1.004 1.001 0.973
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In addition, the prediction results are also compared for the
number of LSTM hidden units, controlling the other parameters
unchanged, selecting the best 40 time steps, and setting the number
of hidden units to 8, 16, 32, and 64 respectively. Taking the motor
speed as an example, the prediction errors are shown in Table 2. It
can be seen that the more the number of hidden units, the more
accurate the prediction results, but the overall difference in accuracy
is not large. This is because more number of hidden units can
performmore complex nonlinearity calculations and can learn more
complex laws.

4.2 Relevance analysis and attention
mechanism validation

The motor speed, current, and side pressure of a conveyor
during cable laying have correlation characteristics. The motor
speed and current of the conveyor are conventionally positively
correlated, When the motor is blocked or the load is increased,
the current increases and the speed decreases. When the two
conveyors are not synchronized, the cable sheath and the
conveyor are displaced relative to each other, which can
further damage the cable sheath. When the cable is bent too
much or there is additional force, the side pressure of the
conveyor changes, which can reflect the abnormal force
damage during cable laying.

To investigate the correlation between conveyor state quantities
during cable laying, the correlation of each monitored state quantity
was analyzed using the Pearson correlation coefficient as shown in
Equation 14.

Corr �
N∑N

i�1
xiyi − ∑N

i�1
xi∑N

i�1
yi��������������

N∑N
i�1
x2
i − ∑N

i�1
xi( )2

√ ���������������
N∑N

i�1
y2
i − ∑N

i�1
yi( )2

√ (14)

where x and y are two kinds of measurement data respectively and N
is the number of data.

The heat map of correlation coefficients of conveyor states among
each other during cable laying is shown in Figure 6. The lighter color of
the color block in the graph represents the higher degree of correlation.
It can be seen that each variable presents different correlation
characteristics except that each variable is completely correlated with
itself. The higher brightness of the cable conveyor motor speed and
current squares shows a stronger correlation. In addition, the strong
correlation between the same type of state quantities of the two
conveyors indicates that the cable laying situation can be
simultaneously represented in the states of the two neighboring
conveyors when the two conveyors are transporting cables in series.

To verify whether the attention mechanism can reflect the
relationship between the states, the CNN attention correlation
coefficients in the last step of the prediction are calculated, and the
attention weight α in Equation 8 is calculated as the final correlation
score between the state quantities to be predicted and the other relevant
feature coefficients, and the correlation is quantified in this way. The
heat map of the calculation result is shown in Figure 7. According to the
calculation rule of attention weight, the sum of all correlation weights in
each column is 1. Since all the information of each state quantity itself is
retained, the attention weight is calculated without counting itself, and

TABLE 2 Errors of the proposed model with different hidden units.

Hidden unit number 8 16 32 64

RMSE 28.200 28.186 28.022 27.945

MAPE (%) 1.002 0.993 0.984 0.973

FIGURE 6
The calculation results of Pearson relation coefficients of cable conveyor states.
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the color of each of the remaining squares indicates the correlation
corresponding to other state quantities. The lighter the color in a square,
the stronger the correlation between the two parameters corresponding
to that square.

It can be seen that the overall color distributions presented in
Figures 6, 7 are the same, indicating a consistent relationship
between the distribution of attention weights and the correlation
of the data, which shows that the introduced attention weight
mechanism can characterize the correlation of each state
parameter of the conveyor during cable laying.

4.3 Comparison of single-step
prediction results

To compare the effectiveness of the proposed attention algorithm
with widely used prediction algorithms, two representative AI
algorithms for data prediction tasks, the TCN and CNN-LSTM
algorithms without using the attention mechanism, are selected and
compared with the attention-driven CNN-LSTM algorithm proposed
in this paper. The convolutional kernel size of TCN is set to 6, and the
number of hidden layers is set to 4, and the number of hidden units in
the CNN-LSTM algorithm without the attention mechanism is 64. The
remaining parameters of the CNN-LSTM algorithm are the same as the
algorithm proposed in this paper. To compare under the same
conditions, the time steps are all set to 20 to predict the next data.
The Adam algorithm is used to compute the backpropagation gradient
and update the training parameters, the number of training iterations is
1,000, and the learning rate is exponentially decayed to prevent
convergence oscillations, with an initial learning rate of 0.01, a decay
rate of 0.96, and a decay step size of 1,000 steps.

The prediction results of the three methods for the six states of the
two cable conveyors under three fault states are shown in Figure 8. For

the cable jamming fault, the motor speed of the two conveyors dropped
to zero relatively quickly after the fault and was accompanied by motor
blocking and a rapid increase in current. The pressure monitoring
shows nomajor changes. Different prediction algorithms show different
prediction effects for the cable jamming fault data. All three algorithms
were able to predict more accurately the pressure data that changed
gently with small changes. For some of the monitoring states such as
motor speed and current that suddenly increase or decrease, both TCN
and CNN-LSTM algorithms that do not use the attention mechanism
are unable to accurately predict them, while the attention-driven CNN-
LSTM prediction algorithm proposed in this paper not only learns the
relationship between the parameters and their laws over time using the
attention mechanism, but also acquires the sudden change trend from
the connection between the parameters, and provides accurate
predictions for the cable conveyor multi-monitoring states for
accurate prediction. A similar situation occurs in the case of cable
conveyor asynchrony and excessive side pressure faults. In the case of
cable transport asynchrony faults, a conveyor’s speed decreases during
operation, which corresponds to a change in the motor drive current.
For the overpressure fault, the pressure perceived by a conveyor
increases rapidly and then slowly with the cable transport process.
Although the prediction results of the TCN and CNN-LSTM
algorithms without using the attention mechanism also show an
increasing trend, their errors are still larger than those of the
proposed attention-driven CNN-LSTM algorithm.

The prediction results of these three prediction algorithms are
compared, and the RSME and MAPE calculation results of the three
algorithms for the prediction of the cable conveyor states are shown in
Table 3. The prediction error of the attention-driven CNN-LSTM joint
prediction algorithm proposed in this paper is generally smaller than
the other algorithms, which proves the effectiveness of the attention
mechanism and shows that the proposed attention-driven CNN-LSTM
prediction algorithm has better results for the prediction of

FIGURE 7
Calculation results of attention weights for each state of cable conveyor.
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FIGURE 8
The prediction results of cable conveyor state with different algorithms (data for real measured results, A-CNN-LSTM for proposed algorithm, TCN
for TCN, CNN-LSTM for the normal CNN-LSTM without attention). (A) prediction of cable jamming fault (speed 1, current 1, stress 1, speed 2, current 2,
stress 2). (B) prediction of cable asynchrony fault (speed 1, current 1, stress 1, speed 2, current 2, stress 2). (C) prediction of excessive pressure fault (speed
1, current 1, stress 1, speed 2, current 2, stress 2).
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interconnected multi-monitoring states of the cable conveyor. To verify
the feasibility of using this proposed algorithm for prediction and
forewarning, the algorithm is placed in an embedded AI computing
device—an Nvidia Jetson TX2 module. The time to make one
prediction is 80 ms, which is much less than the prediction data length.

4.4 Effectiveness of multi-step prediction

To reserve more time for predicting the state of the cable
conveyor and preventing equipment failures, the model needs to
make multiple time-step predictions and even long-term
predictions. Usually, there are three kinds of strategies for
multiple time-step prediction: direct strategy, recursive strategy,
and multi-output strategy as shown in Equations 15–17.

ŷt+1 � Model1 xt, xt−1,/, xt−n( )
ŷt+2 � Model2 xt, xt−1,/, xt−n( ){ (15)

ŷt+1 � Model xt, xt−1,/, xt−n( )
ŷt+2 � Model ŷt+1, xt,/, xt−n+1( ){ (16)

ŷt+1, ŷt+2,/, ŷt+m( ) � Model xt, xt−1,/, xt−n( ) (17)

where x is the measured data and ŷ is the predicted data. The direct
strategy uses a differentmodel to predict the data at each time step, and it
has the disadvantage of not being able to model the dependencies
between predictions. The recursive strategy involves using the same
single time-step model multiple times, with the predictions from the
previous time-step used as inputs to make predictions for the next time-
step length. However, it is difficult for recursive strategies to avoid the
accumulation of prediction errors, and thus the prediction accuracy
decreases rapidly as the prediction time increases. The multi-output
strategy involves only one model that is capable of predicting multiple
time steps from historical data in a one-time fashion. Multi-output
models aremore complex and therefore slower to train and requiremore
training data to achieve satisfactory accuracy. In this paper, a multi-
output strategy is used to perform multi-time-step long-term prediction,
i.e., building a model with multiple inputs to multiple outputs.

TABLE 3 Prediction errors of different algorithms for each state of cable conveyor (A-C-L for A-CNN-LSTM, C-L for CNN-LSTM, T for TCN).

jamming fault States Speed 1 Current 1 Pressure 1

Algorithm A-C-L C-L T A-C-L C-L T A-C-L C-L T

RMSE 45.8 3320 107.7 0.211 1.71 0.25 18.9 21 20.1

MAPE (%) 7.29 121 118 3.12 28.47 6.2 0.3 0.64 0.81

States Speed 2 Current 2 Pressure 2

Algorithm A-C-L C-L T A-C-L C-L T A-C-L C-L T

RMSE 46.7 354 169 0.156 0.651 0.341 24.4 29.6 24.6

MAPE (%) 7.99 622 446 2.22 10.07 4.11 0.72 0.88 0.73

asynchrony fault States Speed 1 Current 1 Pressure 1

Algorithm A-C-L C-L T A-C-L C-L T A-C-L C-L T

RMSE 28.6 30.6 31.2 0.202 0.213 0.209 24.6 24.6 25.3

MAPE (%) 1.61 1.69 1.99 4.43 4.78 4.51 0.71 0.73 1.05

States Speed 2 Current 2 Pressure 2

Algorithm A-C-L C-L T A-C-L C-L T A-C-L C-L T

RMSE 43.8 354 67.4 0.221 0.581 0.287 33.5 37.6 34.2

MAPE (%) 2.75 28.8 3.45 5.6 18.8 7.05 1.02 1.11 1.09

Excessive pressure fault States Speed 1 Current 1 Pressure 1

Algorithm A-C-L C-L T A-C-L C-L T A-C-L C-L T

RMSE 26.5 31.1 27.7 0.263 0.264 0.272 20.8 21.9 24.6

MAPE (%) 1.51 1.77 1.60 5.94 5.98 6.22 0.62 0.66 0.69

States Speed 2 Current 2 Pressure 2

Algorithm A-C-L C-L T A-C-L C-L T A-C-L C-L T

RMSE 36.8 37.9 38.2 0.176 0.208 0.186 26.8 31.4 44.8

MAPE (%) 2.11 2.19 2.20 3.08 4.49 3.86 0.66 0.77 1.02

TABLE 4 Errors of the proposed model with different prediction time steps.

Multi-time step 5 10 30 50

RMSE 28.116 28.323 28.810 29.151

MAPE (%) 0.980 0.996 1.045 1.887
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Prediction is performed using the proposed attention-driven CNN-
LSTM algorithm on data after 5, 10, 30, and 50 time steps, with the input
time step set to 20 and the number of hidden layer nodes set to 64. The
Adam algorithm is used to compute the back-propagation gradient and
update the training parameters, with 1,000 training iterations, and an
exponential decay is applied to the learning rate to prevent convergence
oscillations, with the initial learning rate of 0.01 The initial learning rate is
0.01, the decay rate is 0.96, and the decay step size is 1000 steps, and the
results are compared using MAPE and RMSE, as shown in Table 4. As
the prediction time grows, the prediction error slightly improves, but
none of them exceeds 10%, proving that the proposed attention-driven
algorithm andmulti-output strategy can also predict themulti-long-term
results more accurately. It should be mentioned that the proposed model
can be used for other cable laying tasks as long as the model is retrained
using the new data which is related to the exact task.

5 Conclusion

To explore the connection between each monitoring quantity of
cable conveyor and make a more accurate prediction, this paper
proposes an attention-driven CNN-LSTM cable conveyor multi-
monitoring state prediction algorithm based on the states of cable
conveyor in three cable laying fault situations, and the results show that:

(1) The CNN network can mine the connection between the
states of the cable conveyor and intelligently assign weights to
each monitoring state through the attention mechanism. The
LSTM network can mine the law of the change of each state of
the cable conveyor over time and intelligently assign time-step
weights to each variable through the attention mechanism.

(2) The proposed cable conveyor state prediction algorithm based
on attention-driven CNN-LSTM predicts better than TCN, and
CNN-LSTM algorithm without attention mechanism.

(3) The proposed cable conveyor state prediction algorithm
based on attention-driven CNN-LSTM can also predict
long-term changes relatively accurately.
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